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ON SINGULAR BOUNDARY VALUE PROBLEMS
FOR TWO-DIMENSIONAL DIFFERENTIAL
SYSTEMS

B. L. SHEKHTER, Thbilisi
(Received December 20, 1981)

§ 1. Introduction

This paper deals with the two-dimensional system

) X =£x3), ¥ =50xY)
under the boundary conditions

) x(a+) =0, x(b-)=0

or

3) x(a+) =0, yb-)=0. ‘

The case is considered when the functions f; : ] a, 5[ x R* » R (i = 1, 2) may be
nonsummable with respect to the first variable having singularities at the end
points of the interval ] a, b[.

Let I be an open or half-open interval. By L,,.(I) we denote the set of functions
x : I - R which are summable on every (closed) segment contained within 7.

In what follows we assume that

1. Ja, b[ is a finite interval;

2. the functions fi(., X, y) : ] a, B[ = R are measurable for x, y € R;

3. the functions fi(t, ., ) : R* - R are continuous for t€ ] a, b[;

4. sup {1 £i(- %, 9) | 11 x| + |y| S e} €Ly,(Ja, b[) for ¢ > 0 (i = 1,2).

(x, y) is said to be a solution of the system (1) if x, y : ] @, b[+ R are absolutely
continuous on each segment contained within the interval ] a, b[ and satisfy (1)
almost everywhere in this interval. The theorems which are proved here allow
to reduce the question on existence and uniqueness for the problems (1), (2) and
(1), (3) to the question on unique solvability of the corresponding boundary value
problems for some classes of linear differential systems. Such method goes back
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to the works by L. Tonelli [1] and H. Epheser [2] and was used in [3] where,
in particular, the second order singular differential equation was investigated under
the boundary conditions of the type (2) (for more detailed bibliographical remarks
see [4] which is devoted to the regular problems). Other approaches in study of the
singular problems (1), (2) and (1), (3) were realized in [3, 5].

With a view to indicate the class of linear systems

@) W =gOu+h@®Ov, =h()u+ 500,
we are ‘interested in, put

t b
(5) w(t) =, 1h@Idr, v = glhm |de

and introduce the following definitions (cf. [3, 4, 6]).
" Definition 1. Let k be an integer and

hl € L([a, b]), hz € L,oc(] a, b[),
© ha(2) p1(2) v4(2) € L([a, b)),
) hyeL([a,b]), hy ()20 foras<tsh.

Then (hy, hy, h3) € P, (a, b) if and only if for all g, € L([a, b)) (i = 1, 2) satisfying
the condition

@® lg2(t) — &) S hy(®) forastsh,

we have u(b—) # 0 and there exists & > 0 such that
n n
——2——nk<<p(t)<~2——7rk Jor b—56<t<b,

where ¢ : [a, b] = R is continuous,

; 0N =
(?) : tg o(f) = o) when  u(®)+0, ¢(a)= 5
and (u, v) is a solution of the system (4) under the initial conditions
(10) u@+) =0, ov@+)=11

Definition 2. Let k be an integer,

ki eLo(a 8D,  hyeLi]ab),
(1 l) hz(‘) Ih(t) € Lloc([a’ bD’ hl(t) Vz(t) € Lloc(] a, b]),
and Iet' (7) be obseijved. Thgn (hy, b2, h3) € Py,y(a, b) if and only if for all g, € L([a, b))

) Lemma 1 stated below implies that such a solution exists.
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(i = 1, 2) satisfying (8) b(b—) # 0 and there exists 6 > 0 such that
-tk <o(t)y<mn—nk forb—-d<t<b,

where @ and (u, v) are the same as in Definition 1.

§ 2. Lemmas

This section is concerned with the linear singular systems (4). First of all we
study behavior of soluticns at the point of singularity (see also [3, p. 222] and

[7, p. 443]).

Lemma 1. Let by, g, € L([a, b]) (i = 1,2), h € L;,.(J a, b]) hay(f) pi(?) € L([a, b])
where u, is given by (5), and let (u, v) be a solution of the system (4). Then

(12) lim o(t) p,(3) =0

t—-a+

and the limit u(a+) exists azd is finite. Moreover, if this hmtt is zero, then there
exists finite v(a+).

Proof. Suppose that a@,€]a,b] (n=1,2,...) and a, » a when n - 0. If
(u,,v,) (n = 1,2, ...) are the solutions of (4) under the initial conditions
(13)  u(a) =0,  v(a,) =1,
then

t t

(14) lu)l S AJ1hy(2) |de(l + [ By(Duy(x)|de)  for a, St S b,

where

as) A= exp (} [ 8:0) | + | g2() (] ).
Using this inequality and setting

| wit) = A(1 + Ilhz(r) uy(e) | d),

we obtain

wi(t) S A(1 + _f [ hy(®) | uy(r) wo(r)dr)  for a, <t < b.

By Gronwall — Bellman lemma (see e.g. [3, p. 49]) w,(f) S 4, on [a,,, b] where

a6 Ao = Adexp (A j | hy(z) | py(z) d),
and according to (14)
amn | ug(t) | < Aous(t)  for a, S t < b.
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In addition, (4), (13) and (17) imply
b
[o(8) | S A1 + Ao § | hy(z) | py(z) dr) for a,stsb.

Thus the sequences (u})2, and (v7)2,, where
un(f) = u,(f),  vy() = v (f) for a, St < b,
ur( =0, of@ =1 fora <t < a,,

are uniformly bounded and equicontinuous on [a, b]. Therefore, they contain
certain consequences which uniformly on [a, ] converge to the functions u, and v,
such that (ug, v) is the solution of the problem (4), (10).

