Josef Kalas
Asymptotic nature of solutions of the equation $\dot{z} = f(t, z)$ with a complex valued function f

Persistent URL: http://dml.cz/dmlcz/107190

Terms of use:
© Masaryk University, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz
ASYMPTOTIC NATURE OF SOLUTIONS
OF THE EQUATION \(\dot{z} = f(t, z) \)
WITH A COMPLEX VALUED FUNCTION \(f \)

JOSEF KALAS, Brno
(Received January 24, 1983)

1. INTRODUCTION

In this paper we consider a differential equation

\[\dot{z} = G(t, z) [h(z) + g(t, z)], \]

where \(G \) is a real-valued function and \(h, g \) are complex-valued functions, \(t \) or \(z \) being a real or complex variable, respectively. The function \(h \) is assumed to be holomorphic in a simply connected region \(\Omega \) containing zero, and to satisfy the condition \(h(z) = 0 \iff z = 0 \). The right hand side of (1) will be supposed to be in a certain meaning “close” to \(h(z) \). Several authors investigated the asymptotic behaviour of the solutions of the equation (1), or of the equation (or of the corresponding system of two real equations) which is convertible into the equation of the form (1), on the condition that \(h'(0) \neq 0 \): [1 - 2], [4 - 8], [10 - 12]. However, there are only few papers, such as [3], [10], which are devoted to the differential equation convertible into the equation (1), where \(h'(0) = 0, h''(0) \neq 0 \). The aim of the present paper is to study the asymptotic nature of the solutions of (1) under the condition \(h^{(j)}(0) \neq 0, h^{(j)}(0) = 0 \) for \(j = 1, \ldots, n - 1 \), where \(n \geq 2 \) is an integer. The technique of the proofs of the results is based on the Liapunov function method with the “Liapunov-like” function \(W(z) \) defined in [9]. Although \(W(z) \) does not satisfy all the conditions usually required for Liapunov functions, it is very helpful for the investigation of the asymptotic character of the solutions of (1).

Throughout the paper we use the following notation:

- \(C \) — Set of all complex numbers
- \(N \) — Set of all positive integers
- \(I \) — Interval \([t_0, \infty)\)
- \(\overline{b} \) — Conjugate of a complex number \(b \)
Re \(b \) — Real part of a complex number \(b \)

\(C(\Gamma) \) — Class of all continuous real-valued functions defined on the set \(\Gamma \)

\(\tilde{C}(\Gamma) \) — Class of all continuous complex-valued functions defined on the set \(\Gamma \)

\(\text{Cl} \, \Gamma \) — Closure of a set \(\Gamma \subset C \)

\(\text{Int} \, \Gamma \) — Interior of a Jordan curve \(z = z(t), t \in [x, \beta] \) whose points \(z \) form a set \(\Gamma \subset C \)

\(k, \, \tilde{W}(z) \) — see [9, pp. 66–67]

\(\lambda_+, \lambda_-, \mathcal{T}^+, \mathcal{T}_-, \varphi \) — see [9, pp. 73–74].

2. MAIN RESULTS

Assume \(G \in C(I \times (\Omega - \{0\})), \, g \in \tilde{C}(I \times (\Omega - \{0\})) \).

Theorem 1. Let \(\delta \geq 0, \, \delta \leq \lambda_+ \). Suppose that

(i) for any \(\tau \geq t_0 \), the initial value problem (1), \(z(t) = 0 \), possesses the unique solution \(z \equiv 0 \);

(ii) there exists a function \(E(t) \in C[t_0, \infty] \) such that

\[
\sup_{t_0 \leq \tau \leq t < \infty} \int E(\xi) \, d\xi = \kappa < \infty,
\]

\[
\delta \, e^{\kappa} < \delta
\]

and

\[
G(t, z) \Re \left\{ k h^{(\alpha)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} \leq E(t)
\]

holds for \(t \geq t_0 \), \(z \in K(\delta, \delta) \).

If a solution \(z(t) \) of (1) satisfies

\[
z(t) \in \text{Cl} \, K(0, \gamma),
\]

\[84\]
where $t_1 \geq t_0$ and $0 < \gamma e^\eta < \theta$, then
\[z(t) \in \text{Cl} K(0, \beta) \quad \text{for} \quad t \geq t_1, \]
where $\beta = e^\xi \max [\gamma, \delta]$.

