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NORMAL SUBGROUPS AS IDEALS 

B. ŠMARDA (Brno), M. NIEMENMAA (Oulu)1) 
(Received November 17,1981) 

1. I N T R O D U C T I O N 

We can define an ideal system on a grupoid (S,.) as a system {Ax : A £ S} 
fulfilling conditions: 

1. A s Ax9 

2. A<=Bx**Axc: BXJ 

3. AX.B<=: Ax< 
4. AX.B<=.(A.B)X. 

This definition was introduced by K. Aubert [1] in the case where the 
grupoid operation is both commutative and associative. 

We say that A = Ax is an ideal and the grupoid operation is called an ideal 
operation. 

In [6] F. Vorac studied the structure of a group G with normal subgroups 
acting as ideals and the commutator operation acting as the ideal operation. In the 
following we say that such a group G is a K-group. Vorac characterized the structure 
of a K-group G with the aid of the centralizers of the elements of factor groups 
of G (see [6], Theorem 2.7). Later on it was shown in [5] that a K-group is 
necessarily nilpotent. In this paper we show that the class of the nilpotent K-group 
G is at most three. Furthermore, we show that if the commutator operation is 
associative in G, then G is a K-group. In most cases also the converse result holds. 

In this paper G denotes a multiplicative group, G' denotes the commutator 
subgroup of G and Z(G) the centre of G. The centralizer of an element g in G is 
denoted by CG(g) and N(A) means the normal subgroup generated by a subset A 
of G. Finally, by •* we denote the commutator operation. 

1) This paper was written while the latter author was visiting the University of Brno. 

109 



2. BASIC LEMMAS 

Let G be a group. From the properties of normal subgroups and the 
commutator operation it follows that G is a K-group if and only if N(A) * B s 
£ N(A * B) for all A,B^ G. We first establish a result of VoraS [6], p. 242. 

Lemma 2.1. If G is a K-group, then CG(g) is a normal subgroup of G for all ge G. 
We also need [6], p. 241. 

Lemma 2.2. Let N be a normal subgroup of G. If(a*g)*beN, for all ae G 
and for all g * be N, then G is a K-group. 

Lemma 2.3. Let G be a K-group, geG and let xe CA(g), then g *(x •*z) = 1, 
for all zeG. 

Proof. By lemma 2.1, z~yxz e CQ(g), so z~1xzg = gz~1xz, hence 
g-iz-~ixzgz~tx~iz~ 1. It follows that g~1x(x-1z~1xz)g(x-1z"ixz)~1x~1 = 1, 
so g~*(x * z) g(x •* z)""1 = 1 and the proof is complete. 

As a direct consequence we have 

Lemma 2.4. Let G be a K-group, then (x * y) •* y = 1, for all x,yeG. 
Proof. Now yeCG(y), so by lemma 2.3, y*(y*x) = l. Then, clearly» 

(x *- y) * y = 1 and the proof is complete. 
Finally, we give two results of Levi [4]. 

Lemma 2.5. The commutator operation is associative in a group G if and only if 
G' £ Z(G) (this result can also be found in [2], p. 87). 

Lemma 2..6 Let (x * y)* y = 1 for all x,yeG. Then G is nilpotent of class 
at most three. Furthermore, if G has no elements of order three, then G is nilpotent 
of class two. 

A modern treatment of lemma 2.6 is given in [2], p. 288. 

3. MAIN RESULTS 

Now we are able to establish 

Theorem 3.1. A group G is a K-group if and only if(x -* y) *• y = 1 for all x, ye G. 
Proof. Let G be a K-group. Now lemma 2.4 applies and an assertion is true. 
Then suppose that (x -* y) •* y = 1, for all x, y e G. Furthermore, suppose that N 

is a normal subgroup of G and let g * b e N. Thus (g * b) * ae N, for all a e G. 
By steps (2) and (3) in the proof of Theorem 6.5 of [2], p. 288-289, we get 
)g *b) * a = l(g*a) ^ft]"*1 = [(a *g)~* ^fe]"1 = (a *g) *b, so we can use 
lemma 2.2. The proof is complete. 

Now, by lemma 2.6, a K-group G is nilpotent of class at most three. Lemma 2.5 
provides us with 
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Theorem 3.2. Let G be a group such that G has no elements of order three. Then G 
is a K-group if and only if the commutator operation is associative. 
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