Let ce]a,b],

b c
(18) €xp (—j | g1(®) | dT) > Aol j [ h2(7) | p4(7) d1,

and let (&, v) be the solution of the system (4) satisfying the initial conditions
u(c) = 1, v(c) = 0. Then

i(t) = exp (—_fgl(‘r) dr) +

(19) + _! hy(7)%(7) _!l hy(s) exp (§ g,(p)dp + [ g:(p)dp)dsdr.
Hence

[ A+ 4 } | hy(D)a(r) | uy(r)dr for a <t s,

and taking into account (16) by Gronwall — Bellman lemma we obtain
(20) ()| £ Ay fora<t=e

As it follows from this inequality and from the conditions of the lemma, the right-
hand side of (19) tends to a finite limit when ¢ — a. Thus #%(a+) exists and according
to (18) is not zero.

* Furthermore, (20) yields

Iﬁ(t)lngﬂ.chhz(r)ldt fora<tsec.
Iftoe] a c], then
@D mO1H)1 S Aok(a(® [ 1@ 1 de + {1 1@ | 1@ de)  for a<tSe

Now taking into account that ¢, is arbitrarily close to a, we obtain

\ lim #(t) p1y () = 0.

t-a+
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Since (uq, vo) and (%, ¥) cre linearly independent solutions of the system (4),
each solution (u, v) of this system may be represented in the form

u(t) = dyuo(t) + dyi(),  v(t) = dyoolt) + dy(),

where d, and d, are certain constants. Thus there exists a finite limit u(a+) and (12)
is fulfilled. If, in addition, u(a+) = 0, thén d, = 0, and so v(a+) = d,. This
completes the proof.

Remark. (21) is valid not only for u, defined by (5), but for any continuous
nondecreasing function p, : [a, b] - [0, + o[ such that h,(f) p,(¢) € L([a, b]).
Therefore, if, in addition, u;(a) = 0, then (12) holds for all solutions of the

system (4).

Lemma 2. Let hy, g, € L([a, b)), h; € L;,(] a, b)),
h()20, g(d20 fora<t<bi=1,2),

and let (6) be fulfilled where 11, and v, are defined by (5). Theh there exists a constant A
such that for any point to € [a, b] and any measurable functions hyy, gi0: ] a, 5[ R
satisfying the inequalities

(22) [ Bio(8) | < hy(n), | 80| = 8:(t) Jora<t<bi=1,2)
we have ‘ P

U1 S AlIto, )|  forastsh I 0= || ho®]de,

23 |4 max{ I(t’(i;)} if a<ts<ty, and u,()*0,

()| 4 max{ I(t‘z;)t)} if toSt<b and vi(t) £ 0,
v
where (u, v) is the solution of the initial value problem
(24) u' =g u + hyo(dv, v = hy(t)u + 820(’) v,
(25) . u(t)) =0,  ov(to) = 1.

Proof. By Lemma 1 the problem (24), (25) has a solution (u, v) fér any tq €
€[a, 5]

Set (15). If t, = (a + b)/2, then applyirg the Gronwall — Bellman lemma to the
inequality

Q6 lu)| S Ml(to, ) + [ | hao)u@) | (s, 0de)  for 1, S 1 S b,
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we obtain

20N [u(t)| < Al(ty, t) exp (A f[ hy(7) v4(7) dr) for tp <t < b.

2

Now let ¢, < (a + b)/2. Then the argument by which the estimate (16), a7
was established yields

(28) U S Aollta, ) for o5 1< 23

where
a+b

2
=2exp (A [ hy(x) py(x) do).

Hence it follows from (26) that for (@ + b)2 St < b
' a+b

2 t
|u()1 S Mlio, (1 + Ao § b)) s(x) ) + 4 [ k)W) u@) |

—

2

and using the Gronwall — Bellman lemma once again, we derive
at+b
: p) b
lu(t)| S Al(to, )(1 + Ao | hy(7) py(7) dr) exp (4 Ibhz(f) vy(7) dr).
a a+t

2

This inequélity along with (27) and (28) implies
lu(®) | £ A*I(ty,t) for t, <t < b,

where the constant 4* does not depend on the choice of #0, &io and ¢,.
Let t € [#o, b[ and v,(z) # 0. Note that

(29) [0 < 21+ A4 [ [ ho(0)| K(to, ©) d)-
Thus
Itto,8) P s a+b
0] = 1(1 + A* —_VT(?)_—_.jﬂh’(T) vi(7) dr) it xS,
ﬂ' 2
() | S AL + 4* | hy(D)py(r)dn)  if to < a ; b and < ; b',
a+b .

POIES 1(1 + A% [ hy@u(r)dr + ax Los )L ’('0(’ f) j (@) v, (7) dt)
' a . V1
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a+b
) <t

if ty <

It becomes evident from the obtained relations that there exists an independent
on h;y, 8,0 and ¢, constant 4 for which the inequalities in question are valid in
[0, B[. The case of ] a, #,] may be treated in the similar way.

Lemma 2 establishes in ]a, b[ an a priori estimate for v providing that
#1(8) v4(¥) > 0 in this interval. In the general case (29) implies the following state-
ment.

Lemma 2'. Let the conditions of Lemma 2 be fulfilled. Then for anye€]0,b — a[
there exists a constant A = A(e) such that if measurable functions hyo,g:0: ] @, b[ = R
satisfy (22) and ty € [a, b], then

[o()| S A4 for te[a + & t,] U [te, b — €],

where (u, v) is the solution of (24), (25).
Lemmas 3 —5 are essentially of comparison type.

Lemma 3. Let k be an integer, »
(30) (hyss hais hs3) € Pyy(a, B) ((hyis hais h3) € Pia(a, b)) (i=12),
(31 ha(® S his_(H) fora<t<b(i=12),
and let the condition (6) (the conditions (11)) be fulfilled where the functions
Uy, vi@ = 1, 2) are defined by (5) and
(32) : hi(®) = | hiy(®) | + | hia(0) .
Then
(h105 h20, h3) € Pri(a, ) ((hyos 2o, h3) € Pia(a, b))
for any measurable h,, : | a, b[ — R satisfying the inequalities
hi(t) S hyo(t) S hi3_()  fora <t <b (i=12).
Proof. We shall carry out the proof for the set &, (a, b). For 2,,(a, b) the
argument is similar.