Proof. Put $M = \{t \geq t_1 : z(t) \in K(\delta, \theta)\}$. For $t \in M$ we have
\[\dot{W}(z) = G(t, z) W(z) \Re \left\{ k h^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\}, \]
where $z = z(t)$. Using (4) we get
\[\dot{W}(z(t)) \leq E(t) W(z(t)) \quad \text{for} \quad t \in M. \]

Suppose that there is a $t^* > t_1$ such that $z(t^*) \in K(\beta, \theta)$ and $z(t) \in K(0, \theta)$ for $t \in [t_1, t^*]$. Choose γ_1 so that $\beta < \gamma_1 e^\eta < W(z(t^*))$. Clearly $\delta < \gamma_1 < W(z(t^*))$, $\gamma_1 > \gamma$. Define $t_2 = \sup \{t \in [t_1, t^*] : z(t) \in \text{Cl} K(\gamma_1)\}$. The inequality (6) is equivalent to
\[\frac{d}{dt} \left\{ W(z(t)) \exp \left[- \int_{t_2}^t E(s) \, ds \right] \right\} \leq 0, \quad t \in M. \]

Integrating this inequality over $[t_2, t^*]$, we obtain
\[W(z(t^*)) \exp \left[- \int_{t_2}^{t^*} E(s) \, ds \right] - W(z(t_2)) \leq 0. \]

Using (2) and $W(z(t_2)) = \gamma_1$, we get
\[W(z(t^*)) \leq \gamma_1 \exp \left[\int_{t_2}^{t^*} E(s) \, ds \right] \leq \gamma_1 e^\eta < W(z(t^*)). \]

This contradiction implies
\[z(t) \in \text{Cl} K(0, \beta) \quad \text{for} \quad t \geq t_1. \]

Theorem 2. Let $\delta_j \geq 0$, $\theta \leq \lambda_+, s_j \in I$ for $j \in N$. Suppose that the hypothesis (i) of Theorem 1 is fulfilled and there are functions $E_j(t) \in C[t_0, \infty)$ such that:

(i) for $j \in N$, the following conditions are satisfied:
\[\int_{t_0}^\infty E_j(s) \, ds = -\infty \quad \text{whenever} \quad j \geq 2, \]
\[\sup_{s_j \leq s \leq \infty} \int_s^{t_0} E_j(\xi) \, d\xi = \kappa_j < \infty, \]
\[\delta_j e^{\kappa_j} < \theta; \]

(ii) the inequality
\[G(t, z) \Re \left\{ k h^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} \leq E_j(t) \]
holds for $t \geq s_j$, $z \in K(\delta_j, \theta)$, $j \in N$.

Denote

\[\delta = \inf_{j \in \mathbb{N}} \left[\delta_j e^{\delta_j} \right]. \]

If a solution \(z(t) \) of (1) satisfies

(11)

\[z(t_1) \in K(0, \delta e^{-\lambda t_1}) \cup \{0\}, \]

where \(t_1 \geq s_1 \), then to any \(\epsilon, \delta < \epsilon < \lambda_+ \), there is a \(T = T(\epsilon, t_1) > 0 \), independent of the solution \(z(t) \), such that

\[z(t) \in K(0, \epsilon) \cup \{0\} \]

for \(t \geq t_1 + T \).

Proof. Put \(\mathcal{M}_j = \{ t \geq s_j : z(t) \in K(\delta_j, \delta) \} \). For \(t \in \mathcal{M}_j \) we get (5), where \(z = z(t) \). This relation together with (10) yields

(12)

\[W(z(t)) \leq E_j(t) W(z(t)) \quad \text{for } t \in \mathcal{M}_j. \]

By Theorem 1 we have \(z(t) \in K(0, \delta) \cup \{0\} \) for \(t \geq t_1 \). Let \(\epsilon, \delta < \epsilon < \lambda_+ \) be given. Without restriction we may suppose that \(\epsilon < \lambda \). Choose a fixed integer \(j \geq 2 \) such that

\[\delta_j e^{\delta_j} < \epsilon. \]

Put \(\sigma = \max [s_j, t_1] \). Let \(T = T(\epsilon, t_1) > |s_j - s_1| \) be such a number that

\[\int_{s}^{t} E_j(s) \, ds < \ln \frac{\epsilon}{2\delta} \]

for \(t \geq t_1 + T \). Clearly \(t_1 + T > \sigma \).

