Ivan Kopeček
A type of continuous projections

Archivum Mathematicum, Vol. 19 (1983), No. 4, 209--214

Persistent URL: http://dml.cz/dmlcz/107175

Terms of use:
© Masaryk University, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
A TYPE OF CONTINUOUS PROJECTIONS

IVAN KOPEČEK, Brno
(Received November 26, 1981)

1. Introduction

Let S be a nonempty set and $V \subseteq S$. A mapping $E : S \rightarrow V$ satisfying $E(S) = V$ and $E^2 = E$ is said to be projection from S onto V. If S is a topological space, V a subspace of S and E a continuous mapping, then E is called continuous projection. Continuous projections in function spaces can be viewed as approximations of given functions in function subspaces. For instance, the orthogonal projection onto a closed subspace V of a Banach space is the best approximation with respect to V (see, e.g., [2]).

In practice we can comparatively easily solve problems of linear approximations. In this paper we show that a type of operators defined by means of linear approximations are continuous projections. This can be used for parameters estimation. We present the following examples in which f denotes a given function (experimental data) to be fitted by a function g using the least squares method (i.e., $\int (f - g)^2 = \min$)

1. $g = \frac{1}{ax^2 + bx + c}$; An approximation of the exact solution can be obtained solving the problem

$$f_1 = \frac{1}{f}, \quad g_1 = ax^2 + bx + c,$$

which is linear with respect to the parameters a, b, c.

2. $g = ae^{bx}$;

$$f_1 = \ln f, \quad g_1 = bx + \ln a$$

3. $g = ae^{bx} + c$;

$$f_2 = \frac{df}{dx}, \quad g_2 = by - d.$$
Solving of this problem determines \(b^0 \neq 0, d^0 \). We put \(b^0c^0 = d^0 \) and solve the problem

\[
\begin{align*}
 f_1 &= f, \\
 g_1 &= ae^{b_0x} + c^0.
\end{align*}
\]

Solving of this linear problem determines \(a^0 \). From the main theorem of this paper follows that the mapping

\[
f \mapsto a^0e^{b_0x} + c^0
\]

is a continuous projection in a space of sufficiently smooth functions.

Parameters estimations of such types were used in optimization programs package OPTIPACK [3] which was developed in Institute of Physical Metallurgy Computing Department of Czechoslovak Academy of Sciences.

Let \(R \) be a normed space, \(V \subseteq S \subseteq R \). Then a mapping \(E \) from \(S \) onto \(V \) is a continuous projection from \(S \) onto \(V \) iff for every \(z \in V \) the following condition holds

\[
\lim_{\| y - z \| \to 0} \| E(y) - z \| = 0
\]

i.e., for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for \(y \in S \) satisfying \(\| y - z \| < \delta \) it holds \(\| E(y) - z \| < \varepsilon \).

2. Preliminary Lemmas

Notations. Throughout the following text we shall use the symbol \(R \) for a normed linear space over the field \(T \) of all real numbers. The norm in \(R \) is denoted by \(\| . \| \).

Further we shall consider the norm \([.] \) in \(T^n \) defined by

\[
[(a_1, \ldots, a_n)] = \max \{ |a_1|, \ldots, |a_n| \}.
\]

For \(y_1, \ldots, y_n, y_0 \in R \) and \(\delta > 0 \) we put

\[
\langle y_1, \ldots, y_n, y_0, \delta \rangle = \{(a_1, \ldots, a_n) \in T^n; \| a_1y_1 + \ldots + a_ny_n + y_0 \| < \delta \}.
\]

Lemma 1. \(\langle y_1, \ldots, y_n, 0, \delta \rangle \) is a convex subset of \(T^n \) which is bounded iff \(y_1, \ldots, y_n \) are linearly independent.

Notation. For the sake of simplicity we shall use the following notation:

\[
\sup \langle y_1, \ldots, y_n, y_0, \delta \rangle = \sup \{ [x]; x \in \langle y_1, \ldots, y_n, y_0, \delta \rangle \}.
\]

If \(V \) is a finite-dimensional subspace of \(R \) and \(x \in R \), we denote

\[
\varrho_v(x) = \min_{y \in V} \| y - x \|
\]

Lemma 2. Let \(y_1, \ldots, y_n \) be linearly independent elements in \(R \). Then for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
\sup \langle y_1, \ldots, y_n, 0, \delta \rangle < \varepsilon.
\]
Lemma 3. Let y_1, \ldots, y_n be linearly independent elements from \mathbb{R}, $A_1, \ldots, A_n \in \mathbb{R}$ and $\delta > 0$. Let us denote

$$A_1 = \langle y_1 + A_1, \ldots, y_n + A_n, A_0, \delta \rangle,$$
$$A_2 = \langle y_1, \ldots, y_n, 0, \delta \rangle.$$

Then for every $\varepsilon > 0$ there exists $\sigma > 0$ such that $\|A_i\| < \sigma$ for every i ($1 \leq i \leq n$) implies

$$\text{sup } A_1 - \text{sup } A_2 < \varepsilon.$$

Proof. Suppose that there exists $\varepsilon_0 > 0$ such that for every $\sigma > 0$ from $\|A_i\| \leq \sigma$ ($1 \leq i \leq n$) it follows

$$\text{sup } A_1 - \text{sup } A_2 \geq \varepsilon_0.$$

Let us denote:

$$e_k = k \frac{\varepsilon_0}{n + 2},$$
$$s_k = \text{sup } A_2 + e_k$$

for $k = 1, \ldots, n + 1$.

