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Formal languages studied in the literature are mostly generated by finite devices
(grammars, finite acceptors). Infinite devices generating languages appear only
exceptionally. We mention machines of Pawlak [7] and acceptors studied by
Novotny [2]. These acceptors, though infinite, define interesting classes of languages
that can be completely characterized in an instrinsic way.

In the present paper, we find other infinite devices generatmg the classes of
languages studied by Novotny, the so called generalized ]abelled contextual
grammars. They are introduced as generatizations of contextual grammars due to
Marcus [1]. We find two classes of such generalized grammars that generate
exactly the languages that are accepted by a-acceptors (B- acceptors) in the senseé
of Novotny and _exactly all computatxons of machmes in the sense of Pawlak

I. Generalized LC-grammars

Let V be a set (of any cardinal number) L< V*bea language over V Then
the ordered pair of strings (u, v)E V*Xx V*is called a context over V. The context
(u, v) € V*x V* is said to accept the string x e V* if uxve L. ’

Let ¥V be a set L < V* a set of strings over ¥V, C < V*x V* be a set contexts
over V. Then the ordered triple G = KV, L, C} is called a generahzed contextual
grammar. Let K be the least set of strmgs over |4 havmg the followmg propertres'

1° L < K,

2° If x € K and (, v) € C, then uxveK.

Then K is called the language generated by G and denoted by L(G).

1.1. Proposition. Any language can be generated by a suztable generalized con-
textual grammar.

Proof. If L V*isa language, we put G = (V,L,0>. @

Let <V, L, C) by a generalized contextual grammar and S a set disjoint from V.
The elements of S are called labels. Let T < S be a fixed subset of S, it is said
to be the marked subset. Suppose that a mapping ¢: L — 25 is given assigning
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a set of labels ¢(x) = S to any x € L. Furthermore, let y: C = 25*5 be a mapping
assigning a set of ordered pair (u, v) € Sx S to any context (v, v) € C. Any pair
(s, 8") € Y(u, v) will be called a label of the context (u, v).

The ordered 7-tuple G = (V, L, C, S, T, ¢, ¥ is said to be a generalized labelled
contextual grammar (generalized lc-grammar). A generalized lc-grammar is said
to be an Ic-grammar if the sets V, L, C, S are finite. A generalized lc-grammar is
said to be simple if the set T contains only one element. If T = {5}, we write
(V,L,C,S,0,0,y> instead of (V,L,C, S, {c}, ¢, ¥). A generalized simple
lc-grammar will be called briefly a generalized slc-grammar.

For any string x € V*, we define a set of labels #(x) = S as the least subset in §
satisfying the following conditions:

1. p(x) € &(x) for any xe L,

2. If x = uzv, where u, z, ve V* and if s' € &(2), (s, s') € Y(u, v), then s € P(x).
For any s € S, we define ¥(s) as the set of all x € V'* such that s € #(x). Furthermore,
we put L(G) = | ) ¥(r) and L(G) is called the language generated by the generalized

teT
Ic-grammar G.

1.1. Example. Express the language of Curry by means of an slc-grammar.

Let V={a,b,c}, S = {0, 4, B, C,D}, L = {a}, C = {(4, a), (4, b), (4, ¢)},
0@ = {D}, ¥(4, &) = {(4, B)}, ¥(4, b) = {(6, 4), (4, 4), (C, C), (C, D)},
¥4, c) = {(B’ C)}’ G=<V,L,CS, o0, 0 ¥>.

Example of a string in L(G):

We have D € ¢(a) = P(a), (C, D) € y(A, b) and hence C € ®(ab). Since (C, C) e
€ ¥(A, b), we obtain C € ®(ab?). Further (B, C) € ¥(4, ¢) and therefore, B € d(ab’c).
From the condition (4, B) € Y(4, a), it follows that A € ®(ab’ca). Since (o, A) €
€ Y(A, b) we have finally o € ®#(ab*cab) and then ab*cab € L(G).

An ordered quadruple H = (U, V, 0, R), where V<= U, 6 U-V¥, R<
S(U-W"MxV¥U-V)V* v (U= V)xV* is said to be a generalized linear
grammar.

The relation = (R) of direct derivation and the relation % (R) of derivation with
respect to R are defined in the same way as for grammars. The set L(H) = {we V*,
o = w(R)} is said to be the language generated by H. We write =, % instead
of 5 (R), & (R), respectively, if R is clear from the context.

A generalized linear grammar is said to be a linear grammar if the sets U, R
are finite.