We claim that \(z(t) \in K(0, \epsilon) \cup \{0\} \) for \(t \geq t_1 + T \). If it is not the case, there exists a \(t^* \geq t_1 + T \) for which

(13)

\[z(t^*) \notin K(0, \epsilon) \cup \{0\}. \]

Using Theorem 1 we obtain

\[z(t) \in K(\epsilon e^{-\lambda t}, \delta) \cup [K(\epsilon e^{-\lambda t}) - \{0\}] \subset K(\delta_j, \delta) \]

for \(t \in [\sigma, t^*] \). The inequality (12) is equivalent to

\[\frac{d}{dt} \left[W(z(t)) \exp \left[-\int_{\sigma}^{t} E_j(s) \, ds \right] \right] \leq 0, \quad t \in \mathcal{M}_j. \]

Integration over \([\sigma, t^*]\) yields

\[W(z(t^*)) \exp \left[-\int_{\sigma}^{t^*} E_j(s) \, ds \right] - W(z(\sigma)) \leq 0. \]

Hence

\[W(z(t^*)) \leq W(z(\sigma)) \exp \left[\int_{\sigma}^{t^*} E_j(s) \, ds \right] \leq \delta \frac{\epsilon}{2\delta} = \frac{\epsilon}{2} < \epsilon, \]

which contradicts (13) and proves \(z(t) \in K(\epsilon) \cup \{0\} \) for \(t \geq t_1 + T \).
Theorem 3. Let the assumptions of Theorem 2 be fulfilled except (7) is replaced by

\[
\int_s^{s+t} E_j(\xi) \, d\xi \to -\infty \quad \text{as} \quad t \to \infty
\]

uniformly for \(s \in [s_j, \infty) \) whenever \(j \geq 2 \).

If a solution \(z(t) \) of (1) satisfies (11), where \(t_1 \geq s_1 \), then to any \(\varepsilon, \delta < \varepsilon < \lambda_+ \), there exists a \(T = T(\varepsilon) > 0 \) independent of \(t_1 \) and of the solution \(z(t) \) such that

\[
z(t) \in K(0, \varepsilon) \cup \{0\}
\]

for \(t \geq t_1 + T \).

Proof. Because of (14) for \(j \geq 2 \) there exists a \(T = T(\varepsilon, j) > |s_j - s_1| + s_j - t_0 \) such that \(t - t_1 \geq T \) implies

\[
\int_s^{\sigma + (t - t_1 - s_j + t_0)} E_j(\xi) \, d\xi < \ln \frac{\varepsilon}{2^j} - \kappa_j.
\]

The statement follows now from the proof of Theorem 2, since

\[
\int_s^t E_j(\xi) \, d\xi = \int_s^{\sigma + (t - t_1 - s_j + t_0)} E_j(\xi) \, d\xi + \int_{\sigma + (t - t_1 - s_j + t_0)}^t E_j(\xi) \, d\xi < \ln \frac{\varepsilon}{2^j} - \kappa_j + \kappa_j = \ln \frac{\varepsilon}{2^j}
\]

and \(j \) depends only on \(\varepsilon \).

Remark 1. Let \(0 \leq \delta_j < 9 \leq \lambda_+ \), \(\sigma_j \geq t_0 \) and \(\Theta_j < 0 \) for \(j \in N \). Denote

\[
\delta = \liminf_{j \to \infty} \delta_j.
\]

Assume that \(g_1(t, z), g_2(t, z) \in C(I \times (\Omega - \{0\})) \) and define \(g(t, z) = g_1(t, z) + g_2(t, z) \). Suppose there are nonnegative functions \(F_j(t) \in C[t_0, \infty) \) such that

(15)

\[
\lim_{t \to \infty} \int_s^{t+1} F_j(s) \, ds = 0 \quad \text{for} \quad j \in N
\]

and the conditions

\[
G(t, z) \Re \left[k g_1(t, z) \frac{h^{(a)}(0)}{h(z)} \right] \leq F_j(t),
\]

\[
G(t, z) \Re \left\{ k h^{(a)}(0) \left[1 + \frac{g_2(t, z)}{h(z)} \right] \right\} \leq \Theta_j
\]

hold for \(t \geq \sigma_j, z \in K(\delta_j, \theta), j \in N \).

Then to any \(\varepsilon > 0 \) there exists a sequence \(\{s_j\}, s_j \geq \sigma_j \), such that the hypotheses (i), (ii) of Theorem 2 are fulfilled for \(E_j(t) = \Theta_j + F_j(t) \), where \(\kappa_i < \varepsilon \) and

\[
\liminf_{j \to \infty} [\delta_j e^{\kappa_j}] = \delta.
\]
Moreover,
\[\int_{s}^{s+t} F_j(\xi) \, d\xi \to -\infty \quad \text{as} \ t \to \infty \]
uniformly for \(s \in [s_f, \infty) \).

