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A DOUBLE COMPLEX RELATED WITH A SYSTEM 
OF PARTIAL DIFFERENTIAL EQUATIONS II 

JAN CHRASTINA, Brno 
(Received June 10,1982) 

17. Preliminaries. The present paper is closely related with the previous part I, 
and we continue the numeration of sections, formula and references. However, 
the main results will be derived almost independently here. In the previous part, 
we look after exactness of certain double complex. We have observed that almost 
all interesting properties are already reflected in the third column 

(21) ^ :0->i / f 1 > o ^>i / f l t l ^> . . . - -V^ ,„ -*( ) , 

so we will consider only this column here. 
Now, remind the most essential notions and precise the main task of the present 

part. We deal with the space /°° of oo-jets of sections of a fibered manifold % : M -» 
-• B and with a regular and closed system of partial differential equations i?00 c /°°# 

The regularity assumption means that i?00 is an inverse limit of certain fibered 
manifolds, and so behaves in the main as a manifold. The closedness is a deeper 
property which may be formulated as follows: Let $[ta be the space of all 
(s -F l)-forms <p on the space /°°, which may be expressed as 

(22) <p - lfJ
PtIcoJ

r A dxr (| V| £ /, 11\ = s) 

in a local system of the familiar jet coordinates. (Here, coj == d ^ — 2>//dx* are 
the contact forms, J, / ' are multiindices of non-negative integers.) Let ^\ta be the 
restriction of this space to J?00. Then, l?00 is a closed system if the exterior differential 
considered on J?00 decomposes into two summands 8, d; we will be interested only 
in the second component d : V\tt-* -P£+i. 

The above mapping d appears in the short exact sequence (23) of complexes, 
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(23)1 '+» 

0 0 0 0 

i i i , ł 
Чf(l + n- 1) 

i ,J,І ^І 
a ^ 

T(l + ń): U — > У 1 0 — > ! ť i ( 1 > . A шř + n 
.. > ! Г l n 

i j j j j 
a * j 

Г(l+ń): o ^ Г o J->гl+1Д>.. * ^ * rt 

i 1 .4 I 

where i are inclusions, j are natural projections, / is an arbitrary integer; we put 
W\fS s 0 for / negative. The factor-spaces r[ = W\tJWlfs

i of sections appearing 
in the diagram (23) may be represented more advantageously as the spaces of 
sections of certain vector bundles Gl

s over the base i?00, r\ = C™(Gl

s). Moreover, 
there exists such a complex 

G(l + n): 0 -• G0 -* G\ ->...-> Gl

n -> 0 

of vector bundles and vector 6wid/e mappings that the complex F(/ + n) arises 
from them by applying the functor C00 of taking the sections. The differentials in the 
complexes G(l + «), T(l + n) naturally correspond one to the other under the 
functor C00 and will be denoted by the same letter 8. 

The homology Hl

a**(G) of the complex G(l + n) is closely related with the 
familiar Spencer and Koszul homology of the system R°° (cf. Section 12). For every 
integers /, s, Hl

a(G) is a family of vector spaces dependent on the parameter point 
y 6 Rco

9 not necessarily a vector bundle over iJ00. However, one can easily prove 
that the inequality dim Hl

s(G) £ given constant is true on an open subset of R™. 
Especially, Hl

s(r) = 0 if and only if dim Hl
s(G) = 0 holds on an open dense subset 

ofR". 
Our aim is to relate the homology Hl

s(G) with the homology Hl
s(W) of the com­

plex W(l + n + s) of sections of differential forms, and with the homology of the 
analogous complex (21). 

18. Simple results, (i) Hl
s(r) = 0 (fixed /, s) if and only if for every <peW\tS 

satisfying dq>€W\tS+t there exists X^^\tS-t
 such that <p - dx e Wlfs. This 

follows by an easy diagram chasing in (23)'+n~s. 
(ii) If Hl

t(r) = 0 ( H I ^ I , fixed s)9 then for every QeWitS satisfying dq> e 
e W\9S+i there exists x e S^V- i s u c h that 9 ~~ 8X e ^ iV- ^ i s f ° ^ o w s by successive 
application of (i). 

(iii) H*s(r) &0(k /£t £L, S £s) if and only if for every <p e Wl
itS (k <; / g L, 

S £ s) satisfying dq>eWk
itS+i there exists x e Wlf^t such that <p - dx e W\~s. 

