
Archivum Mathematicum

Jan Ostravský
Acceptors and generalized lc-grammars

Archivum Mathematicum, Vol. 18 (1982), No. 3, 151--162

Persistent URL: http://dml.cz/dmlcz/107137

Terms of use:
© Masaryk University, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107137
http://project.dml.cz

ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XVIII: 151—162,1982

ACCEPTORS AND GENERALIZED LC-GRAMMARS

JAN OSTRAVSKÝ, Gottwaldov
(Received May 5, 1980).

Formal languages studied in the literature are mostly generated by finite devices
(grammars, finite acceptors). Infinite devices generating languages appear only
exceptionally. We mention machines of Pawlak [7] and acceptors studied by
Novotny [2]. These acceptors, though infinite, define interesting classes of languages
that can be completely characterized in an instrinsic way.

In the present paper, we find other infinite devices generating the classes of
languages studied by Novotny, the so called generalized labelled contextual
grammars. They are introduced as geheratizations of contextual grammars due to
Marcus [1], We find two classes of such generalized grammars that generate
exactly the languages that are accepted by a-acceptors (^-acceptors) ift thd sense
of Novotny and exactly all computations of machines in'the sense of Pawlak.

I. Generalized LC-grammars

Let V be a set (of any cardinal number), L s. V* be a language over V. llheri
the ordered pair of strings (u, v)e V*x V* is called a context over V. The context
(u, v)e V*x V* is said to accept tfye string x e V* if u xv e L.

Let V be a set, L £ V* d set of strings over V, C '£ V*xV* be a set contexts
over V. Then the ordered triple G -= <K, L, C> is called a generalized contextual
grammar. Let K be the least set of strings over V having the following properties:

i ° L c K , " " ' ' ' ; 4' •; '' ,J •'"'['
2° If x e K and (u, v) e C, then ux v e K.

Then K is called the language generated by G and denoted by L(G).

1.1. Proposition. Any language can be generated by a suitable generalized con*
textual grammar.

Proof. If L c V* is a language, we put G «*• <F, L, 0>. [3
Let < V, L, C> by a generalized contextual grammar and S a set disjoint from V.

The elements of S are called labels. Let T £ S be a fixed subset of S, it is said
to be the marked subset. Suppose that a mapping <p: L .-+> 2s is gi^en assiftiing

l i i

a set of labels <p{x) c S to any xeL. Furthermore, let ^: C -* 2s *s be a mapping
assigning a set of ordered pair (u, v) e Sx S to any context (u, v) e C. Any pair
(s, s') e \l/(u, v) will be called a label of the context (u, v).

The ordered 7-tuple G = (V, L, C, S, J, cp, î > is said to be a generalized labelled
contextual grammar (generalized lc-grammar). A generalized lc-grammar is said
to be an lc-grammar if the sets V, L, C, S are finite. A generalized lc-grammar is
said to be simple if the set T contains only one element. If T = {a}, we write
<V, L, C, S, a, (p9 $y instead of <V, L, C, S, {a}, <p, ij/}. A generalized simple
lc-grammar will be called briefly a generalized slc-grammar.

For any string x e V*, we define a set of labels <P(x) g S a s the least subset in S
satisfying the following conditions:

1. <p(x) £ 4>(x) for any xe L,
2. If x « uzv, where u, z,ve V* and if s' e <P(z), (s, s') e \j/(u, v), then s e <P(x).

For any s e S9 we define V(s) as the set of all xe V* such that s e <P(x). Furthermore,
we put L(G) = \J T(t) and L(G) is called the language generated by the generalized

lc-grammar G.

1.1. Example. Express the language of Curry by means of an slc-grammar.
Let V = {a9 b, c}9 S = {a, A, B, C, D}, L -= {a}, C = {(A, a), (A, b)9 (A, c)},

<p(a) - {/>}, $(A9 a) - {04, 5)}, <K/1, 6) = {(ex, A (A, A), (C, C), (C, D)},
*(A9 c) » {(5, C)}, G = <V, L, C, S, <r, <p, </,>.

Example of a string in L(G):
We have D e <p(a) e $(a), (C, D) e \j/{A, b) and hence C e #(aA). Since (C, C) e

6 ^(vl, ft), we obtain C 6 #(a&2). Further (B, C) e ${A9 c) and therefore, .# e $(ab2c).
From the condition (^, B) e ^04, a), it follows that A e <P(ab2ca). Since (a, ^) e
€ ^(yl, A) we have finally a e $(ab2cab) and then ab2cab e L(G).