Let G = (V,L, C, S, o, ¢, ¥)> be a generalized slc-grammar. We put

R, = {(s, x); xe L, s € p(x)},
R, = {(s, us'v); (u, v) € C, (s, s") € Y(u, v)},
H =<(VuUS,V, 0, R UR,).

Then, clearly, H is a generalized linear grammar. It will be called the generalized
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linear grammar associated with G and denoted by A(G). Note that A(G) is a linear
grammar for a slc-grammar G.

1.2. Example. Construct the linear grammar associated with the slc-grammar G
which defines the language of Curry.
For the slc-grammar G of 1.1., we define H = A(G). We obtain
R, = {(D’ a)}’
R, = {(4, Ba), (g, Ab), (4, Ab), (C, Cb), (C, Db), (B, Cc)},
= {{o, A, B,C, D, a, b, c}; {a, b, c},

{(, Ab), (A4, Ab), (4, Ba), (B, Cc), (C, Cb), (C, Db), (D, a)}, o).

Let H = (U, V, g, R) be a generalized linear grammar. We put

S =U-V,
R, = {(s,%); (s, x)e R,5€ S, xe V*},
R2=R—R1. ‘

Thus, for any (s, x) € R,, there exists exactly one s'€ S and (u,v)e V*x V*
such that x = us’v.
We define
L = {x;(s,x)e R; for some se S},
o(x) = {s;(s,x) e R,} forany xelL,
C = {(u, v); (s, us’v) e R, for some s, s’ €S, u,veV*},
Y(u, v) = {(s, s); (s, us'v) € R,} for any (u, v) € C.
G=<(V,L,C,S,a, o,

Then G is a generalized slc-grammar. It will be called the generalized slc-grammar

corresponding to H and denoted by C(H). Note that C(H) is a slc-grammar if H
is a linear grammar.

By a direct calculation according to the definition of the operators A, C we obtain

1.2. Lemma. A(C(H)) = H for any generalized linear grammar H. O
Our main result is the following.

1.3. Theorem. L(G) = L(A(G)) for any generalized slc-grammar G.

Proof. Let G = (V, L, C, S, o, @, > be an arbitrary generalized slc-grammar
G, A(G) = (U, V, 0, R). Let se S, x€ V*. We prove that s 2 x iff s € &(x).

We denote by V(n) the following assertion. If there exists an s-derivation of
a string x of length < n, then s € ¢(x).

If there exists an s—derivation x of length 1 then (s, x) € R and, therefore,
(s, x) € R, whence s € ¢(x) < &(x). Thus ¥(1) holds.

Let m = 1 be an integer and suppose the validity of V(m). Let x € V'* have
an s-derivation of length m + 1: s =1ty, 4, ..., tm+, = x. Then ¢, = us'v for
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some suitable (s, us'v) € R where u, ve V*. Hence (s, s') € y(u, v) and, clearly,
x = ux'v, where x’ has an s'-derivation of length m. Therefore s’ € &(x") by
induction hypothesis and thus s € #(x). We have obtained V(m + 1).

By induction, we obtain: if s % x for xe€ V* and se S then se ®(x) holds.

For se S, xeV* we put se &'(x) if s % x. If s ¢(x) we have (s, x) € R and
thus s % x and therefore s € ?@'(x). Thus ¢(x) & @'(x).

If x = uzv, u,z, ve V* s € ®'(2), (s, s') € Y(u, v) then s" % z and (s, us'v) € R.
This implies s % uzv = x and, hence, s € @'(x). Then, for any x eV*, &’(x) is a set
with the properties 1. a 2. From the minimality of &(x), it follows that &(x) =

< &'(x). Thus, if s € &(x) then s % x.

We have proved L(G) = L(4A(G)). O

1.4. Proposition. L(H) = L(C(H)) for any generalized linear grammar H.,
Proof. By 1.3 and 1.2, we obtain L(C(H)) = L{(A(C(H))) = L(H). O

1.5. Corollary. A language is generated by an slc-grammar iff it is linear. O

1.6. Proposition. A /anguage is generated by a contextual grammar iff it is
generated by a linear grammar with one nonterminal symbol.

See, for example, Paun [10], Gruska [11], [12].