The pari "then" follows from (ii). The part "ifw* may be derived by a diagram 
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chasing in (23)l+»-* running as follows: Let y e f j , dy = 0. Choose (pe !P* 
j> = 7. Then \j/ = 8<pe Y\,s+i, # = 0. Owing to (i), there exists # e S"^1, 
i// - dx e *Pi7/+,. Clearly, we have j(<p - / ) = y, a(<p - *) e ^7*+,.. We repla^ <p 
by <p - X and repeat the procedure. At last, we obtain a form <pe W\tS with j<p ^ y, 
d<peW\tS+1. Owing to the assumption, there exists a form x e Y^, with q> — dy e 
e 757/. Then, p = ](<p - az) e F^,1 satisfies 30 = y. 

(iv) Hl
n(G) = 0, hence ^ ( F ) s 0 (/ #'0), for every system JR" (cf. Section ^ ) . 

Consequently, to every <p e W\t n (I * 0) there exists x e ^ ^ satisfying q> - dy G 

e !??,-,. This follows from (ii) with k = 1, because d<p e ?[+.*+1 = 0. 
(v) Hl

s(r) s 0 ( ^ / , a// s) */ a«d on/y *//<?r euery <p e V1#f (fc <; /) satisfying 
d<pe¥\,s+i there exists x e ^ 1 - ! swcA Mat 9 - 3*6 ¥*-/. A particular case 
of (iii). 

(vi) Hl
n-t(r) == 0 (0 < fc g /) if and only if for every <PG*Pl

Un„l satisfying d<p e 
e W\tn there exists x e V 1 ^ swcA that <p - dXe V^Xi- Owing'to (iv), a particular 
case of (iii). 

(vii) Hl
n„x(r) s 0 (a// /) if and only if for every <p e V\tn^x satisfying d<p e Y°itH 

there exists # e ^i7n-2 such that <p = <9#. Especially, <p =. 0 in the case / *=. 6. 
The first assertion follows from (vi) with k = 1, the second assertion from (ii) 
applied on the assumption Hn„t(r) = 0. 

19. Definition and theorem.. A system R™ is called k-involutive (k ;> 1) on 
a subset of JR00, if Hl

s(G) s 0 (/ ^ k) on the mentioned subset. A system JR00 is 
called 0/ essential order ^ t o n a subset of R™, if Hl

n^t(G) 3 0 (/ ^ &) on the 
mentioned subset. If i?00 is a system of essential order <; 0, then Hl

s(G) a 0 (/ 96 0 
or s 56 0) is true; cf. Section 12. 

A system R°° is k-involutive on an appropriate open and everywhere dense subset 
of R™ if and only if every homology class in the complexes 

(24) K,l-il®k,-i -> KM^... - *£:"&*""- 0 
may be represented by a form lying in a space Yk^s. Here, ©\ = W\ sn dW\~tS„t, 
differentials in (24) are induced by d9 s is an arbitrary integer, and we put y j ( l s 0 
for negative s. 

A system .R00 is of essential order <J 0 on an appropriate open and everywhere 
dense subset ofR™ if and only if all complexes 

(25) 0 - y l i 0 -> yit» -vw - «p'1:;r1
1 - ylt;/y?.. n ayitr.1 

are exact. 
Proof: The first assertion is a reformulation of the point (v) of Section 18; we 

take into account a remark at the end of Section 17. As for the second assertion, 
Hl

n(G) = Hl
n(r) = 0 (/ 7* 0) in any case. In the case of the groups Hn~t(G)f 

H\„ i(r), one can apply (vii). The general case follows by (ii), if one choose a negat­
ive integer k. 
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SPECTRAL SEQUENCES 

20. Definition. Following the general lines, we come out with the filtration 

-V. - " K.=> ••• => Kl => K. => ••• => K. =» sr.t = o =>... 
and introduce the spaces Cl

Stf, of all forms <p = y1^., satisfying 8<p e ^i7I+1 > 

Fi c^+yj:1
 = cu 

' r ^ r ' + r - 1 4- y'-"1 dcl+r~l + r1""1 ' 

where r is an arbitrary integer, see [5], [6], [7]. The differential 8 : W\tS -> ¥l
Xtl+i 

leads to certain new differentials dr: JE r̂ -* El
s+

r
Xt r, and the corresponding homology 

teHl
s(Er)~El

Str+x. 
In our case, one can easily verify that 

... = ESt -2 •= ESt ..j = rs9 ESt0 = Hs(r), 

and the general term Er (r ^ 0) may be described as follows: A vector from the 
space E\tt is represented by a form <p e xF[tS satisfying 8<p e Y[~s+X which is taken 
modulo the differentials dip of all forms \]/ e Wl£r

sZx satisfying Bi// eW[tS, and also 
modulo the lower order forms from the spaces Y[~s9 ••, y?, s . 