By our assumptions for every $\sigma > 0$ there exists $(a_1^*, \ldots, a_n^*) \in A_1$ such that

$$[(a_1^*, \ldots, a_n^*)] - \text{sup } A_2 > \varepsilon_{n+1}$$

Let us denote V_i the linear subspace generated by the set $\{y_1, \ldots, y_n\} - \{y_i\}$. Then it holds $\varrho_{V_i}(s_k y_i) \geq \delta$. Clearly, there exists $s = s_m$ satisfying

$$\varrho_{V_i}(s_m y_i) > \delta$$

for every i ($1 \leq i \leq n$).

Then from (1) it follows

$$[(a_1^*, \ldots, a_n^*)] - \text{sup } A_2 > \varepsilon_m \quad \forall \sigma > 0$$

and hence

$$s/[(a_1^*, \ldots, a_n^*)] = (\text{sup } A_2 + \varepsilon_m)/[(a_1^*, \ldots, a_n^*)] > 1.$$

We put

$$\varrho = \min \{\varrho_{V_1}(s y_1), \ldots, \varrho_{V_n}(s y_n)\}.$$

In view of (2) we have $\varrho > \delta$. Let us choose κ such that

$$0 < \kappa < \varrho - \delta.$$

Now we put $\sigma = \min (\kappa/3, \kappa/3n)$. Let $\|A_i\| < \sigma$ ($1 \leq i \leq n$) and let $(a_1^*, \ldots, a_n^*) \in A_1$ satisfying (1). Further we put

$$K = s/[(a_1^*, \ldots, a_n^*)].$$

Then it holds

$$Ka_i^* \leq s$$

211
for every i ($1 \leq i \leq n$) and in view of (3)

\begin{equation}
K < 1.
\end{equation}

Because of

\[[Ka_i^*, ..., Ka_n^*] = K[(a_i^*, ..., a_n^*)] = s, \]

we have

\[\| \sum_i Ka_i y_i \| \geq q v_j (s y_j) \geq q > \delta + \kappa, \]

wherein $a_j = [(a_1^*, ..., a_n^*)]$.

Hence

\begin{equation}
\| \sum_i a_i^* y_i \| > \frac{1}{K} (\sigma + \kappa).
\end{equation}

Further we obtain

\begin{equation}
\| \sum_i a_i^* A_i \| \leq \frac{1}{K} \sum_i Ka_i^* \| A_i \| \leq \frac{1}{K} \sum s \| A_i \| \leq \frac{1}{K} \frac{\kappa}{3}.
\end{equation}

Because of $\| A_0 \| \leq \frac{\kappa}{3}$ and using (5) we obtain

\[\| \sum_i a_i^* y_i + \sum_i a_i^* A_i + A_0 \| \geq (\delta + \kappa) \frac{1}{K} - \frac{1}{K} \frac{\kappa}{3} - \frac{\kappa}{3} > \delta + \frac{\kappa}{3} > \delta \]

contradicting the assumption $(a_1^*, ..., a_n^*) \in A_1$.

3. Main Theorem

Theorem. Let T_1 be an open subset of T^n, G_0, G_1, ..., G_m continuous mappings from T^n into R, m, n natural numbers satisfying $m + n \geq 1$ and

\[V = \{ \sum_{i=1}^m b_i G(a_1, ..., a_n) + G_0(a_1, ..., a_n); (b_1, ..., b_m) \in T^m, (a_1, ..., a_n) \in T_1 \}. \]

Suppose that there exist continuous operators F_0, F_1, ..., F_n ($F_i : R \to R$) satisfying

\[x = \sum_{i=1}^m b_i G_i(a_1, ..., a_n) + G_0(a_1, ..., a_n) \Rightarrow F_0(x) + \sum_{i=1}^n a_i F_i(x) = 0 \]

for every $(a_1, ..., a_n) \in T_1$ and for every $(b_1, ..., b_m) \in T^m$. Further suppose

1. $\{F_i(y)\}_{i=1}^n$ is linearly independent set for every $y \in V$.
2. $\{G_j(a_1, ..., a_n)\}_{j=1}^m$ is linearly independent set for every $(a_1, ..., a_n) \in T_1$.