Proof. Clearly a contextual grammar G’ = (¥, L, C) may be considered as
a special case of a lc-grammar G = <V, L, C, S, 0, 9, > if putting S = {0}
where o ¢ V is a new symbol, ¢(x) = {g} for any x € L and y(u, v) = (o, o) for
any (u, v) € C. Then, clearly, L(G) =.L(G"). O

»

I1. Acceptors

The ordered triple (S, E, v) where S, E are sets and v is a mapping v: E > $x S
is said to be a graph. The elements in S are called nodes and the elements in E
edges. A mapping v assigns to any edge e € E the ordered pair of nodes v(e) =
= (s', s"); s’ is called the initial node and s” the final node of the edge e.

Let s€.S, t € S be nodes; the sequence of edges (ey, e, ..., €,), (n = 0) is said
to be a path from s to ¢ if the conditions s; = s, §f = 54, for i = 1,2, ...,
n — 1; s, = t are satisfied where (s, s;) = v(e)) for 1 £ i< n— L

The ordered 5-tuple (S,'E; V, v, u), where (S, E, v) is a'graph, Vis a set and u is
a mapping u: E — V, is said to be a graph with labelled edges. If (e;);-, is a path
from the node se€ S to the node ¢ € S then the sequence (u(e)))i=, is called the
description of the way.

The ordered 7—tuple A = (S, E, V, L, F, v, u)'such that (S, E, V, v, u) is a graph
with labelled edges and I = S} F < S are sets, is said to be an accepting graph.
We shall call the elements in Fstart nodes and in F final nodes. The sequence (a,)!-,
is said to be'accepted by an accepting graph A if there exist nodes se I and te F
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and a path from s to ¢ such that its description is just (a,);-,. We shall write the
sequences accepted by accepting graphs as strings; thus, mostly a,, ..., a, instead
of (a)'-,. We denote by L(4) the set of all strings accepted by an acéepting
graph 4. ’ - '

Generally for s€ S, t € S, it can happen that there exist e, € E, e, € E, "el # e,
such that v(e,) = (s, 1) = v(e,), u(e,) = u(e,). It is easy to see that L(4) = L(4’)
if we denote by A’ an accepting graph that we obtain from 4 omitting the edge ez
and its description.

We can confine ourselves to accepting graphs in which for any s€ S, € § and
any a € V there exists at most one edge e € E such that v(e) = (s, t), u(e) = a.
This graph is called simple. Such a simple accepting graph can be described by
indicating to each node s € S and to each symbol ae ¥, the set f(s, d) of nodes ¢
such that any edge leaving the node s and entering the node ¢ is labelled by a.
Clearly, E, V, u can be reconstructed from S, V, f, I, F.

An acceptor is a 5—tuple N = (S, V, f, I, F) where S, V are sets, fa mappmg
of Sx V into 25 and I, F are subsets of S. Elements of S are often called states
of N. A string a, ... a, of elements in V" where n = 0 is'said to be accepted by N
if there is a string sos, ... s, of elements in S such that sye1, s,€ F, and §; €
€ f(si-y,a) for § = 1,2,..., n. The string s¢s, ... s, is also called the calculation
of the string a, ... a,; s, is called the last state of this calculation. Let L(N)denote
the set of all strmgs accepted by an acceptor N; it is called the language accepted‘
by N. ¢

We denote by R(4) an acceptor corresponding to.a simple accepting graph 4.
Further let us' denote by S(N) a simple accepting graph reconstructed from an
acceptor N. Clearly:

2.1. Proposition. S(R(A4)) = 4, R(S(N)) = N, L(A4) = L(R(A4)), L(N) = L(SN)). O

We now exhibit simple examples of acceptors. Let U be a set, D = U and m:
D — U a mapping. Then the ordered pair P = (U, m) is said to be a machine of
Pawlak, or briefly, a P-machine. Clearly, D = D,, is the domain of the mapping m.
A string a, ...a, where n 22, a,eD, a,., =m(a) for i =1,2,...,n~1,
a,e U — D is said to be a calculation of the P-machine. We denote by L(P)
the set of all calculations of the P-machine P. L(P) is said to be the language
generated by P. For any P-machine we construct Pawlak’s accepting graph in the
following way: we choose a new element w ¢ U and we put S'= Uu{w}, E =
= {(a, m(a)); aeD} v {(a,w); aeU - D}, V=Uvu{w}, I =D, F={w}
v = idg, u(a, b)'= a for any (a,b)e E. Then the prdered 7—tuple A = (S, E,
V, I F, v, u) is said to be Pawlak’s accepting graph or a P-graph assigned to the
P-machine P. We denote it by Q(P). It is easy to see from the definition that

QO(P) = A has the following properties:

(1) any a € D is left by precisely one edge, the edge enters m(a) and it is labellc(j
by the symbol a,
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(2) any ae U — D is left by precisely one edge; the edge enters w and it is
labelled by the symbol a,

(3) there are no other edges in A.