An ordered quadruple H =* (U9V9a9 R}9 where Vet/, a e C / - V , i ? £
£ (*7 - V)x V*{U - V) V* u (£/ - F)x V*, is said to be a generalized linear
grammar.

The relation => (R) of direct derivation and the relation X {R) of derivation with
respect to R are defined in the same way as for grammars. The set L(H) = { w e P ,
a -*• w(R)} is said to be the language generated by H. We write =>, %. instead
of 2> {R)9 -^ (R), respectively, if R is clear from the context.

A generalized linear grammar is said to be a linear grammar if the sets U, R
are finite.

Let G = <F, L9 C, S9 a9 <p, r̂> be a generalized slc-grammar. We put

Rx = {(s9 x); x e L9 s e <p(x)}9

R2 = {(s9 us'v); {u9 v) e C, (s9 s') e \l/(u, v)}9

H = (K u S , F, a9Rx KJR2>.

Then, clearly, if is a generalized linear grammar. It will be called the generalized

152

linear grammar associated with G and denoted by A(G). Note that A(G) is a linear
grammar for a slc-grammar G.

1.2. Example. Construct the linear grammar associated with the slc-grammar G
which defines the language of Curry.

For the slc-grammar G of 1.1., we define H = A(G). We obtain

Rt = {(D,a)}, '
R2 = {(A, Ba), [a, Ab), (A, Ab), (C, Cb), (C, Db)9 (B9 Cc)}9

H = <{tr, A9 B9 C, D, a, b, c}; {a, b9 c\,

{(a, Ab)9 (A, Ab), (A, Ba), (B, Cc), (C, Cb), (C, Db)9 (D, a)}9 <r>.

Let H = <<7, V, a, R} be a generalized linear grammar. We put

S = U - V,
JRJ = {(s, JC); (s, x) e i?, s e S, x e V*}9

R2 = R — Rt.

Thus, for any (s, x) e R2, there exists exactly one s' e S and (w, v) e V* x F*
such that x = ws'u.

We define
L = {*; (s, x) e Rt for some s e S}9

(p(x) = {s; (s, x) € Rt} for any x e L,
C = {(w, y); (s, usfv) e I*2 f° r some s, s' e S9 u9 v e V*}9

\\f(u9 v) = {(s, s'); (s, us'v) e R2} for any (u9 v) e C.
G=<V,L,C,S,a,q>,1f>.

Then G is a generalized slc-grammar. It will be called the generalized slc-grammar
corresponding to H and denoted by C(H). Note that C(H) is a slc-grammar if H
is a linear grammar.

By a direct calculation according to the definition of the operators A, C we obtain

1.2. Lemma. A(C(H)) = H for any generalized linear grammar H. O
Our main result is the following.

1.3. Theorem. L(G) = L(A(G)) for any generalized slc-grammar G.
Proof. Let G = <V, L9 C, S9 a, <p9 ^> be an arbitrary generalized slc-grammar

G9 A(G) = <U, V, <r, JR>. Let s e S9 x e V*. We prove that s 1> x iff s e $(x).
We denote by V(n) the following assertion. If there exists an s-derivation of

a string x of length ^ n, then s e #(x).
If there exists an s—derivation x of length 1 then (s, x)eR and, therefore,

(s, x) e JRJ whence s G <p(x) c $(x). Thus F(l) holds.
Let m ^ 1 be an integer and suppose the validity of V(m). Let xeV* have

an s-derivation of length m + 1: s = t0, z ,̂ ..., tOT+1 = x. Then tj == us'v for

153

some suitable (s, us'v)eR where u9 v e V*. Hence (s, s') e \j/(u9 v) and, clearly,
x = ux'v, where x' has an s'-derivation of length m. Therefore s' e <P(x') by
induction hypothesis and thus se <P(x). We have obtained V(m 4- 1).

By induction, we obtain: if s ^ x for x e V* and s 6 S then s e $(.*:) holds.
For se S9 xsV* we put se <P'(x) if s ^ x. If s€ <p(x) we have (s, JC) G R and

thus s -̂ . x and therefore s e #'(x). Thus <p(x) £ #'(x).
If x = wzi?, w, z, v e V*9 s' e <£'(z), (s, s') e ^(w, v) then s' -^ z and (s, us'v) e K.