Then there exists an open subset $S \subseteq R$ satisfying $S \supseteq V$ such that each operator $E : S \to V$ of the form

\[E(y) = \sum_{i=1}^m b_i^* G_i(a_1^*, ..., a_n^*) + G_0(a_1^*, ..., a_n^*) \]

212
with the following properties

\begin{enumerate}
 \item \(\| F_0(y) + \sum_i a_i^* F_i(y) \| = \min_{a_i^*} \| F_0(y) + \sum_i a_i^* F_i(y) \| \)
 \item \(\| G_0(a_1^*, ..., a_n^*) + \sum_i b_i^* G_i(a_1^*, ..., a_n^*) - y \| = \)
 \[= \min_{b_i^*} \| G_0(a_1^*, ..., a_n^*) + \sum_i b_i^* G_i(a_1^*, ..., a_n^*) - y \| \]
\end{enumerate}

is a continuous projection from \(S \) onto \(V \).

Now we shall prove Lemmas 4, 5, 6, from which the assertion of Theorem follows easily.

Notation. In what follows we shall use the following notation. For an arbitrarily chosen \(y \in \mathcal{R} \) we put

\[y^* = E(y) = \sum_i b_i^* G_i(a_1^*, ..., a_n^*) + G_0(a_1^*, ..., a_n^*) \in V \]

\[F_i(y) = F_i(y^*) + \Delta F_i(y). \]

Lemma 4. For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\| \Delta F_i(y) \| < \delta \) \((1 \leq i \leq n)\) implies

\[\min_{a_i^*} \| F_0(y) + \sum_i a_i^* F_i(y) \| < \varepsilon. \]

Proof. The assertion follows easily from the following relation

\[\| F_0(y^*) + \Delta F_0(y) + \sum_i a_i^* F_i(y) + \sum_i a_i^* F_i(y) \| = \| \Delta F_0(y) + \sum_i a_i^* F_i(y) \|. \]

Lemma 5. For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[\| y - y^* \| < \delta \Rightarrow [(a_1^*, ..., a_n^*) - (a_1^*, ..., a_n^*)] < \varepsilon. \]

Proof. The assertion follows easily from Lemmas 2, 3, 4, and from the continuity of operators \(F_i \).

Lemma 6. For every \(\varepsilon > 0 \) there exist \(\delta_1 > 0, \delta_2 > 0 \) such that \(\| y^* - y \| < \delta_2 \), and \([(a_1^*, ..., a_n^*) - (a_1^*, ..., a_n^*)] < \delta \) implies

\[\| G_0(a_1^*, ..., a_n^*) + \sum_i b_i^* G_i(a_1^*, ..., a_n^*) - y \| < \varepsilon. \]

Proof. Let us choose \(\delta_1 \) so that \(\{G_j(a_1, ..., a_n)\}_{j=1}^m \) is linearly independent set and every \(n \)-tuple \((a_1^*, ..., a_n^*) - (a_1^*, ..., a_n^*) \) satisfying \([(a_1^*, ..., a_n^*) - (a_1^*, ..., a_n^*)] < \delta \) belongs to \(T_1 \). Now the assertion follows easily from the relation

\[\min_{b_j} \| G_0(a_1^*, ..., a_n^*) + \sum_j b_j G_j(a_1^*, ..., a_n^*) - y \| \leq \]

\[\leq \| G_0(a_1^*, ..., a_n^*) + \sum_j b_j G_j(a_1^*, ..., a_n^*) - y \| = \]
= \| G_0(a_1^*, ..., a_n^*) + G_0(a_{1'}^*, ..., a_{n'}^*) + \sum_j b_j^* G_j(a_1^*, ..., a_n^*) +
\sum_j b_j^* G_j(a_{1'}^*, ..., a_{n'}^*) - y^* + y^* - y \| \leq
\leq \| G_0(a_1^*, ..., a_n^*) + \sum_j b_j G_j(a_1^*, ..., a_n^*) \| + \delta_2.

Proof of Theorem. Let \(\varepsilon > 0 \) be arbitrarily chosen. We chose \(\delta_1 > 0 \) and \(\delta_2 > 0 \) so that the condition (***) is satisfied. Further we choose \(\delta_3 > 0 \) in such a way that
\[\| y^* - y \| < \delta_3 \Rightarrow [(a_1^*, ..., a_n^*) - (a_1^*, ..., a_n^*)] < \delta_1 \]
(assuming Lemma 5) and put \(\delta = \min(\delta_2, \delta_3) \). Then in view of Lemma 6
\[\| y^* - y \| < \delta \Rightarrow \| E(y) - y^* \| < \varepsilon. \]

Now we put \(S = \bigcup_{y^* \in V} o_{y^*}, \) where \(o_{y^*} \) is point \(y^* \) \(\delta \)-neighbourhood constructed as above. Then \(E \) is a continuous projection from \(S \) onto \(V \), and \(S \) is an open set satisfying \(S \supseteq V \).

REFERENCES

I. Kopeček
ÚFM ČSAV
616 62 Brno, Žižkova 22
Czechoslovakia

214