This implies immediately: '

2.2. Theorem. Let P be a P-machine. Then L(P) = L(Q(P)). O

In what follows, we consider the following properties of an acceptor ¢S, V, f,
L F).

(i Ss=vV.

(ii) f(s,a) # O fors # a,s€ S,ac S.

(iii) There exists an element w € S such that F = {w}, f(w, ®) = 0

(iv) for arbitrary s € I, there exists precisely one t € S — {w} such that f(s, s) =
= {t}.

(v) f(s, s) = {w} for an arbitrary se S — I — {w}.

2.3. Proposition. For any acceptor N = (S, V, f, I, F) with the properties (i) —(v)s
there exists a P-machine P such that S(N) = Q(P).

Proof. We put U = V — {w}, m(a) = f(a, a) for any ae I. Then P = (U, m)
is a P-machine. If constructing Q(P), it is easy to see that it equals S(N). O

Let N=<(S, V,f, L, F), N =S, V,f', I', F) be acceptors, h: S -+ S’ a bijec-
tion. The bijection 4 is said to be an isomorphism of N onto N’ if it holds: I' =
= h[I], F' = h[F), f'(s’, a) = h[f(h~'(s"), @)] for any ae V, s'€ S".

Let N= (S, V,f,I, F>, S’ be a set, h: S - S’ a bijection. We put f'(s’, @) =
= h[f(h~!(s’), a)] for any s’€ S’, ae V, I' = h[I], F’ = h[F]. Then N’ = (S, V,
f', I', F") is an acceptor and h is an isomorphism of N onto N’. We say that this
acceptor is defined by means of the bijection A.

We summarize

2.4. Fact. An arbitrary bijection of the set S of states of an acceptor N =
= (S, V, f, I, F) defines an acceptor isomorphic with N. O

We now define acceptors with special properties. Let N = (S, V, f, I, F) be
an acceptor. We say that N is normal if SN ¥V =0, N is special when card
V = card S and N is exceptional when V = S.

As special cases of 2.4. we obtain

2.5. Proposition. There exists a special and also a normal acceptor that is iso-
morphic with an arbitrary given acceptor. [0

For any isomorphic acceptors N, N’ the graphs S(N) and S(N’) differ only
in nodes while the structures on the sets of nodes are the same in both cases. If
replacing any node in S(N) by the corresponding node in S(¥’), a labelled path
in S(N') corresponds to any labelled path in S(N) in such a way that the labellings
are the same. Hence, by 2.1.

2.6. Proposition. Two isomorphic acceptors accept the same language. 0]
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Let N = (S, V, f, I, F) be a special acceptor, h: S — V a bijection. The bijection A
is said to be an a-bijection if f(s, @) = 0 holds for any a € ¥, s € S with the property
h(s) # a. We say that an acceptor has the property («") if it has at least one a-bijec-
tion. Particularly, if S = V and if idg is an a-bijection of an acceptor N =
= (S, V, f, I, F) we say that N has the property («).

It follows immediately from the definition that an acceptor with the property (o)
is exceptional. It is easy to see that any acceptor with the property () has the
property (a"), too.

Then

2.7. Proposition. To any acceptor with the property (o') there exists an isomorphic
acceptor with the property (x). O

2.8. Proposition. Acceptors with the property () and acceptors with the property (")
accept the same class of languages. (1

Let N = (S, V,f,I, F) be an acceptor with the property («), h: S — V its
a-bijection. The a-bijection is said to be a f-bijection if it has the following
properties:

(By) f(s, h(s)) #0iff sel,

B) F=S-1

We say that an acceptor has the property (8) if it has at least one B-bijection.
Particularly if S = V and idg is a B-bijection of an acceptor N = (S, V,f, I, F)
we say that N has the property (B).

Clearly, any acceptor with the property (8) has the property (8), too.

Then

2.9. Proposition. To any acceptor with the property (B’) there exists an isomorphic
acceptor with the property (8). O

2.10. Proposition. Acceptors with the property (B) and acceptors with the property
(B') accept the same class of languages. Ol

Let N = (S, V,f, 1, F) be an acceptor with the property («'), h: S— V its
a-bijection. We say that the a-bijection is a =m-bijection if it has the following
properties:

(g,) there exists w € S — I such that F = {w}, f(o, h(w)) = 0,

(g;) for any se I there exists just one €S — {w} such that f(s, h(s)) = {t},

(g3) f(s, h(s)) = {w} for any se § — I — {w}.