This implies s -^ wzv = x and, hence, s e $'(.*). Then, for any xeV*9 $'(•*) is a set
with the properties 1. a 2. From the minimality of #(x), it follows that <P(x) s
£ <P'(x). Thus, if s 6 #(x) then s Z> x.

We have proved L(G) = L(A(G)). D

1.4. Proposition. L(H) = L(C(H))for any generalized linear grammar H.9

Proof. By 1.3 and 1.2, we obtain L(C(H)) = L(A(C(H))) = L(#). •

1.5. Corollary. A language is generated by an slc-grammar iff it is linear. •
*

1.6. Proposition. A language is generated by a contextual grammar iff it is
generated by a linear grammar with one nonterminal symbol.

See, for example, Paun [10], Gruska [11], [12],
Proof. Clearly a contextual grammar G' = <V, L, C> may be considered as

a special case of a lc-grammar G = <F, L, C, 5, <x, <p, î > if putting 5 = {a}
where a $ V is a new symbol, <p(x) — {<x} for any xeL and \j/(u9v) = (<r, <x) for
any (w, t>) e C. Then, clearly, L(G) = L(G'). D

II. Acceptors

The ordered triple (S, Z?, v) where 5, is are sets and v is a mapping v: E -* Sx S
is said to be a graph. The elements in S are called nodes and the elements in E
edges. A mapping v assigns to any edge e e E the ordered pair of nodes v(e) =
« (s', s"); s' i& called the initial node and s" the final node of the edge e.

Let ses, te S be nodes; the sequence of edges (ei9 el9 ..., en)9 (n ^ 0) is said
to be a path from s to t if the conditions s[= s, s" = si+i for i = 1, 2, ...,
n - 1; s^ = t are satisfied where (sj, s") = tf(ei) for 1 £ i g « - L

The ordered 5-tuple (S,»£, V, y, w), where (5, £, t?) is a^graph, Fis a set and u is
a mapping u: E -+ V9 is said to be a graph with labelled edges. Iffci)".! is a path
from the rldde seS to the node teS then the sequence (u(e{))

n
issi is called the

description of the way.
The ordered 7-tuple A = (S9E9 V, l9 F9 v9 u) such that (S9 E9 V9 v9u) is a graph

with labelled edges and I £ S\ F o S are sets, is said to be an accepting graph.
We shall call the elements in /start nodes and in F final nodes. The sequence (#*)*= x

is said to be accepted by an accepting graph A if there exist nodes s e / and t e F

154

and a path from s to t such that its description is just (aj)"..!. We shall write the
sequences accepted by accepting graphs as strings; thus, mostly ai9 ...,#„ instead
of (ai)n

iss t . We denote by L(A) the set of all strings accepted by an accepting
graph A.

Generally for s e S, t e S9 it can happen that there exist et e E9 e2 e E9 et # e2

such that v(e%) = (s, t) = v(e2)9 u(et) = u(e2). It is easy to see that* L(A) =* L(A')
if we denote by A' an accepting graph that we obtain* from A omitting the edge e2

and its description.
We can confine ourselves to accepting graphs in which for any se S9 teS and

any aeV there exists at most one edge eeE such that v(e) = (s, t)9 u(e) = a.
This graph is called simple. Such a simple accepting graph can be described by
indicating to each node seS and to each symbol aeV9 the setf(s, a) of nodes t
such that any edge leaving the node s and entering the node t is labelled by a.
Clearly, E9 V9 u can be reconstructed from S, V9f91, F.

An acceptor is a 5 —tuple N = <5, V9f9 /, F> where S9 V are sets, fa mapping
of SxV into 2s and I9 F are subsets of S. Elements of S are often called states
of N. A string ax ... an of elements in V where h ^ 0 is said to be accepted by N
if there is a string s0st ... s„ of elements in S such that s0el9 sne F9 and s^e
ef(si„i9 at) for / = 1, 2, ..., n. The string s0st ... sn is alsb called the calculation
of the string ax ... an; sni$ called the last state of this calculation. LetL(N)denote
the set of all strings accepted by an acceptor N; it is called the language accepted
by N.

