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BEST APPROXIMATION AND STRICT 
CONVEXITY OF METRIC SPACES 

Tulsi Dass NARANG 
(Received November 8, 1979) 

The notion of strict convexity in metric spaces was introduced in [1] and certain 
existence and uniqueness theorems on best approximation in such a space were 
proved in [1] and [2]. In this note we take a stronger version of the notion of strict 
convexity and characterize such metric spaces. As a result we get the unicity theorem 
of best approximation 'Every convex proximinal set in a strictly convex metric space 
is chebyshev' and its converse. 

Before proceeding to our main results, we recall few definitions: 
Let (X, d) be a metric space and x, y9 z e X. We say that the point z is between x 

and y (writing xzy) if 
d(x9z) + d(z9y) = d(x,y). 

For any two points x9 y of X, the set 

{z e X: d(x9 z) + d(z9 y) = d(x9 y)}9 

i.e. the set of all those points which lie between x and y, is called the segment [x9 y], 
A metric space (X9 d) is said to be convex [4] if for every two points x and yeX, 

there exists zeX such that x # y / z and xzy i.e. if for every x9 y in X and for every 
t,0 ^ t ^ 1 there exists at least one point z such that 

d(x, z) - (1 - 0 d(x, y) and d(z, y) « td(x, y). 

The space is said to be strongly convex [4] if such a z exists and is unique for each 
pair x and y of X. 

Thus for strongly convex metric spaces each t, 0 <» t £ 1, determines a unique 
point of the segment [*, y\. 

A strongly convex metric space (X, d) is said to be strictly convex if for every x, y 
of Zand r > 0, 

d(x,p) <; r, d(y,p) £ r imply d(z9p) < r unless x » y, where p is arbitrary but 
fixed point of X and r is any point in the open segment ]x, y[. 



Therefore, in a strictly convex metric space if x and y are any two points on the 
boundary of a sphere then ]x, y[ lies strictly inside the sphere. 

A subset K of a metric space (X, d) is said to be convex [1] if for every x,yeK, 
any point between x and y is also in K i.e. for each x, y in K, the segment [x, y] 
lies in K. 

Let S be a subset of a metric space (X, d) and z be a point of S. Let 

Sz = { x e l : d(x, z) = d(x, S)}, 

*.e. S2 is the set of all those points of X having z as a nearest point in S. 
£ is said to be proximinal if for each point x in X there is a point of S nearest 

to x i.e. for each x in X there exists at least one point ze S such that x e Sz. If there 
is a unique such point z for each x in X then S is said to be Uniquely proximinal or 

In [1] and [2] the conditions under which S is uniquely proximinal have been 
studied. We have the following unicity theorem of best approximation, the proof of 
which is contained in Theorem 2 of [1]. 

Theorem 1. In a strictly convex metric space whenever a convex set is proximinal, 
it is uniquely proximinal. 

In order to show that the converse of the above theorem also holds, we establish 
a lemma. 

Lemma. For any two points x, y in a strongly convex metric space (X, d) the 
function 

<P~<Px>y:[x,y]-*[0,d(x,y)]c:R9 

taking z e [x, y] to the real number d(x, z) is an isometry. 
Proof. We can assume x # y. Let z e [x, y] and z' e [z, y\. Then 

d(x, y) = d(x, z) + d(z, y) = 
« d(x, z) + d(z, z') + dkz', y) = d(x, z') + d(z', y) £ d(x, y). 

Hence 
(1) . d(x,y)-d(x,z') + d(z',y) 

and 
$(z') - d(x, z') = d(x, z) + d(z, z') = $(z) + d(z, z') 

implying 
(2) | # ( z ' ) - # ( z ) | = d ( z , z O . 

The equality (1) shows that z' e [x, y] and implies that [x, y] is convex, and the 
equality (2) shows that # is an isometry. 

Corollary. For any two points x, y in a strongly convex metric space (X9 d) the 
segment [x, y] is a compact set. 
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The following theorem shows that the converse of the unicity Theorem 
(Theorem 1) is also true. 

Theorem 2. Let (X9 d) be a strongly convex metric space. Then the following state­
ments are equivalent: 

(i) X is strictly convex. 
(ii) For each convex set S and distinct points x and y of S9 Sxn Sy = 0. 

(III) Whenever a convex set is proximinal9 it is uniquely proximinal. 
Proof. (i)=>(ii). 
Let, if possible, Sxn Sy # 0 and let ze Sxn Sy. This implies 

d(z9x) = d(z9y) = d(z9S). 

Now x9yeXand Xis a convex space, therefore there exists qeXsuch that xqy. 
q € \x9 y] and S is a convex set, therefore qe S. 
Strict convexity of the space implies d(z9 q) < d(z9 S)9 which is a contradiction. 
(ii)*>(iii). 
Let a convex set S be proximinal. Let peX. Since S is proximinal, there exists 

x e S such that p e Sx. 
Let if possible, y # x be also nearest to p9 then pe Sy. Thus pe Sx r\ Sy9 x & y9 

which is a contradiction. 
Oii)-->(-). 
Let x # y, p be points of (X, d) with d(x9p) = d(y9p) = r (say). Define 

/ : / : = [0 ,d (x ,y ) ] -R, 
as 

f(0 = rf(/^~>)). ' 
Then f is continuous. Moreover, since \x9 y] is a compact, convex subset, the 
hypothesis (iii) implies that there exists no subinterval [ti9 r2] £ /, tt < tl9 such 
that 

A ' I ) = Ah) = min {f(0 : r ^ ^ t2}. 

We affirm that all interior points t e ] 0, d(x9 y) [satisfy 

(3) f(t) < maxf = f(0) = f(d(x9 y)). 

Let, if possible, f(f0) = max f for some interior point. Set 

Hi' = min {f(0 : t g t0}9 

mn = min {f(0 : t ^ *0}. 
Suppose m' ^m". Define 

to = inf {r : t ^ t0, min {f(ti) : t ^ ti ^ to} ^ m% 

to = sup {/: t £ t0, min {f('2)
 : to ̂  t2 ^ 0 ^ m'}; 
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Since/is continuous it follows that 

/(to) - /(to) - min {f(t): t0 £ t £ r;}. 

If t(J < f£ then [to, ^o] is the subinterval leading to a contradiction, if to = to then 
/ « [0, d(x9 y)] is the subinterval leading to a contradiction. If m' jg w#, a con­
tradiction can be reached in an analogous fashion. 

Since # is an isometry, (3) implies d(z9 p) < r for any point z in the open segment 
]*> y[- Hence the space is strictly convex. 
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