We say that an acceptor has the property (z") if it has at least one n-bijection.
Particularly if S = V and idg is a n-bijection of an acceptor N = (S, V, f; I, F),
we say that N has the property (n).

Clearly any acceptor with the property (n) has the property (z'), too.

2.11. Proposition. To any acceptor with the property (n’) there exists an isomorphic
acceptor with the property (n). O
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2.12. Proposition. Acceptors with the propeniy (n) and acceptors with the property
(n) accept the same class of languages. O .

If we compare the properties (i) — (v) with the property (n) we see that an acceptor
has the property (r) iff it has the properties (i) —(v). From here and from 2.3, 2.2,
2.1 we have

2.13. Proposition. To any acceptor N with the property () there exists a P-machine
P such that S(N) = Q(P), L(N) = L(P). O
Simillary 2.2 gives

2.14. Proposition. R(Q(P)) has the property (n) for any P-machine P and L(P) =
= L(R(Q(P))) holds. O

2.15. Proposition. Acceptors with the property (n) accept the same class of
languages as P-machines generate. (1

III. Acceptors and generalized LC-grammars

For an arbitrary normal acceptor N = <8, V, f, I, F) we put,
L = {4},
= {(4,a);ac V}
o(A) =1,
Y(A,a) = {(s,5"); sef(s’,a)}  foranyaceV,
G=<V,L,CS,F oy,
K(N) = G. ‘
Then K(N) is a generalized lc-grammar that has the followmg propertles '
(a) L = {4}, '
b Ce {A}xV.
This generalized Ic-grammar is said to be a generallied right regular Ic-grammar
(shortly rric-grammar). Note that K(N) is an rrlc-grammar if the acceptor is

finite.
Now let G = (V, L, C, S, T, ¢, ¥) be a generalized rric-gtammar. We put

o(A),
f(s, a) = {t (, s) € ¢(A a)} _ for.any se S,aeV,
= (S, Vf 1, F>,
MG =

Then M(G) is a normal acceptor. Note that the normal acceptor M(G)-is. finite
if G is an rrlc-grammar.
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3.1. Example. Let N = (S, V,f, I, F) be a normal acceptor such that S =
= {0,4,B,C,D,E}, V = {a,b,c}, I = {E}, F = {6} and let f be given by the
Sfollowing table: ' ' T

f a b e
I /] 0 )
A 0 {0,4} 0
B {4} 0 0
C 0 {c} (B}
D 0 {C} 0
E {D} 0 0
£ a
6’\
. a
> :
b

We suppose that E is the only start state and ¢ the only final state. By definitions,
we have
(1) = {E},  ¥(A,a) = {(4, B), (D, E)},
¥(4,8) = {(s, A), (4, D), (C, O),(C, D)},  y(4,¢) = {(B,O)},
K(N) = <V, {4}, {(4,a), (4, ), (4, 0)}, S, {o}, @, ¥>

3.1. Proposition. M(K(N)) = N for any normal acceptor N. :

Proof. Let N=(S,V,f,I,F). Then K(N)=<(V,L,C,S,F, ¢, ¢¥) and
MK(N)) = (S, V,f',I', F) where I' = ¢(A) = Iand f'(s, @) = {t; (1, ) e Y(4, a)} =
= f(s,a). O o B

3.2. Theorem. L(G) = L(M(G)) for any generalized rric-grammar G.

Proof.Let G = (V,L,C, S, T, ¢, ¥>, M(G) = N'= (S, V, f, I, T). We denote
by V(n) the following assertion: If for s € S, x € V*, there exists a calculation of the
string of length < n with the last state s, then s € &(x). .

If for s€ S, x € V* there exists a calculation of length 0 with the last state s
then x = A and seInT. Thus sel = ¢(A) < &(x). Therefore V(0) holds.
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Suppose that m = 0 and ¥(m) holds. Let s€ S, x € ¥* and suppose the existence
“of an calculation of length m + 1 of the string x with the last state s.

Then there exist sg, §y, ..., Sp+y in S and a,, a,, ..., @, 4, in V such that x =
=18y ... Quyy, So€IL S,y =5 and s;€f(s;_,,a;) for i=1,2,....,m+ 1.
Therefore s¢5, ... s, is a calculation of the string x' = a,a, ... a,, of length m
with the last state s,,. By induction hypothesis, we obtain s, € #(x’). Since s,,,, €
€ f(Sp, n+y1) wWe have s,,, € d(x'a,.,) = ®(x).