We denote by R(A) an acceptor corresponding to«a simple accepting gtaph A.
Further let us denote by S(N) a simple accepting graph reconstructed from an
acceptor N. Clearly:

2.1. Proposition. S(R(A)) = A9 R(S(N)) = N, L(A) = L(R(A))9 L(N) =X(S(N)X •
We now exhibit simple examples of acceptors. Let U be a set, Z> c XJ and m:

D ~+ U a. mapping. Then the ordered pair P = (U9 m) is said to be a machine of
Pawlak, or briefly, a P-machine. Clearly, D = Dm is the domain of the mapping m.
A string ax ... a„ where n <g 2, ateD9 ai+i = m(a^ for i/* lf 2, ...9n — 1,
ane U — D is said to be a calculation of the P-machine. We denote by L(P)
the set of all calculations of the P-machine P. L(P) is said to be the language
generated by P. For any P-machine we construct Pawlak's accepting graph in the
following way: we choose a new element <n $ U and we put S = Uu {m}9 E =
= {(a, m(a)); ae D} u {(a9co); aeU-D}9 V = U u {w}9 I = D9 F * {co}9

v'= idE9 u(a9b)l~ a for any (a9b)eE. Then the ^rdered 7-tuple A **(S9E9

V919 F9 v9 u) is said to be Pawlak's accepting graph or a P-gr&ph assigned to the
P-machine P. We denote it by Q(P). It is easy to see from the definition that
Q(P) t= A has the following properties:

(1) any a e D is left by precisely one edge, the edge enters m(a) and it is labelled
by the symbol a, ,

155

(2) any ae U - D is left by precisely one edge; the edge enters co and it is
labelled by the symbol a9

(3) there are no other edges in A.
This implies immediately:

2.2. Theorem. Let P be a P-machine. Then L(P) = L(Q(P)). D
In what follows, we consider the following properties of an acceptor <S', V9f

/, F>.
(i) S « V.

(ii) f(s, a) # 0 for s ^ a9 se S9 ae S.
(iii) There exists an element coe S such that F = {co}, /(ca, co) = 0.
(iv) for arbitrary s e /, there exists precisely one t e S — {co} such that/(^, s) =

= {<}•
(v) f(s> s) = {<*>} for an arbitrary s e S - / — {<w}.

2.3. Proposition. For any acceptor N = <.S, F,/ , /, F> with the properties (i)—(v)>
there exists a P-machine P such that S(N) = Q(P).

Proof. We put U = V - {a)}, /w(a) = /(a, a) for any ael. Then P = (U9 m)
is a P-machine. If constructing Q(P)9 it is easy to see that it equals S(N). D

Let N = <S, V9f /, P>, N' = <S', F , / ' , /', F> be acceptors, A: S -• S' a Ejec­
tion. The bijection A is said to be an isomorphism of N onto N' if it holds:/ ' =
= A[/], F = A[P], f'(s\ a) = A[/(A~ x(s')9 a)] for any aeV9s'e S'.

Let N = <5, V,f /, P>, 5' be a set, A: 5 -• S' a bijection. We put f'(s'9 a) =
= A[/(A~V), <*)] for any s' eS'9ae V, I' = A[/], F' = A[P]. Then N' = <5', F,

/ ' , /', P"> is an acceptor and A is an isomorphism of N onto N'. We say that this
acceptor is defined by means of the bijection A.

We summarize

2.4. Fact. An arbitrary bijection of the set S of states of an acceptor N =
= <5, V9f /, P> defines an acceptor isomorphic with N. D

We now define acceptors with special properties. Let N= <S', V,fI,F} be
an acceptor. We say that N is normal if S n V = 0, N is special when card
V = card S and N is exceptional when V = S.

As special cases of 2.4. we obtain

?.5. Proposition. There exists a special and also a normal acceptor that is iso­
morphic with an arbitrary given acceptor. D

For any isomorphic acceptors N, N' the graphs S(N) and S(N') differ only
in nodes while the structures on the sets of nodes are the same in both cases. If
replacing any node in S(N) by the corresponding node in S(N'), a labelled path
in S(Nf) corresponds to any labelled path in S(N) in such a way that the labellings
are the same. Hence, by 2.1.