(A local and non-invariant presentation seems to be very instructive: Refine the 
formula (22) by writting 

9 = E + X +.. .+ E = 91 + P ' - 1 + ... + p°. 
|/'l=* | / ' | -I-1 |Pl = o 

The differential B may be decomposed into the sum d = B% + 8C (s = simple, 
c = complicated), where 

55<p - - l / f . / c o ^ A dx*7, ac = Saf/f,7. cof A dxf/; 

B{ =- d/dx* + 2^/j 3\3y\ are the formal derivative operators. Then 

B<p = (3s + 3G)(<pl + ... + <p0), 

and we have the conditions 

BS<P1 = o, a.91 + By-1 = o,..., a y - r + 1 + By-r = o 

for a form <p representing a vector from the space El
Str. However, only the highest 

order term <pl is essential for this representation, and it is taken modulo the forms 
3$* + 8jtfl~1

9 where the form 

^ = ^ I + r " 1 + ^ + r ~ 2 + ... + ^ 0 

(a development analogous to (25)) satisfies 

djfr**'-1 = 0, dj1^-1 + 3 > I + r - 2 = 0, ..., 8Gi/,l+1 + dtf* = 0. 
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The differential dr maps the class of q*1 into the class corresponding to dep
l~* + 

+ d%q>l~r~l« All is restricted to R°°.) 
21. Convergence. We introduce the spaces Cl

Sf<X3, of all forms <peW\tS satisfying 
8<p = 0, 

pi == ^5,00 + * 1 , 3 __ CSt0Q  

'"° ay.,,., n y'.,. + y.;1 ay...... n yJ... + c^1 ' 

Evidently, Cj.. = Cj,,+ 1 = Cj.,+a = .... It follows that E'StR+1 = £J,R+2 = ... = 
= £j>00 for certain R(R^ I), if and only if 

ay.,,., n yi_, + y'.;.1 - acji?., + y,
1;.

1 

or, equivalently, 

e^L.-i « yi„ + ci;.1 - 5^1?., + c^1. 

It is a highly important fact that these conditions are certainly satisfied in all 
current cases, moreover, El

StV s 0 (r jg 0) for all sufficiently large /, independently 
on the value of r. All these conditions will be referred as the strong convergence 
conditions, see also Section 22. 

At last, following the general theory of spectral sequences, we consider certain 
filtration of the homology space Hs (= HS(TX), an abbreviation for the homology 
of the complex (21)) given by 

Hs = uHl
s 3 ... 3 Hl

s
+i z>Hl

s=> ... =-> H°s z> H;1 = 0 D .... 

where Hl
s is the space of all homology classes which may be represented by a form 

from the space V\t9. After the general theory, we obtain the isomorphism 
HlJHl

s""1 s E9t<x> and, if the above strong convergence conditions are satisfied, 

fli/fll"1 - El
Str9 Hs - 8 Hl

sIH
l
s'

1 - © Ej, r 

(finite sum), for all sufficiently large r. This final result need not any comment. 
Unfortunately, the above spectral sequence can be explicitly determined only 
rarely, but these difficulties may be expected in analogy with algebraic geometry or 
homology theory of fibered spaces. 

22. Theorem. Assume that H\(r) = 0 (/ J> L). Then, El
Str s O ( / ^ I , r ^ O ) , 

pi __ pi __ __ pi 

"Proof:' 0 a #](r) = j £ 0 . and if < r =- 0, then JE*§r+1 = ffj(2?,) « 0, too. 
Moreover, 5, = 0 (r _ I ) which implies the second assertion. 

At the end of the paper note that the assumption of Theorem 22 is satisfied if 
&l(G) s 0 (/ ^ L) on JR00. It is a well-known fact that Hl

s(G) s 0 at every fixed 
point of I?00 (and hence in a neighbourhood), for all large /, cf. Section 7. Con­
sequently, the above homology groups vanish on every compact subset of Rm. 
But more is true: If a system J?00 appears as a prolongation of a fixed finite system 
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of partial differential equations, then all homology groups Hl
s(G) vanish for 

sufficiently large integer / dependent only on the order of the system under 
consideration and the dimension of B and M. In any case, the assumption of 
Theorem 22 is satisfied in all current cases. 