Let g,, g; € L([a, b)) satisfy (8), and let (u;, v;) (i = 0, 1, 2) be solutions of the
systems

(33) u' =g (Ou+ hy(0)v, V' = hy(Ou+ g.(0)v

under the initial conditions (10). Assuming that a,€Ja, 5[ (n = 1,2,...) and
a, — a when n — oo, approximating (%;, v;) by the solutions of the problems (33),
(13) (cf. Proof of Lemma 1) and using Lemma 15.2 and Theorem 14.5 of [6],
we can easily verify that

?2(t) £ @o(?) £ 01(t) forast<b,



where ¢,(i = 0, 1,2) are the angular functions of the solutions (u;, v;) defined
by the conditions ¢,(a@) = /2 (ie. @, :[a, b[ - R are continuous functions
satisfying the equalities similar to (9)).

Hence it follows from (30) that for all 7 € ] a, b[ sufficiently close to b

o) _ oolt) _ vi)
uy(t) = ue(t) = u,()°

v,(1)
uZ(t) ’] I uO(t) l‘

n n
"--i— —-— nk < (00(t) < '2_ ha nk,
and so

(G4) X0 g[ 1(1)

uy(1)
If uy(b—) = 0, then by (6) and Lemma 2

-+

lup(®) | = Avi(f) fora st <b,

where A is a constant. Considering this inequality, Remark to Lemma 1 and (34),
we derive that vo(b—) = 0, i.e. (4p, Vo) is the trivial solution, but it is not the case.
Thus uy(b—) # 0 and the proof is completed.

The following two lemmas may be proved in the similar way.

Lemma 4. Let (hy, hy,h3)e Poi(a,b) and hi(t) 20 for a <t =< b. Then
(hyos hao» h3) € Poy(ty, t;) for any segment [t,,t,] < [a, b] and any measurable
functions hy : ] a, b > R (i = 1, 2) satisfying the conditions

hao(t) f hyoft) de f ho@deeLfa, b, [ hio®)dr > 0,
0= hot) § hy(2), hyo(t) = hy() f:r a < t < b.
Lemma 5. Let ce ] a, b[, (hy, ha, h3) € Pyy(a, ¢) 0 ?oz(c, b) and
h() 20 forast=c, hy(t) 20 forcstsh
Then (hyo, hyo, hs) € Poy(ty, t;) for any t e[a,c], t,e[c, b] (t; < t;) and any
JSunctions hiy € Ly, (] a, b]) (i = 1, 2) satisfying the conditions
hao(?) ‘Jf hio(®dreL[a, ¢, hyo(t) ; h2o(7) dr € L([c, b]),
0 = hyo() < hy(0),  hao(®) 2 hz(t)t fora<t=e,
hio®) 2 hy(1), 0= hyo(®) Shy(f) forcZt<b.

Lemma 6. Let the functions g, : [a, 8] - [0, +oo[ be summﬁble,

(35) (hyis h2is 8y + 85) € Py (@,0) (hyy, By, 81 + 82) € Pia(a, b)) (i=1,2)
Jor a certain integer k, and let the inequality (31) und the condition (6) (ihe condition

(11)) be fulfilled where the functions I, v;, h; are defined by (5) and (32). Then there
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exists a positive constant B such that for any measurable functions hio, 8o
] a, B[ = R (i = 1, 2) satisfying the conditions
(36) hi(t) < hio(8) £ hi3_i(), lgw®) | S g fora<t<b
the inequality
lu@)l 2B  (lvb)| = B)

holds where (u, v) is the solution of the problem (24), (10).

Proof. With a view to fix the idea, we shall carry out the proof for the set
Py,(a, b).

Assume that the lemma is not true. Then there exist measurable functions
¢imslin:]a,b[ > R(i=1,2;n=1,2,...) such that

hi(t) £ S0 S hiz- (1), |l s g) fora<t<bd,
(37 PICIESY
where (u,, v,) are solutions of the systems
=0 u+ @, v =60u+ {00
under the conditions (10). The sequences (j ¢a(@dr), and ( f Lin(@) dD)2

(i = 1, 2) are uniformly bounded and eqmcontmuous on the segment [a, 5] and,
hence, without loss of generality we may hold that they are uniformly convergent
on this segment. Furthermore, according to Lemma 2 there exists a constant A
such that

t
lu(t)| = Aﬂfu(f)ldt for ast<b (n=12..)
This implies that we may assume the sequences (v,),~, and

(I G2a(7) u,(7) €XP (—5 L24(s) ds) dr)yy .

to be uniformly convergent on each segment contained in [a, b[ and the sequence
(#,)2 s —uniformly convergent on [a, b]. The latter becomes evident when apply
the inequalities

lu ()| = A1) ] I | €10 [ dt + [ €10 0D |
a forast<b,

Lo(t) | < A1 + A [ £ [ 1 E(s) | dsdr)

where 4 is defined by (15).

Let u, — u, v, - v when n — 0. According to Lemma 2.6 of [3] (, v) is a solu-
tion of a certain system (24) with coefficients satisfying (36). Thus (35) and Lemma 3
yield u(b) # 0 which contradicts to (37). This completes the proof.
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The method of the proof of Lemmas 7 and 8 is essentially the same as that of
Lemma 6, but instead of Lemma 3 one must use Lemmas 4 and 5 respectively
(see also [4]).

