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LAPLACIAN IN GENERAL RIEMANNIAN 
STRUCTURES* 

WLODZIMIERZ WALISZEWSKl 
(Received November 17, 1981) 

0. This paper contains some introductory remarks on the concepts of divergence 
and laplacian in general Riemannian structures. First, on the algebraic level, we 
study such a structure in the J*-module of all vector fields, where J? is a K-algebra. 
Next, we apply these algebraic concepts to extend the notion of the laplacian to 
the category of Riemannian differential spaces. In particular, we give the relation­
ship between the laplacian and the first Beltrami invariant, which appears, for 
example, in the formula for laplacian of the composition of smooth functions. 

1. Algebraic level. Let K be a field and J? be a K-algebra i.e., R has a structure 
of commutative ring with the unit, and a structure of vector space over K, 
satisfying (aot) ft = a(a/i) for any a of K and any a and f$ of R. We will assume that 
K is a subring of R. Then JMinearity of all considered mappings will imply their 
K-linearity. We define (see [1] and [13]) the Jf-module of all R-vector fields as 
follows. A K-linear endomorphism X. R-+ R such that X(ap) -= <xX(f}) 4* pX(a) 
for a and /? of R is called an JJ-vector field. For any J^-vector fields X and Y and 
any X of R we set 

(X + Y) (a) = X(ot) + Y(a), (XX) (ot) = XX(OL), a e JL 

Then we have defined the structure of an J?-module in the set of all vector fields. 
This J?-module is called the Jl-module of. all J?-vector fields and will be denoted 
by V(R). 

An JMinear symmetric mapping G: V(R) x V(R) -> M such that for any JMinear 
mapping L: V(R) -* R there exists exactly one Y in V(R) such that G(X9Y) m 
= L(X) for any X in V(R) is called (see [4]) a metric structure on R. Such an 
JMinear metric structure also defines, for any JMinear mapping U: V(R) ** J?, 
exactly one covariant derivative, V, (see [4]) such that 

SfxG - U(X) G and Vx Y - VrX - [Jf, F] » 0 for X and X in R. 

* (Delivered at the Joint Czech-Polish-G.B.R. Conference on Differential Geometry and its 
Applications, September 1980, Nové Město na Moravě, Czechoslovakia.) 
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In the special case 17 = 0 we have the Levi — Civita covariant derivative of G. 
Let End V(R) be the J?-module of all IMinear mappings 

(1) / : V(J0 ~+ V{K). 

Consider an i?-linear mapping 

(2) t: End V(R) -• R 

such that 

(3) t(da . Y) = Y(a) for any a in R and any Y in V(R), 

where da: V(R) -* R denotes the H-linear mapping defined by the formula da(X) = 
» X(a) for X in V(R). This mapping is called the differential of a. Here da. Y 
denotes the endomorphism (1) such that f(X) = da(X) Y for any X in V(R). 
A mapping (2) satisfying (3) will be called a quasi-trace in R. 

Let us assume that we have got the structure (<J, V, t)9 where G is a metric 
structure on R9 V is an abstract covariant derivative on V(R) (see [3]) and / is 
a quasi-trace in JR. First, we define the (V, f divergence, div, setting for any Y 
in V(R) 

(4) div Y~t(X^VxY). 

Now, we can define the (G, V, f)-laplaeian, Aa9 of an element a of R by the 
formula 

(5) Aa « div grad a. 

If ? is the Levi-Civita covariant derivative of G9 the (G, V, f)-laplacian will be 
called the (G9 O-laplacian. We will write <X, F> instead of G(X, Y). 

Proposition 1. For any a and fj or R9 any Y in V(R) and any a of K we have 

(6) div (aY) == da(Y) + a div F, 

(7) A(a + 0) = Aa + .4jS, d(aa) = aAa 

and 

(8) 4(a/0 = a.4j? + i?.da + 2<grad a, grad j8>. 