Remark 2. Notice that the condition (15) is satisfied if \(\lim_{t \to \infty} F_j(t) = 0 \) for \(j \in N \) or \(\int_{s_0}^{\infty} F_j(s) \, ds < \infty \) for \(j \in N \), where \(\alpha \geq 1 \).

Theorem 4. Let \(0 < \gamma < \lambda_+ \). Suppose that the hypothesis (i) of Theorem 1 is fulfilled. Assume
\[G(t, z) \Re \left\{ kh^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} < 0 \]
for \(t \geq t_0 \), \(z \in \mathcal{K}(\gamma) - \{0\} \).

If a solution \(z(t) \) of (1) satisfies
\[z(t_1) \in C\, \mathcal{K}(0, \gamma), \]
where \(t_1 \geq t_0 \), then \(z(t) \in \mathcal{K}(0, \gamma) \cup \{0\} \) for \(t > t_1 \).

Proof. Put \(\mathcal{M} = \{ t \geq t_1 : z(t) \in \mathcal{K}(0, \lambda_+) \} \). For \(t \in \mathcal{M} \) we get (5), where \(z = z(t) \).

If there is a \(t_2 \geq t_1 \) such that \(z(t_2) \in \mathcal{K}(\gamma) - \{0\} \), then (16) implies
\[W(z(t_2)) < 0. \]

Suppose that there exists a \(t^* > t_1 \) for which \(z(t^*) \notin \mathcal{K}(0, \gamma) \cup \{0\} \). Define \(t_3 = \inf \{ t^* > t_1 : z(t^*) \notin \mathcal{K}(0, \gamma) \cup \{0\} \} \). In view of (17) we have \(t_3 > t_1 \). Furthermore \(z(t_3) \in \mathcal{K}(\gamma) - \{0\} \), and \(z(t) \in \mathcal{K}(0, \gamma) \) holds for \(t \in (t_1, t_3) \). On the other hand, the condition (17) assures the existence of a \(t_4 \in (t_1, t_3) \) such that \(W(z(t_4)) > \gamma \). Thus our supposition is false and \(z(t) \in \mathcal{K}(0, \gamma) \cup \{0\} \) for \(t > t_1 \).

Theorem 5. Assume \(\delta \geq 0, \theta \leq \lambda_+ \). Suppose that
(i) for any \(\tau \geq t_0 \), the initial value problem (1), \(z(\tau) = 0 \), possesses the unique solution \(z \equiv 0 \);
(ii) there is an \(E(t) \in C[t_0, \infty) \) such that the conditions (2), (3) are fulfilled and
\[-G(t, z) \Re \left\{ kh^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} \leq E(t) \]
holds for \(t \geq t_0 \), \(z \in \mathcal{K}(\delta, \theta) \).

If a solution \(z(t) \) of (1) satisfies \(z(t_1) \in \mathcal{K}(\gamma) \), where \(t_1 \geq t_0 \) and \(\delta \, e^{r} < \gamma < \theta \), then \(z(t) \notin \mathcal{K}(0, \gamma \, e^{-r}) \) for all \(t \geq t_1 \) for which \(z(t) \) is defined.

Proof. In view of (5) and (18) we get
\[W(z(t)) \geq -E(t) W(z(t)) \]
for \(t \in \mathcal{M} = \{ t \geq t_1 : z(t) \in \mathcal{K}(\delta, \theta) \} \). Suppose there is a \(t^* \geq t_1 \) such that \(z(t^*) \in \mathcal{K}(\delta, \theta) \). Then
\[W(z(t^*)) \geq -E(t^*) W(z(t^*)) \]
for all \(t \geq t_1 \) for which \(z(t) \) is defined.
\(\in K(\delta, \gamma e^{-\kappa}). \) Define \(\sigma = \sup \{ t \in [t_1, t^*] : z(t) \in K(\gamma) \} \). Without loss of generality it may be assumed that \(z(t) \in K(\delta, \gamma) \) for \(t \in (\sigma, t^*) \).