Lemma 7. Let the functions g, :[a,b] - [0, +oo[ (i =1,2) be summable,
(hl ’ h2a 81 + gz) € 9’01(“, b)’ he Lloc(] a, b[),

hy() 2 0, h#) W) fora<t<b,
h(®) py (D) v, (2) € L([a, b]) where p, and v, are defined by (5). Then there exists

a positive corstant B such that for any t, € [a, b] and any measurable funclzons
hio,s 8o : ] a, b[ — R (i = 1, 2) satisfying the conditions

0= hyo() £ hi(t),  hao()) S hao(t) S (D), 18| =g) Sfora<it<b

the inequality ,
t

(3% lu(t)| 2 B| [ hyo()dt| forastsb
fo

holds where (u, v) is the solution of the problem (24), (25).
Lemma 8. Let the functions g, : [a, b] - [0, + o[ be summable, h, h; € L,,(] a, b[)
(i=1,2),celab,
(hl ’ h29 81 + gZ) € g’oz(a, C) N 9702(0, b)’
h() 20, h,(®) S W) fora<tZoe,
h(®) S h(t), h(®)20 forc=t<h,
h(t) uy(0) € L([a, c]), h(@®) vo() € L([c, b)]) where p, and v, are defined by (5). Then
there exists a positive constant B such that for any t, € [a, c] and any measurable
Sunctions hyy, 8i0 : ] a, b[ - R (i = 1, 2) satisfying the conditions
0 =< hio(d) S hy(t),  hy(8) S hyo) Sh(®) fora<t=o
hi(@) S ho() S h(®), 0 =S hyo(t) S () for et <b,
lg®) | Sgt) fora<t<b '

the inequality
v()ZB forc<t<h

holds where (u, v) is the solution of the problem (24), (25).
§ 3. Main results
In this section we shall prove existence and uniqueness theorems for the problems
(1), (2) and (1),-(3). Remind that the class of functions f; under consideration as

well as the idea of solutions of the system (1) were defined in § 1.
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1. Existence theorems.

Theorem 1. Let in | a, b[ x R? the inequalities
- x|+ h ()1 y] — 0, S fi(t, x,y)signy £
(39 A 28I x| +h®Oly] + 0,

haa(®) | x| — g2(0) | ¥ | — n2() < f3(¢, x, y) sign x s
Shy@®lx|+80)1y] + n0)

hold where n,, g€ L([a, b)), (6) is fulfilled, n; € Li,(] a, b)), na(t) u,(t) vi() €
eL([a b)), uy, vy, hi are defined by (5) and (32) and for a certain integer k

(40) (115 by, 81 + 82) € Pry(ab) (i =1,2).
Then the problem (1), (2) has at least one solution.

Theorem 2. Let in ] a, b x R? the inequalities (39) hold where g, € L([a, b]), (11)
is fulfilled,

M€ L@ ), 14(8) v,(t) € Line(] 4, B]),
n2 € Llac('] a, b])’ ”Z(t) l‘l'l(t) € Lloc([a’ b[)’

Ry, V2, h; are defined by (5) and (32) and for a certain integer k
41) (hiis hyi, 81 + 82) € Pra@, ) (i =1,2).
Then the problem (1), (3) has at least one solution.
Theorem 3. Let in ] a, b[ x R? the inequalities
=& x| + ho(t) |y | = ho() mo = f1(t, x, y) signy <
“42) Se@ x|+ Oy + ho@®)1o,
£t %, y) sign x 2 hy(0) | x| — 20 || = n()

hold where 1o € [0, + o[, the functwns ho,gi:]a,b[ - [0, +oo (i =1,2) are
summable,

@3) Io(a, 1) Io(t, b) >0 fora<t<b, Iyst)= fho(r) dr,
n(t) uy(2) v, (t) € L([a, b)), p, and v, are defined by (5) and
“4) (hys hy, 81 + 82) € Pos(a, b).

Then the problem (1), (2) has at least one solution.

Theorem 4. Let c€ ] a, b[, and let the inequalities (42) be valid in Ja, c[ x R?
and the inequalities

Silt, x, y)signy 2 —g, () | x| + h() |y ] — n(),
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ho() | x 1 — g2(0 1y | = ho(D) o < £o(t, x, y) signx
Sh@®|x| +g@) |yl + h()n,

hold in ] ¢, b[ x R* where n, € [0, + o[, h e Ly,(] a, b]), the functions ho, g :
Jab[- [0, + o[ = 1, 2) are summable, (43) is fulfilled,
n(®) p) e La, c]),  n(®) va(2) € L [¢, b)),
i, and v, gre defined by (5) and
(45) . (hy, hy, 81 + 82) € Poa(a, ¢) N Poy(c, b).

Then the problem (1), (3) has at least one solution.

Proof of Theorem 1. Leta, € ] a,b[, b,e]a,,b[ (n = 1,2, ...) and a, - a,
b, = bwhenn — . According to Lemmas 2, 2’ and 6 there exist positive constants
A, 4, (n=1,2,..) and B such that for any t,€[a, b] and any measurable
functions ko, i : ] @& b[> R (i = 1, 2) satisfying (36) the inequalities

lug() ] £ A (1), u ()| S Ay ()  forast=< b |uB)|2 B

ol s4, foras<rsd, |v,@)|<4, fora,st=sb

hold and on ] a, b[, in addition,

A .
< . .
| vl(t) ' = Vl(t) if vl(t) * 0’ l Uz(t) ‘ (t) lf . #1(‘) * O’
where (u,, vy) and (¥, v;) are solutions of (24) under the conditions
(46) uj(@ =0, v,(@) = 1;  uy(b) =0, v(b) =

Set (15) and

Au,(b) + A,) A
0 = (Apy( )B+ ) [4, ;,,I(T)d1+Aj pi(t) () de + A4 jv,(t)nz(r)df]

1 forogtgg,,

_ {1 for te[a,, b,], . ot
@7) o) = {0 for t€[a, b\[a,, b,], o) =192~ fore, <1<2e,

0 for ¢ = 2g,,
48) u(t, x,3) = oo (D on(l x| + | ¥ 1))
Sinlts %, 9) = by () y + o,(t, x, 9) LAt %, ) — hyy (D J’],
Saalts X, ) = hyy(0) x + 0,8, x, ) [f2(t, X, 3) — hay(D) X],
n=12.)