2.6. Proposition. Two isomorphic acceptors accept the same language. D

156

Let N = <iS, V9f J, F> be a special acceptor, h: S -» Fa bijection. The bijection A
is said to be an a-bijection if/(^, a) == 0 holds for any a 6 F, 5 e S with the property
h(s) # a. We say that an acceptor has the property (a') if it has at least one a-bijec­
tion. Particularly, if S = V and if ids is an a-bijection of an acceptor N =
= <S, V9f /, F> we say that N has the property (a).

It follows immediately from the definition that an acceptor with the property (a)
is exceptional. It is easy to see that any acceptor with the property (a) has the
property (a'), too.

Then

2.7. Proposition. To any acceptor with the property (a') there exists an isomorphic
acceptor with the property (a). O

2.8. Proposition. Acceptors with the property (a) and acceptors with the property (a')
accept the same class of languages. D

Let N = (S9 V,f I9 F} be an acceptor with the property (a'), h: S -> V its
a-bijection. The a-bijection is said to be a /f-bijeption if it has the following
properties:

(^) / (^ ^)) ^ 0 i f f 5 6/,
(P2) F - S - /.

We say that an acceptor has the property (fi') if it has at least one 0-bijection.
Particularly if «S = V and ids is a ^-bijection of an acceptor N =- <S, Vff J, F)>
we say that N has the property (fi).

Clearly, any acceptor with the property 08) has the property 0?'), too.
Then

2.9. Proposition. To any acceptor with the property (fi') there exists an isomorphic
acceptor with the property (fi). Q

2.10. Proposition. Acceptors with the property (fi) and acceptors with the property
(fi') accept the same class of languages. •

Let N = (S9 V9f J, F> be an acceptor with the property (a'), h: S -+ V its
a-bijection. We say that the a-bijection is a n-bijection if it has the following
properties:

(gt) there exists coe S — I such that F « {co}9 f(cof h(w)) = 0,
(g2) for any sel there exists just one teS — {00} such that f(sf h(s)) -» {f},
(£3) / t e K*)) = M for any s e S - / - {a>}.
We say that an acceptor has the property (%*) if it has at least one it-bijection.

Particularly if S = V and ids is a rc-bijection of an acceptor N «- <*S, Vff If F>,
we say that N has the property (7c).

Clearly any acceptor with the property (n) has the property (n')f too.

2.11. Proposition. To any acceptor with the property (%') there exists an isomorphic
acceptor with the property (n). O

157

2.12. Proposition. Acceptors with the property (n) and acceptors with the property
(ri) accept the pame class of languages. D

If we compare the properties (i) - (v) with the property (n) we see that an acceptor
has the property (n) iff it has the properties (i)~(v). From here and from 2.3, 2.2,
2.1 we have

2.13. Proposition. To any acceptor N with the property (n) there exists a P-machine
P such that S(N) = Q(P), L(N) = L(P). D

Simillary 2.2 gives

2.14. Proposition. R(Q(P)) has the property (n) for any P-machine P and L(P) ==
= L(R(Q(P))) holds. D

2.15. Proposition. Acceptors with the property (n) accept the same class of
languages as P^machines generate. D

III. Acceptors and generalized LC-grammars

For an arbitrary normal acceptor N = <5, V,f, 7, F} we put,

L = {A},

C = {(A,a);aeV},

9(A) = J, l ("

\ji(A, a) = {(s, s'); s ef(s', a)} for any ae V,

G = iV,L,C,S,F,(p,^\

K(N) = G.

Then K(N) is a generalized lc-grammar that has the following properties:
(a)L = {A},
(b) C £ {A} x V.
This generalized lc-grammar is said to be a generalized right regular lc-grammar

(shortly rrlc-grammar). Nbte that K(N) is an rrlc-grammar if the acceptor is
finite.

Now let G = <V, L, C, S, T, <p, î > be a generalized rrlc-gfammar. We put

I=<f>(A\
f(s, a) == {t;(t, s)e i//(A, a)} for any se S, ae V,

N=<S,V,f,I,F>,

M(G) = N

Then M(G) is a normal acceptor. Note that the normal acceptor M(G> is finite
if G is an rrlc-grammar. .