The inequality (19) is equivalent to

\[
\frac{d}{dt} \{ W(z(t)) \exp \left[\int_{\sigma}^{t} E(s) \, ds \right] \} \geq 0.
\]

Integration over \([\sigma, t^*]\) yields

\[
W(z(t^*)) \exp \left[\int_{\sigma}^{t^*} E(s) \, ds \right] - W(z(\sigma)) \geq 0.
\]

Using (2) and \(W(z(\sigma)) = \gamma \) we obtain

\[
W(z(t^*)) \geq \gamma \exp \left[\int_{\sigma}^{t^*} E(s) \, ds \right] \geq \gamma e^{-\kappa} > W(z(t^*)).
\]

This contradiction proves \(z(t) \in K(0, \gamma e^{-\kappa}) \) for all \(t \geq t_1 \) for which \(z(t) \) is defined.

Theorem 6. Let \(\delta > 0, \gamma_j \leq \lambda_+ \), \(s_j \geq t_0 \) for \(j \in \mathbb{N} \). Assume that the hypothesis (i) of Theorem 5 is fulfilled and suppose there are functions \(E_j(t) \in C[t_0, \infty) \) such that:

(i) for \(j \in \mathbb{N} \) the following conditions are satisfied:

\[
\int_{t_0}^{\infty} E_j(s) \, ds = -\infty \quad \text{whenever } j \geq 2,
\]

\[
\sup_{s_j \leq s \leq \infty} \int_{s}^{t} E_j(\xi) \, d\xi = \gamma_j < \infty,
\]

\[
\delta e^{\gamma_j} \leq \gamma_j;
\]

(ii) the inequality

\[
- G(t, z) \Re \left\{ kh^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} \leq E_j(t)
\]

holds for \(t \geq s_j, \, z \in K(\delta, \gamma_j), \, j \in \mathbb{N} \).

Denote

\[
\gamma = \sup_{j \in \mathbb{N}} [\gamma_j e^{-\kappa_j}].
\]

If a solution \(z(t) \) of (1) satisfies

\[
z(t_1) \in K(\delta e^{\kappa_1}, \lambda_+) \cup \{0\},
\]

where \(t_1 \geq s_1 \), then to any \(\varepsilon, 0 < \varepsilon < \gamma \), there exists a \(T = T(\varepsilon, t_1) > 0 \), independent of \(z(t) \), such that

\[
z(t) \notin \text{Cl} K(0, \varepsilon) - \{0\}
\]

for all \(t \geq t_1 + T \) for which \(z(t) \) is defined.
Proof. Because of (21) and (5) we obtain

\begin{equation}
W(z(t)) \geq -E_j(t) W(z(t))
\end{equation}

for \(t \in M_j = \{ t \geq s_j : z(t) \in K(\delta, \delta_j) \} \). From Theorem 5 it follows that

\[z(t) \notin \text{Cl} K(0, \delta) - \{0\} \]

for all \(t \geq t_1 \) for which \(z(t) \) exists. Choose \(\varepsilon, 0 < \varepsilon < \delta \). Without loss of generality we may suppose that \(\delta < \varepsilon \). Let \(j \geq 2 \) be such a positive integer that

\[\varepsilon < \delta_j e^{-\varepsilon_j}. \]

Put \(\sigma = \max \{s_j, t_1\} \). Choose \(T = T(\varepsilon, t_1) > |s_j - s_1| \) so that

\[\int_\sigma^t E_j(s) \, ds < -\ln \frac{2\varepsilon}{\delta} \]

for \(t \geq t_1 + T \). Clearly \(t_1 + T > \sigma \).

We claim that \(z(t) \notin \text{Cl} K(0, \varepsilon) - \{0\} \) holds for all \(t \geq t_1 + T \), for which \(z(t) \) is defined. Suppose for the sake of argument that there is a \(t^* \geq t_1 + T \) such that

\begin{equation}
(24) \quad z(t^*) \in \text{Cl} K(0, \varepsilon) - \{0\}.
\end{equation}

Using Theorem 5, we get

\[z(t) \in \text{Cl} K(\delta, \varepsilon e^{\varepsilon_j}) - \bar{K}(\delta) \subset K(\delta, \delta_j) \]

for \(t \in [\sigma, t^*] \). The inequality (23) is equivalent to

\[\frac{d}{dt} \left\{ W(z(t)) \exp \left[\int_\sigma^t E_j(s) \, ds \right] \right\} = 0. \]

Integrating over \([\sigma, t^*] \), we obtain

\[W(z(t^*)) \exp \left[\int_\sigma^{t^*} E_j(s) \, ds \right] - W(z(\sigma)) \geq 0. \]

Therefore

\[W(z(t^*)) = W(z(\sigma)) \exp \left[-\int_\sigma^{t^*} E_j(s) \, ds \right] \geq \delta \frac{2\varepsilon}{\delta} = 2\varepsilon > \varepsilon. \]

Since it contradicts (24), the proof is complete.