Let n be a natural number. Suppose that (u,,, v,) and (45, ;) are nontrivial
solutions of the system

(49) u = hll(t) v, v = hzz(t) u
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and u;4(a) = 0, u,4(b) = 0. For certain a, B € [ —n/2, n/2] we have
Upola,) sin o — v0(@) cos o = 0,  .uz0(b,) sin B — v50(b,) cos B = 0.

If j is a sufficiently large positive number, then (ju,q,jv,0) and (—juyq, —jv10)
are solutions of the system

(50) X =filt, x,¥), ¥ = fault, X, )

on [a,, b,]. The points (ju,o(b,), jvio(B,) and (—ju,o(b,), —jv10(by)) lie either in
distinct half planes with respect to the straight line x sin § — y cos = 0 or directly
on this line. In any case, by the Kneser theorem ([7], p. 28) (50) has a solution
(%4> ¥») on ] a, b[ such that

x(a,) sin @ — y(a,) cos a = 0, x(b,) sin B — y(b,) cos B = 0.

Obviously, (x,, y,) satisfies (2).
Using (39), it is easy to verify that (x,, y,) is a solution of a certain system

x' = g1ot) x + ho(O) y + 11000, Y = hyo(t) x + g20(t) ¥ ‘*"Izo(t),

where the functions g, Ao, %io : ] 4, b[ - R are measurable, the inequalities (36)
hold and
In@ | =n() for a<t<b (=12).

Now let (#;,v,) and (u,, v,) be the solutions of (24) satisfying (46) and let
b
A(t) = exp (!I [g10() + 820(1)]d7),  w = uy(b).

Define in ] a, b[ x ] a, b[ a second order quadratic matrix 4 by the relations

g1, 1) = 4@ (—uz(t 01(7) uz(ou«r)) for <1,

w =05() v4(7) v,(¢ uy(7)

_ A) [(—u (D) vy(7) uy(2) uy(7)
== (—vi(r) 0,(0) vi(t)ui(r)) fore<s

&2y

Lemma 3 implies')
(52 col (x,(0), y(t)) = :f 9(t, 7) col (,0(7), n20(r))dr  for a <t < b,
and by the definition of the constants A, 4, 4,,, B and g,, we obtain
(53) 1% | + 170 | S 0w fora,<t<b, (m=12,..)

Thus the sequences (x,);=; and (y,),-; are uniformly bounded on eaclt segment
[@m, b) (m = 1,2, ...). Simple arguments show that without loss of generality

1) Here and in what follows col (., .) denotes a column vector.
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we may assume these sequences to be uniformly convergent on each segment
contained within ] a, b[.
Let a* € ] a, b[. Then accordmg to (52) in Ja, a*[ we have
2

15015 2T + mOnEnO e + 1 | [318 9 nz(r)] o}
if ”l(a*) * 0, »

A%
[x(D] = B

fn(x)de if  p(a*)=0.

Since a* is arbitrarily close to a, and since u,(¢) — 0 when t — a, these inequalities
give

54 - sup{Ix,()|:n=1,2,..} -0 whent—a.
Similarly,
(55) sup{|x,()| :»n=1,2,..} >0  when t > b

Hence, as it follows from Lemma 2.5 of [3], the sequence (x,),=; uniformly
converges on [a, b]. Furthermore, (53) and the definition of f;, and f5, imply that
(X, ¥2) (n = 1,2, ...) are solutions of the system (1) on [a,, b,]. Thus, if
(56) x(t) = lim x,(t), y({#)=Ilimy(t) fora<t<b,

n- oo n- o
then (x, y) is a solution of (1), (2). This completes the proof.
The proof of Theorem 2 is quite similar.

Proof of Theorem 3. According to Lemmas 2 and 7 there exist constants
Ae[l, +oo[ and Be ] 0, 1] such thatif the measurable functions 410, &io : [a, 8] —
— R (i = 1, 2) satisfy the inequalities

57 ho(0) < hyo(t) = hy(D), [ gio(D) ] = gD forast=sb

~and if (u, v) is a solution of the system
(58) u' =g u+ hio)o, V' = hy(t) u + gy0(1) ¥

under the initial conditions (25) where 1, € [a, b], then (23) and (38) hold. (Note
that (42) and (43) imply p,(¢) v,(t) > 0 for a < t < b).
Let ayg,bo€]a, b, a,e]a,ao[, b,e]bo,b[ (n=1,2,..), a,>a,b, > b
when n — o0 and
. » Iy(ay, by) > 0.
Set (15), (47), (48) and

A’A’ 1

. > '
1+ 1( ) B! [1o + § () vo(D)n(x) de],
IO(a’ an) Io(bn’ b) a

(59) ¢, =
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fln(t’ X, }’) = hl(t)y + Un(t, Xy y) [fl(t’ X, y) b hl(t) y]!

(60) Faults %, 9) = o) X + 0,(t, %, ) [/o(t: %, ) = by(O) x], -
n=12..).

Let » be a natural number. Considering the system
u' = h()v, v = hy(t)u

instead of (49) and using the arguments carried out in Proof of Theorem 1, we
verify that the problem (50), (2) has a solution (x,, y,). At the same time, by (42)
(xs, ¥») is a solution of a certain system

x' = go(f) x + hio()y + n10(0), V' = hy(0) x + g20(t) ¥ + n20(t) + §(0),

where the functions Ao, &, &0, i0 : [@, ] = R (i = 1,2) are summable, satisfy
(57) and

61)  [n0@®) | S he® M0,  In200® | S0, EDOx()20 forastsb.