158

3.1. Example. Let N - <S, V,/,/, F> be a normal acceptor Such that S «•
= {a9 A, B, C, A £}, F * {a, b, c}, / = {£}, F « {er} and let f be giten by the
following table: following table:

f a > c

o 0 0 0

A • 0 {<r,Л} 0
B {Л} 0 0
C 0 {C} w
D 0 {C} 0
E .{->) 0 0

a

Љ-

We suppose that is is the only start state and a the only final state. By definitions,
we have

cp(A) = {E}, t/,(A, a) - -{(A, 3), (D, E)}, '.

HA,b) = {(o,A),(A,A),(C,C),(C,D)}, ij,(A,e) = {(B,C)},

K(N) = < V, {A}, {(A, a), (A, b), (A, c)}, S, {<r}, <p, *>

3.1. Proposition. M(K(N)) = N for any normal acceptor N.
Proof. Let N = (S,V,f,I, F}. Then K(N) = <V, L, C, S, F, <p, \ji> and

M(K(N)) = (S, V,f, I', F> where /' = <p(A) = /and/'(s,«) - {f, (t,s) e ^(A, a)} =
= f(s,a).n

3.2. Theorem. L(G) = L(M(G)) for any generalized rrlc-grammar G.
Proof. Let G = <V, L, C, S, T, <p, î >, M(G) = N•'« <S, F,T,7,T>. We denote

by F(M) the following assertion: If for se S,xe V*, there exists a calculation of the
string of length jj « with the last state s, then •$• e $(x).

If for s e S, x e F* there exists a calculation of length 0 with the last state 5
then x = A and selnT. Thus se/ = <p(A) <= <P(x). Therefore V(0) holds.

І59

Suppose that m = 0 and V(m) holds. Let s G 5, x e V* and suppose the existence
of an calculation of length m + 1 of the string x with the last state s.

Then there exist s0, sl9 ..., sm + 1 in S and a{, a2, ..., tfm+1 in V such that x =
= axa2 ... am + 1 , s0e/, sm+1=s and sf e f ^ . j , a,) for i = 1, 2, ..., m + 1.
Therefore s0s1 ... sm is a calculation of the string x' = axa2 ... am of length m
with the last state sm. By induction hypothesis, we obtain sm e 4>(x'). Since sm+1 e
ef(sm,am + x) we have sm+1 € €>(x'am^x) = <P(x).

By induction, it follows that the existence of a calculation of the string x with
the last state s implies s e $(x).

Let us put s e <P'(x) if there exists a calculation of the spring x with the last
state s.

If s G q>(/L), then s G / holds and thus there exists a calculation of A with the last
state s. Therefore <p(A) £ $'(A).

Let us have x = uzv, s' e <P'(z), (s, s') G \j/(u, v). Then u = A, v = a e V. There
exists a calculation of z with the last state s'. Since (s, s') e \j/(A, a), we obtain
s ef(s', a) and thus there exists a calculation of za = uzv = x with the last state s;
this implies s G <P'(X).

We have seen that <P'(x) has the properties 1 and 2 for any x G V*. From the
minimality of $(x) it follows that #(x) c ^'(^)> i.e., if s e ^(x), there exists a cal­
culation of x with the last state s. This can be expressed as follows: xe W(s) iff
there exists a calculation of JC with the last state s. Therefore: xeL(G) = (J !F(s)

seT

iff there exists a calculation of x with the last state in T, i.e., iff x e L(N). D
By 3.1 and 3.2, we obtain

3.3. Proposition. L(N) = L(M(K(N))) = L(K(N))for any normal acceptor N. D

3.4. Theorem. A language is regular iff it is generated by rrlc-grammar. D
Let N = <S, V,f /, F> be a normal acceptor with the property (a'). Then K(N)

is a generalized rrlc-grammar that has the following properties:
(c) there exists a bijection h : S -* V
(d) for any a e V there exists S(a) £ S such that ^ (A , a) = {(s, k~l{a)\ seS(a)}.

[It is sufficient to put S(a) = f(h"1(a) , a).]
Such a generalized rrlc-grammar is said to be a generalized a'rrlc-grammar.
We obtain

3.5. Proposition. If N has the property (a') then K(N) is a generalized
a'rrlc-grammar. D

3.6. Proposition. If G is a generalized a'rrlc-grammar, then M(G) has the property
(a'). •

3.7. Corollary. Let Lie a language. Then the following conditions are equivalent:

(i) L is accepted by an acceptor of the class (a').