By induction, it follows that the existence of a calculation of the string x with
the last state s implies s € @(x).

Let us put se @'(x) if there exists a calculation of the string x with the last

© state s.

If s € p(A), then s € I holds and thus there exists a calculation of A with the last
state s. Therefore @(A) < @'(A).

Let us have x = uzv, s’ € ®'(z), (s, s") € Y(u, v). Then u = A, v = ae V. There
exists a calculation of z with the last state s'. Since (s, s") € ¥(4, @), we obtain
s € f(s’, @) and thus there exists a calculation of za = uzv = x with the last state s;
this implies s € @'(x).

We have seen that @’(x) has the properties 1 and 2 for any x € V*. From the
minimality of ®(x) it follows that &(x) = &'(x), i.e., if s € P(x), there exists a cal-
culation of x with the last state s. This can be expressed as follows: x € ¥(s) iff

there exists a calculation of x with the last state s. Therefore: x € L(G) = | ) ¥(s)
seT

iff there exists a calculation of x with the last state in 7, i.e., iff xe L(N). O
By 3.1 and 3.2, we obtain

3.3. Proposition. L(N) = L(M(K(N))) = L(K(N)) for any normal acceptor N. O

3.4. Theorem. A language is regular iff it is generated by rric-grammar. O

Let N = (S, V, f, I, F) be a normal acceptor with the property («'). Then K(N)
is a generalized rric-grammar that has the following properties:

() there exists a bijection h: S - V

(d) for any a € V there exists S(a) < S such that (4, a) = {(s, h~*(a)), se S(a)}.
[t is sufficient to put S(a) = f(h~'(a), a).]

Such a generalized rric-grammar is said to be a generalized a'rrlc-grammar.

We obtain

-3.5. Propesition. If N has the property (a') then K(N) is a generalized
o'rrlc-grammar. O

3.6. Proposition. If G is a generalized o'rric-grammar, then M(G) has the property
@). O

3.7. Corollary. Let L be a language. Then the following conditions are equwalent
(1) L is accepted by an acceptor of the class (a').
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(ii) L is accepted by an acceptor of the class ().

(iii) L is generated by a generalized o'rrlc-grammar. 0O

Let N=<(S, V,f,I, F) be a normal acceptor with the property (f). Then
K(N) = (V,L,C, S, F, ¢, ) is a generalized o'rrlc-grammar that has the following
properties:

(e)) F =S — o(4)

(e,) For any ae V, the condition S(a) # 0 is satisfied iff A~ (a) € p(A).

Such a generalized a'rrlc-grammar is said to be a generalized f'rric-grammar.

Immediately it follows

3.8. Proposition. If N has the property (') then K(N) is a generalized
B'rric-grammar. O

3.9. Proposition. If G is a generalized rric-grammar, then M(G) has the property
(8). O

3.10. Corollary. Let L be a language. Then the following conditions are equivalent:

(1) L is accepted by an acceptor of the class (8').

(ii) L is accepted by an acceptor of the class ().

(iii) L is generated by a generalized B'rric-grammar. O

If N =S, V,f, I, F) is a normal acceptor with the property (n') then K(N) =
=<(V,L,C, S, F, ¢,y is a generalized o«'rrlc-grammar having the following
properties:

(i) It is simple, F = {w}, we S — I, Y4, h(w)) =9

(j) for any h(a) € V with the property a € I there exists exactly one be § — {w}
such that y(A, h(a)) = {(b, a)},

(k) for any h(a)e ¥V with the property a€S — I — {w} the condition
Y(A, h(a)) = {(w, a)} is satisfied.
Such a generalized a'rrlc-grammar is said to be a generalized n'rrlc-grammar.

Clearly

3.11. Proposition. If N is an acceptor of the class (n’) then K(N) is a generalized
n'rrlc-grammar. O

3.12. Proposition. If G is a generalized n'rric-grammar then M(G) is an acceptor
of the class (n'). O

3.13. Corollary. Let L be a language. Then the following conditions are equivalent:
(i) L is accepted by an acceptor of the class (n').

(ii) L is accepted by an acceptor of the class (n).

(iii) L is generated by a P-machine.

(iv) L is generated by a generalized n'rrlc-grammar.
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