Let se]a, b[ and x,(s) # 0. Then there exist ¢, € [a, s and ¢, €] s, b] such
that

(62) x(t) = X%(t2) =0,  x(O#0 in ]y, 1]
Lemma 4 implies

(63) col (x,(2), ya(t)) = tf %(t, 7) col (40(r), M20(z) + &(¥))dr for t; <t <1y,

where the matrix ¥ is defined by (51),

(64) A(t) = exp ("tj [810(7) + g20(7)] d7), w= —uy(t),

(u;, v;) are solutions of (58) and u,(t,) =0, v,(t;) =1 (G = 1, 2).
Taking into account (61), (62) and Lemma 7, we conclude that the terms

(_1)i+1 t : .
= 4s-i1) '.! (i@ A@dr (i=1,2)

are nonnegative for f;, < t < t, if x,(f) < 0 and nonpositive otherwise. Thus,
applying (15), (61) and the definition of the constants 4 and B, from the first
component of the equality (63) we obtain

(©9) 1501 S [0 1a() = 1, a (0] S
2
< Adn(®) [% + 1

b
B J @ vy(@n(z) de ] ;

Toa, D I, B) 3



(66) I.'I |u®) &G | Ar) de | S x8) +l _H_ | #3-40)

-{1)

where
. .
(67) %) = | [ |vdr)n10(x) + uft) Mao(r) | A(x)dr|  for t; <t < ty(i=1,2).
L ]]
The last estimate along with the second component of the equality (63) gives

64°A(1 + [ (0)]%)
leo( a, t) Io(t b) ["0 + I”l(t) Vl(“) "(T) df] for tl <t<t,.

(68) |yi(1)] =

Now let s€ ] a, b[, x,(s) = 0, and let there exist ¢, and #, such that
tyela,s[, 1, é]s, b, x() =0 fort, StSt,.

If [¢;, ;] is thc maximal segment with these properties, then for each natural
number m we have one of the following possibilities:
(i) there exist 5, € [a,, bn] (j = 1,2, ...) such that x,(s,) # O and either s, — ¢,
or s; = t, when j — c0;
i) [t1, 2] @ [am> bm)-
Let (i) occur. Then | y,(fo) | S @*(#o) where t, € [a,,, b,,] is either 7, or ¢, and
©*(?) is the right-hand side of the inequality (68).
Now let (ii) take place. Then, since [ay, b,,] > [4o, bo], the first of the mequaht)es
(42) implies the existence of #, € [a,,, b,,] such that | y,(t) | S ryo
In both the cases from the inequality

[y S 80 [y +n() fort <t <t

which is due to the second of the conditions (42), we obtain

bm ]
|y | S [1 yt o)l + Jri(z) de] exp(f g5(s) ds)
for te[t,, 1] N [Gm; bu] (M = 1,2, ...).

Thus considering (59), (65) and (68) we conclude that (53) is fulfilled for all
sel, where I, is a certain set dense in [a,, b,,]. Therefore (53) is valid for all
s€[a,, b,)], and without loss of generality we may- assume that the sequences
(x)e=1 and (y,)i, are uniformly convergent on each segment of ]a, b[.

Suppose that a* €] a, b, 3/y(a, a*) < Iy(a,b) and se]a,a*[. If x,(s) # O
for a certain natural number n, choose ¢, € [a, s[ and ¢, €] s, b] satisfying (62).
Then from (15), (23), (38) and (63) we obtain

' 2

1291 5 A2 TThoym0 + mi(on] ds, -



when ¢; < a*, and
’ 2, a*

501 < A2 [ The@ o + m@no] dr +

A%l v,(a*) 3 y
+ Tl“l(t)[l + .u:(a.) + Io(a, b)]['lo + .;‘vl,(t) "(t) dt]v

when ¢, > a*. These incqu:lities give (54). Moreover, by the similar ar
we can show that (55) also holds. Thus the sequence (x,)< ; uniformly co
on the segment [a, b]. .

Using (53) and the definition of f},, f2,, we establish that (x, y) with :
given by (56) is a solution of the problem (1), (2). This completes the prc

Proof of Theorem 4. By virtue of Lemmas 2, 7 and 8 it is easy to ver
there exist Ae[1, +oo[ erd Be]0, 1] such that for any points ¢, €[a,
€[c, b] and any measurable functions Ay, g;0 : Ja,b[ = R (i = 1,2) sa

the conditions .
ho(8) S hyo(®) < hy(8),  hyo(t) = hy(t) fora<t<e,
(69) hio(t) = hy(t),  ho(t) S hyo(t) S hy(t) for c <t < b,

Igu() | Sg() fora<t<b
we have in Ja,b[ -

B L, DS lu)|SAILELO, u() 2B, |0(0)] S Ay

for t £ ¢, .
lus(®) | S A[v2(0]"Y, 9 2B, B|L(, 0| S 00| s 4|1
for ¢ 20
Iy(t, ty)
'vi(t)lgAmax{l,—-———-—} fort<t,, o)A fortg
ui(?)
luy()| s 4 fortst,, luy(t)| < A max {1,-—1-2‘%—;—)9—} for ¢t :
2

where
t .
I‘(S, t) = Ihlo(T) dt (l = 19 2):
(uy, v,), (u;, v,) are solutions of the system (24) and
(70) o uy(ry) = 0: vi(t) =1;  uy(ty) = 1, 03(85) = 0.
Leta,, b, (n = 0, 1, ...) be the same as in Proof of Theorem 3 and

. - Io(aq, ¢) Ip(c, bo) > 0.
Put (15), (47) and (48) where



412
g,,..9‘“ (1+u1(c))(1+v,(c))(l+ L. )x

Io(a, a,,) Io(bm b)
x[o + { M@ IO e + [1@n@d]  (1=1,2,.).