160

(ii) L is accepted by an acceptor of the class (a).
(iii) L is generated by a generalized a'rrlc-grammar. D
Let N = </S, V,/,/, F} be a normal acceptor with the property (/?'). Then

K(N) = < V, L, C, S, F, q>, if/} is a generalized a'rr/c-grammar that has the following
properties:

(et) F = S - <p(A)
(e2) For any ae V, the condition S(a) # 0 is satisfied iff h"1(a) e <p(A).
Such a generalized a'rrlc-grammar is said to be a generalized /Trrlc-grammar.
Immediately it follows

3.8. Proposition. If N has the property (/?') then K(N) is a generalized
P'rrlc-grammar. D

3.9. Proposition. If G is a generalized rrlc-grammar, then M(G) has the property
(/>'). •

3.10. Corollary. Lef L be a language. Then the following conditions are equivalent:
(i) L is accepted by an acceptor of the class (/?').

(ii) L is accepted by an acceptor of the class (P).
(iii) L is generated by a generalized P'rrlc-grammar. D
If N = <S, V,f, /, F> is a normal acceptor with the property (nf) then K(N) =

= <V, L, C, S, F, <p, \j/y is a generalized a'rrlc-grammar having the following
properties:

(0 It is simple, F = {co}, <x> e S - /, ^(A, h(co)) = 0
(j) for any h(a) e V with the property ae I there exists exactly one be S — {co}

such that ^(/l, h(a)) = {(b, a)},
(k) for any h(a) e V with the property ae S — 7 — {co} the condition

^(A, h(a)) = {(a), a)} is satisfied.
Such a generalized a'rrlc-grammar is said to be a generalized Tt'rrlc-grammar.

Clearly

3.11. Proposition. If N is an acceptor of the class (nf) then K(N) is a generalized
n'rrlc-grammar. D

3.12. Proposition. If G is a generalized n'rrlc-grammar then M(G) is an acceptor
of the class (n'). D

3.13. Corollary. Let L be a language. Then the following conditions are equivalent:
(i) L is accepted by an acceptor of the class (n').
(ii) L is accepted by an acceptor of the class (n).

(iii) L is generated by a P-machine.
(iv) L is generated by a generalized n'rrlc-grammar.

ìбi

REFERENCES

[1] Marcus, S.: Contextualgrammars. Rev. Roum. Math. Puгes et Appl. 14 (1969), 1525—1934.
[2] Novotný, M.: On aclass ofcontextuaigrammars. Cahieгs de linguistique théorique et appliquée

11 (1974), Fasc. 2, 313—314.
[3] Novotný, M.: On muiticontextuaì grammars (manuscгipt).
[4] Novotný, M.: On some variants of contextual languages. Rеv. Roum. Math. Pцrеs еt Appl. 21

(1976), 1053—1062.
[5] Novotný, M.: Each generalized contextual language is context sensitive. Rеv. Roum. Math.

Purеs еt Appl. 21 (1976), 353—362.
f 6] G i n s b u rg, S.: The mathematical theory ofcontext-free languages. Mc Graw Hill Book Company

Nеw York, 1966. ;

[7] Pawlak, 2.: Maszyny programowane. Algorytmy 10, volumе 5, 1969, 5—19.
[8] Čulík, Қ.: Some notes onfinite state languages and events represented byfinite automata using

labelled graphs. Čas. p st. mat, 86, 43—55 (1961).
[9] Marcus, S.: Gramatici şi automate finite. Editura acadеmiеi rеpublicii popularе Rominе, 1964.

ţlO] Păun, G.: On the smallest number of nonterminals required to generate a context-free language.
Rеv. Anal. Numér. Thеor. Approx. 18 (41), t. 2 (1976), 203—208.

[11] Gruska, J.: Ona classification of context-free languages. Kybеraеtika (Praguе) 3, Nr. 1 (1967),
22—29.

(12] Gruska, J.: Descriptional complęxity of context-free Umguages. Mathеmaticai Foundations of
Computеr Sciеncе. Procееdings of Symposium and Summеr School. High Tatras, Sеptеmbег 3
to 8, 1973 (1973), 71—83.

J. Ostravsk
762 72 Gottwatdov, nåm. Rudé armády 275
Czechostovakia

162

		webmaster@dml.cz
	2012-05-09T18:13:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