APPENDIX 

23. Essential order. We shall state another definition than in the main text; 
Theorem 24 asserts that they are wholly equivalent. Let WQ^Q be the space of all 
functions locally dependent only on the variables JC*, y{ (i = 1, ... ,n;j = 1, ..., m; 
\I\ <* I) and vanishing on the set R™. The system JR00 is called of essential order <* k, 
if every function fe W0

l)
0 (I j> k) belongs to the ideal generated by the functions 

of the type 8tg (\I\ £l'—k,ge W(
0

k)
0). Especially, R*3 is of order ^ 0 if and only 

if every above mentioned function /belongs to the ideal generated by djg (\I\ $> I, 
g 6 W0

0)
0). The condition | /1 <J / may be omitted in this particular case; one can 

prove this by using an appropriate local coordinate system and partition of unity. 
We say that the property {/ + 1} takes place, if every function fe ¥0

,,"o1) belongs 
to the ideal with generators g, 8tg (i = 1, ..., n), where ge ¥0%. Clearly, R00 is 
of essential order £ k if and only if all properties {k + 1}, {k + 2}, ... are true. 

We say that the property [/ + 1] takes place, if every form a e W^f is (locally) 
expressible by a sum a = dp + y, where j8 e w\tn-x, y e W\t„. Using partition of 
unity, one can prove that both variants (local and global) are equivalent. 

24. Theorem. Supposing I2> 0, the following three properties are equivalent: 
H*-%(G) = 0, {/ + 1}, [/ + 1]. Especially, R"3 is of essential order S k if and only 
ifHl

n^(G)^0(l^k). 
Proof: Owing to the relations between Dedecker and Koszul homologies 

(Section 5) and a result of Section 6, one can see that Hl
n„x(G) == 0 if and only if 

H[(F) = 0, that means if and only if d': F[-+ F0
+ 1 and hence 8: Gn^t^ G?1 is 

a surjective mapping. This is the case if and only if 8 :Fn„t = C^C-j-j) -+ 
-> PI*1 == C°°((7J+1) is a surjective mapping. Then the following commutative 
diagram with exact rows implies that the above case takes place if and only if 
[/ + 1] is valid. 

røl-l TUn- 1-+*[..- • l - * - 4 . . . 

1 1 ì 
K. - > а д ->TÍ+1 

І 

I i 
0 0 0 

0->ÎP . ->Гt\
l - > J Г ж ~ * 0 

Consequently, it is sufficient to verify that [/ + 1], {/ + 1} are equivalent pro­
perties. 
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We shall use the local coordinates and denote dx = dxl A ... A dx", dx(,) = 
= - ( - l ) 1 dx1 A ... A dx1"1 A dxi+i A ... A dx", y will be an arbitrary form from 
the space Wl

ltH. It is sufficient to consider only the particular forms 

a = Ada A dx = A da A dxe ¥[+*, P = ZBfib A dx(0 G ? M . l t 

where a e yjft1*, be9$0, see the formula (10). Then, 

dp = -.S-Bf<5 dfc A dx(l) + 2 &B< A 8b A dx(l) = - S B , d 3f6 A dx + y. 

% Assume {/ + 1}. Then a belongs to the ideal generated by certain functions 
functions gH, 8thH (gH, hHe^Q

l]Q; x varies in a finite index set), hence 

da = XFiH d dthH + EG* dgH (FiH e ¥$0), 
A da A dx = XFiH d 8thH A dx + y = 80 + y, p = ZAFiHdhH A dx(f). 

So, [/ + 1] is true. 
Assume [/ + 1]. Then a form a = da A dx (we choose A = 1 in the above 

formula) is of the type a = dp + y, where j3 ==S-Bfx56x A dx(0. It follows that 

d f l~ I t f 6 l d3A f + (y), | 

where (7) is certain form expressible by the differentials dx1, dy{ (\I\ :g /) and 
vanishing on .R00. Hence, (y) = y, and using the regularity of R* and the implicite 
function theorem, the function a e W$0 appears as an element of the ideal generated 
by 8 fiH and certain functions from ¥o,V The property {t + 1} is verified. 

25. Automorphisms of the space J00. These are' such ono-to-one mappings F 
which preserves the fibration x* = const, and the set of linear contact forms. 
Consequently, the formulae 

F* áx' = 2 Aw dx1', F*<oJ - E B " Û) 1' 

are true, where AiV are functions only of the variables x1, ...,x* and BJJ' are 
functions of x1, ..., x", yl, ..., ym; det (A."') # 0, det (BJf) # 0. We claim a formula 

(27)̂  F*co/ = 2 s M ^ | r | g | / | ) , 

where 2$ ' are functions of the variables x', y{» (| / ' | + | V \' S | /1). Suppose 
that (27) I / | is true. Then 

F* dm{ = F* 2 <D£ A dx1 = ZF*<4 A -4H' dx*' = 
- dF*m{ = ZdBlf, A cof + 2B#co/r A dx*. 