For a natural number n consider the system (50) where the functions f1,, f2, are
defined by (60). Just as it was carried out in the proof of the previous theorem,
we can show that the problem (50), (3) has a solution (x,, y,) which, at the same
time, satisfies the system

X' =gt x + hyo(Dy + nyo(t) + &,(0),
V' = hyo() X + 820(8) y + n30(8) + &3(D)

under the conditions (69) and

Ei() =0, LOx,®) 20, |10 S ho(®) N0, | n200) | Em(t) fora<t=Zoe,
ED D20, £ =0, [n6() | S @), 19200 | £ ho(®ny forc St <b.

Let se]a, c[ and x,(s) # 0. Then there exist ¢, € [a, s[ “and ¢, € Js, b] such
that either

(i) t, £ ¢ and (62) holds
or

(ll) t2 =6 X n(tl) = yn(t2) = 0 xn(t) # 0 on ]tla C] and yn(t) # 0 on [C t2[ (lf
t, > c).

Note that since (hy, hy, g, + g2) € Poy(a, ¢) ,the case (i) has been studied in
Proof of Theorem 3. Thus we obtain

2 c
%01 S TG (1 + m@) o + (@1 8]
)] for t; <t <t,.

(D) S 6"3’1(;:“‘“)) [+ { (e () ¢
0

Now consider the case (ii). From Lemma 5 it follows that

t2
(72) col (x,(), ya(1)) = J (1, 7) col (110(r) + &1(x), M20(7) + &,(v)) de
ty o .
fort;, <t <y, ,
where the matrix & is given by (51), (64) and (u,, v,), (¥, vz) are the solutions of
(24) satisfying (70).

When set t = c in (72) and compare the signs of the functions u;, v;, &; with the
signs of x,(c) and y,(c), we obtain

< W0 u,(c)

1S4 el x,(c) + x,(c) if x,(¢) ya() 2 0,
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< v,(0)
= vy(0)

where x»; are defined by (67) and

#,(c) + %,(c) if x,(¢) ya(0) <0,

t2

2= J10,(0) 4(1) | Ar) dr.

c

Furthermore, from the first component of (72) by the analogy with (66) we have

X for tE<t<e,
where
t
W) =1 Jlu@&@ | AR)de| for t, St<t, (i=1,2).
t

Considering the estimates established above and applying the definition of the
constants 4, A and B, we conclude from (72) that on ¢y, c]

1501 S o [0 M + 1O (a0 + ] S

L2

3 c b
22 0+ @) (1 + 9 (0) Do + @) de + [ v 09 de)

()] = —I-;lv—l[l 02(1) | (ea (1) + 21()) + 101D (2()) + x2(8) + )] =

4 4 ’
< 94%(1 + ;11(0)) (1 + v;(0) [0 + f ua(@)n(e) de + § va(@) n(z) de].
B’I(a, t) e ¢

From these inequalities and (71) we may derive by the method used in Proof
of Theorem 3 that | x,(t)| + | y,(®) | £ @m on [@m,c] (m =1,2,...) and (54)
holds. Moreover, it may be similarly shown that | x,(£) | + | ¥.() | < @m 0n [c, by]
m=1,2,..)and

sup {| y,(0)| :n=1,2,..} >0  when t > b.

Thus without loss of generality we may assume that the sequences (x,),~, and
()%, are uniformly convergent on each segment contained within [a, b[ and
la, b] respectively and so (x, y) defined by (56) is a solution of the problem (1), (3).
This completes the proof.

2. Uniqueness theorems.
Theorem 5. Let the inequalities
-8 xy = x| + A ()| Y1 — V2| S
§[f1(t, X1, Y1) = filt, x5, 92)] sign (v, — 1) S 81D %1 = x2| + b2 (D |y = 22,
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(73) haa () | xy = X2 | — 820 |3y — ¥y | S
S [ x4, 30) = f2(8, xz‘}’z)] sign (xy ~ Xx3) S by (D1 X, — x5 | + 20 |y —ya |

hold in la, b[ x R* and let the conditions (40) be fulfilled for a certain integer k.
Moreover, suppose that (6) with u,, v, and h, defined by (5) and (32) is valid. Then
the problem (1), (2) has at most one solution.

" Theorem 6. Let the inequalities (73) hold in Ja, b[ x R* and let the conditions (41)
be fulfilled for a certain integer k. Moreover, suppose that (11) with p,, v, and h,
defined by (5) and (32) is valid. Then the problem (1), (3) has at most one solution.

Theorem 7. Let the inequalities
—81(0) | xg = X2 | + ho() | ¥y = y2| S [fi(t, x1,¥1) = f1(t, X2, y2)] sign (1 —y2) S
(74) - se®lx = x| + )y, = y2l, -
[fz(t» X1, ¥1) — fa(t, xz,J’z)] sign (x; — x3) 2 ha() 1%y — x2| = g20) | ¥y = 2 |

hold in Ja, b[ x R? and let the condition (44) be fulfilled where ho, g, € L([a, b)),
ho(t) = 0 for a £ t S b and hy differs from zero on a set of positive measure. Then
the problem (1), (2) has at most one solution.

Theorem 8. Let ce a, b[ and let the inequalities (74) with ho(t) = 0 be valid
in Ja, c[ x R? and the inequalities '
[fit, %1, 91) = fit, x5, 7)) sign vy = p2) Z —g4(O) | Xy — %3 | + by(®) | 31 — p2 |,
-2 |y =yl = [fz(t’ x1,y1) = fat, xz,J’z)] sign (x; — x;) S
Shi®lxy — x| + 801y — 2l

hold in Je, b x R* where h €Ly, (Ja, b)), g€ L([a,b]) (i =1,2) and (45) is
Julfilled. Then the problem (1), (3) has at most one solution.