For any polynomial m in one variable over K and any a of R we have 

(9) A(o>(*)) = co'(a) l̂a + a>*(a) J t a , 

where ^ta is, so called, first Beltrami differential invariant of a defined by the 
formula 

(10) Ata =- <grada, grada> 

and m' denotes the derivative of the polynomial co. 
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Proof: The formula (6) is an immediate consequence of (3). it-linearity of grad 
and div yield (7). Let us take a and 0 of R. For any X in V(R) we have 

<grad (a0), X> « X(a0) « aX(fi)+ 0Jf(a) -
= a<grad 0, X> + 0<grad a, X} « <a grad 0 + 0 grad a, JT>. 

Hence it follows that 

(11) grad (a0) = a grad 0 + 0 grad a. 

We remark also that 
(12) # da(grad 0) « <grad a, grad 0>. 

From (5), (11), (6) and (12) we get 

Afafl) = div (a grad 0) + div (0 grad a) » da(grad 0) + txAp + 

+ d0(grad a) + pAa == a.d0 + pAa + 2<grad a, grad 0>, 

To prove the second part of Proposition it sufficies to apply the formula (8) and 
K-linearity of A. . 

2. Riemannian differential space. Let (M, C) be a differential space (see [3]). 
Then C is in a natural way an i?-algebra, and we have the jR-module V(C) of all 
C-vector fields (see [2] and [4]). The differential space (M, C) together with 
metric structure G on the J*-algebra C is said to be *. Riemannian differential 
space. If / is a quasi-trace in C, then we have the (C, /)-laplacian A will be called 
the /-laplacian in the Riemannain differential space ((M, C), G). 

Proposition 2. The /-laplacian A is an jR-linear mapping such that for any a, 0 
in C and for any real function & of class C00 on R the formula (8) and 

(13) A(co oa) = co' ofxAa + w" oaAja 

hold. 
Proof: For any X in V(C) any a in C and any real function co of class C00 on R 

we have (see [2] and [4]) 
X(co o a) = fi)' o a . X(a). 

Hence it follows that ? 

<grad (co o a), X} = X(cy o a ) = c o ' o aJT(a) « ai' o a<grad a, X> » 

« <©' o a grad a, Z>. 
Thus 

(14) grad ( © O « ) - S < » ' O K . grad a. 

Applying (6), we get 

(15) A(m o a) == d(co' o a) (grad a) + co' o aJa. 
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From (12) it follows that 

d(m' o a) (grad a) = <grad (to' o a), grad a>. 

Hence by (14) we have 

d(m' o a) (grad a) = <a>* o a grad a, grad a> = to" o a^ ta. 

This formula and (14) yield (13). 
The important case is when the differential space is of finite dimension i.e., 

when each point of M has a neighbourhood with a local base of vector fields 
(see [4]). In such a space every C-linear mapping 

<16) / : V(0 - V(0 

induces the mapping / : T(M, C) -• T(M9 C) of the tangent bundle (see [2]) of 
(M, C), linear on each tangent space TP(M, C), in such a way that f(X(p)) = 
= f(X) (p) for any point p of M, where, for each P, X(p) is the vector of TP(M, C) 
such that X(p) (a) = X(a) (p) for any a of C. We have got then for each p of M 
the endomorphism f\Tp(M,0 of the finitely dimensional space TP(M, O-
Setting 

07) t(f)(p) = tr(f\Tp(M,0) forpofM, 

we get the quasi-trace t in*C defined in the canonical way. The quasi-trace t defined 
for every endomorphism (16) by the formula (17) is called the trace on (M, C). 
Therefore, in a Riemannian differential space of finite dimension we have well 
defined concepts: trace, gradient, Levi — Civita covariant derivative. Thus, we 
have got the concepts of divergence and laplacian for real smooth functions on 
such spaces. The considered concepts coincide with the suitable ones for differenti-
able manifolds. In particular, for any Riemannian differential space of finite 
dimension we are given a well defined concept of harmonic function. ' 
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