It follows, 
EAtt'F*a>& = - 2 5 r S M : + IBlfagJ 

(and 2&Bg£ A G>£ a 0), which is the formula (27) | / | + 1. 
As a consequence, all filiations of Section 9 posses an invariant meaning. 
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26. An application. We shall only briefly look on certain questions related with 
the familiar Lagrange problem. Denote by P an s-dimensional compact and 
oriented submanifold of B with boundary Q, i : Q -* P be the natural inclusion 
of the boundary. (The case dim P = dim B = n is the classical one. Denote by 
p : P -* R™ a section over P (i.e. 7r°° o p : P -* P is the identity), and let q = p o i. 
We introduce the functional 

&(P) = lp*9 + U** ( 9 ^ o , , ^ V i ) 
-° Q 

considered on the set P of all sections p satisfying 

(28) p(t) e R"(t e P), p*(o{ = 0 

and, may be, certain boundary conditions on Q which we do not precise here. 
(For the classical case, (28) means that p is a solution of JR°°. In general, and 
especially for the involutive case, p may be considered as a submanifold of such 
a solution.) The fundamental concept is as follows: p e P is called a critical point 
of the functional 3? on the set P, if 

(29) d^(p(X))ldA\^0 SE 0 

is true for every one-parameter family p(X) e P with p(0) = p. The submanifold P 
may, or may not depend on the parameter A; we assume the first possibility. 

Using some fundamental tools of the differential calculus on manifolds, one 
can easily see that (29) looks more explicitly as follows: 

(30) 0 * \p*<ez<p + J q+SPrf, = JP*Z-J dcp + J q*Z-i {q> + di]/). 
-° Q * Q 

Here, J£fz is the Lie derivative, Z is a vector field on /°° satisfying Zp{Jt) = 
-s dp(X)ldk |A«0 at every point t e P. The last condition and (28) imply 

(31) Z is tangent to R™, &zcoj s 0, 

at every point p(t) (t e P). Now, we postulate (or prove, for particular problems) 
that also conversely, every vector field Z satisfying (44) corresponds to certain 
above mentioned family p(X) e P, p(0) = p. (This is the common approach, but it 
can be avoided; see [11].) Under this assumption/? e Pisa critical point of$F on P 
if and only i/(30) holds for every vector peld Z satisfying (31). This result may be 
considerably improved if we deal with the case of an involutive system. 

For simplicity, we shall omit the boundary terms and use the local coordinates. 
We start with the observation that #" does not change its value, if q> is replaced by 
9 —a (ae*Plt8). Moreover, decompose Z —^Ztdldx* +%zjdldyJ

I into the 
horizontal and the vertical component, 

Z**ZB + ZV « Xz, 3, + Zzid/dyi, (2{ = z{ - 2z,yi), 
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and use the decomposition d = 8 -f d. As a result, (30) looks as follows: 

(32) 0 a \p*(ZH-id<p + Zvs (8<p - da )) + J (...). 

It is natural to assume d<p = 0. (This identity is trivially satisfied in the classical 
case dim P = dim B. In general, we have only 0 a \p*ZB -J 3<p9 but the horizontal 

p 

vector field ZH is almost arbitrary here provided p is a submanifold of an n-di-
mensional solution ofjR00.) Then 85<p = —8d<p = 0 and, owing to the involutiveness 
of JR°°, there exists such form a e ^ i , , - ! that 8<p — dae ?P?,S. In local coordinates, 
8q> — da =ZfijG>/ A dx* (| J| = s; especially, 8<p — da = ]£eW A dx A ... A d*" 
in the classical case), hence (32) gives the equation 

(33) 0 = Jp*Z6iz idx /+ J (...). 

This equation is valid for every vector field Z = Zv satisfying (31). 
The mentioned conditions (31) may be expressed as a system of linear partial 

differential equations for the coefficients zj of the vector Zv. If the set of the lower 
order coefficients z1, ..., z" of these solutions is dense in the space of all m-tuples 
of functions, then (33) implies the equations 

(34) P*H^i d̂ c1 =. 0 (p*& == 0 in the classical case). 

These conditions are a generalisation of the Euler—Lagrange system. At the same 
time, the form <p — a appears as a generalisation of the famous Poincare—Cartan 
form. Note that d(<p — a) — (8<p — da) e ^ .s+i is a 2-contact form, so the 
condition (33) may be written as 

0~lp*Zv-id(<p~ a) + J(...); 
P Q 

this is the familiar property of the Poincar6—Cartan form. 
The case 700 = .R00, dim P = dim 5, exactly coincides with the higher order 

multiple integral variational problem of the classical calculus of variations. Lately, 
it was studied in fine details. We refer to [1], [2], and to the forthcomming papers 
[8], [9]-
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