Proofof Theorem 5. Let (x;, y,) (i = 1, 2) be solutions of the problem (1), (2).
Set '

- (%) x(1) = x,(0) = x2(0, YO = y,() — ().
It immediately follows from the first inequality (73) that
=51 13 |+~ [y(0) | = X' () signy() < £:() | x() | + hia@) 1 ()|
in Ja, b[ and, since f; is continuous in the last variable,
~& ()1 x()| = x'®) 28O x(#)|  when y(r) =0.

The second inequality (73) implies the analogous relations for y'.

Thus (x, y) is a solution of a certain system (24) with measurable coefficients
hios 810 : Ja, B[ = R satisfying (36). But according to Lemma 3 this system has
not nontrivial solutions under the conditions (2). This completes the proof.
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The proof of Theorem 6 is quite similar.
Proof of Theorem 7. Let (x;, y;) (i = 1, 2) be solutions of the problem (1), (2).

Set (75).
Using (74) we easily verify that (x, ) is a solution of the system
(76) X = g1o(0) x + hyo(®) y, Y =h(O) x + g0y + &)

where measurable functions A;0, 8;0, € :]a, b[ - R (i = 1, 2) satisfy (57) and
an Enx() 20 fora<t<b.
Let x(s) # O for a certain s € ]a, b[. Choose 1, € [a, s[ and #, € Js, 5] such that
x(t) =x() =0, x()#0 in Jt, 8[.
If hyo(H) = 0 almost everywhere on [t{,t,], then (76) implies x(f) = 0 on

[t 1)

Now assume that A,4(f) # O on some set of positive measure from the segment
[1, t;]- Then according to Lemma 4 we have')

col (x(1), y(,))__ x(Sz) col (u3(1), v1(1)) ¢ o0 (sl)

col (u,(t), v2(1)) +
+ j %(t, 7) col (0, &(v)) dr

in Js,, s,[ for all s, € Jt,, t,[, 55 € Js4, t2[ sufficiently close to #;, ¢, respectively
where the matrix & is defined by (51),

t
(78) A(t) = exp(—[ [810(7) + 820(M]d7), W= —u,(sy)
and (u,, v;) are solutions of (58) under the conditions
u(s) =0, ol)=1 (=12

Hence, as (77) holds and u,(f) 2 0, u,(f) < 0 on the segment [s,, 5,], we obtain
on this segment '

1301 s 58w + 28 lu.

By Lemmas 2 and 7 there exist independent on the choice of s; and s, posl-
tive constants 4 and B such that

-

(0] = g(lx(sx)l +1x(s2))  for s, stss;.

!) Note that in general we may not use the Green formula on the whole [ty, 7},
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Taking into account the unrestricted closeness of s; to ¢, (i = 1, 2), we conclude
that x(f) = 0 on [1,, t,] and thus on [a, b].

(76) gives hy(2) (1) = 0 for a < t < b, but since A, is not equivalent to zero,
y necessarily vanishes in some points of ]a, b[. On the other hand, according to (74)

(79) 1Y@ = g0 1¥0 |

on [a, b]. Therefore y(r) = 0. This completes the proof.”

Proofof Theorem 8. Let (x;, ¥;) (i = 1, 2) be solutions of the problem (1), (3).
Set (75).

Suppose that x(c) # 0 and that ¢, is the largest zero of x on [a, c]. Furthermore,
denote by ?, the smallest zero of y on [c, b].

From the conditions of the theorem it follows that (x, y) is a solution of the
system

x' = g0 x + hyo(t) y + &,(0), V' = hyo(t) x + g20(8) y + &1(2)

where g0, hio, &; : ]a, B[ > R (i = 1, 2) are certain measurable functions satisfying
(69) with /() = 0 and

& =0, &LMOx(z2z0 fora<t=syg,
E@OyDH 20, &EBH=0 forc=<t<b.
Thus by Lemma 5

col (x(t), y(t)) = 001 (u1(8), v4(1)) +

(80)

( 3 col (uy(1), v2(1)) +

+ jg(t, 1) col (¢,(7), €,(x)) dz for s, £t<s,,
where s, € ¢y, c[, 5, is ¢, if y(c) = 0, and is an arbitrary point of Jc, #,[ otherwise,

% is the matrix defined by (§ 1) (78) and (u;, v;) are solutions of (24) under the
conditions

uy(s;) =0, vy(s)) = 1; uy(s;) = 1, vy(s5) = 0.
This equality and (80) imply

1x(0)| < 1262y o) 4 "‘(s‘” u(c)  when x(c) ¥(c) = 0,

vy(s3) u,(sy)
19 < 'y((s’))' ni(e) + "‘((s‘))'l v(c)]  when x(e) y(¢) <O.

Now taking into account Lemmas 2 and 8 as well as the unrestricted closeness
of s;to ¢; (i = 1, 2), we conclude that the first inequality gives x(c) = O and the
second one yields y(c) = 0. These contradictions show the falsity of the assumption
x(c) # 0. We may analogously verify that y(c) = 0.

40



Because of (45), (hy, h,, g, + 82) € Po(a, ¢). If x(s) # O for some se]a, c[,
then repeating word for word the corresponding argument from Proof of Theorem 7,
we get x(z) = 0 for @ < t £ c. Hence (79) is valid on [a. ¢] which, since y(c) =0,

gives y(f) = 0 on this segment. Similarly, | x(#)| + | y(f)| =0 on [c, b]. This.

completes the proof.
In the case when f (¢, x, y) = y, from Theorems 1,3,5,7 we obtain I. T.Kiguradze
existence and uniqueness theorems [3] for the singular problem

x" = f(, x, x"), x(a) = x(b) = 0.

Moreover, in [3] the effective conditions under which (1, k, g) € Z,(a, b) are
given (see also [4] and [8]).
The necessity of the main conditions of Theorems 1—8 is discussed in [4].
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