Theorem 7. Let the assumptions of Theorem 6 be fulfilled except (7) is replaced by

\[\int_s^{s+t} E_j(\xi) \, d\xi \to -\infty \quad \text{as} \ t \to \infty \]

uniformly for \(s \in [s_j, \infty) \) whenever \(j \geq 2 \).
If a solution $z(t)$ of (1) satisfies (22), where $t_1 \geq s_1$, then to any ε, $0 < \varepsilon \leq g$, there is a $T = T(\varepsilon) > 0$, independent of t_1 and $z(t)$, such that

$$z(t) \notin \text{Cl} K(0, \varepsilon) - \{0\}$$

for all $t \geq t_1 + T$ for which $z(t)$ is defined.

Proof. The proof is essentially the same as that of Theorem 6. In view of the proof of Theorem 3, T can be chosen independently of t_1.

Remark 3. Let $0 \leq \delta < \theta_j \leq \lambda_+$, $\sigma_j \geq t_0$ and $\Theta_j < 0$ for $j \in \mathbb{N}$. Denote

$$\theta = \limsup_{j \to \infty} \theta_j.$$

Assume that $g_1(t, z)$, $g_2(t, z) \in \overline{C}(I \times (\Omega - \{0\}))$ and define $g(t, z) = g_1(t, z) + g_2(t, z)$. Suppose there are nonnegative functions $F_j(t) \in C[t_0, \infty)$ such that (15) and the conditions

$$-G(t, z) \text{Re} \left[k g_1(t, z) \frac{h^{(n)}(0)}{h(z)} \right] \leq F_j(t),$$

$$-G(t, z) \text{Re} \left\{ k h^{(n)}(0) \left[1 + \frac{g_2(t, z)}{h(z)} \right] \right\} \leq \Theta_j$$

hold for $t \geq \sigma_j$, $z \in K(\delta, \theta_j)$, $j \in \mathbb{N}$.

Then to any $\varepsilon > 0$ there exists a sequence $\{s_j\}$, $s_j \geq \sigma_j$, such that the hypotheses (i), (ii) of Theorem 6 are fulfilled for $E_j(t) = \Theta_j + F_j(t)$, where $\kappa_1 < \varepsilon$ and

$$\limsup_{j \to \infty} \left[\theta_j e^{-\kappa_j} \right] = \theta.$$

Moreover,

$$\int_{s}^{s+t} E_j(\xi) d\xi \to -\infty \quad \text{as } t \to \infty$$

uniformly for $s \in [s_j, \infty)$.

Theorem 8. Let $0 < \gamma < \lambda_+$. Suppose that the hypothesis (i) of Theorem 5 is fulfilled. Assume

$$G(t, z) \text{Re} \left\{ k h^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} > 0$$

for $t \geq t_0$, $z \in K(\gamma) - \{0\}$.

If a solution $z(t)$ of (1) satisfies

$$z(t_1) \notin K(0, \gamma),$$

where $t_1 \geq t_0$, then

$$z(t) \notin \text{Cl} K(0, \gamma) - \{0\}$$

for all $t > t_1$ for which $z(t)$ is defined.

Proof. The proof is analogous to that of Theorem 4.
Theorems 1—8 describe the behaviour of the solutions of (1) on certain subsets of \(K(0, \lambda_+) \cup \{0\} \). Analogously we can derive corresponding results (Theorems 1’—8’) describing the asymptotic behaviour of the solutions of (1) on subsets of \(K(\infty, \lambda_-) \cup \{0\} \). For clearness we formulate here the first of these theorems.

Theorem 1’. Let \(\delta \leq \infty, \beta \geq \lambda_- \). Suppose that

(i) for any \(\tau \geq t_0 \), the initial value problem (1), \(z(\tau) = 0 \), possesses the unique solution \(z \equiv 0 \);

(ii) there exists a function \(E(t) \in C[t_0, \infty) \) such that the conditions (2) and

\[\beta e^\gamma < \delta \]

are fulfilled, and (18) holds for \(t \geq t_0, \ z \in K(\delta, \beta) \).

If a solution \(z(t) \) of (1) satisfies

\[z(t_1) \in \text{Cl} \ K(\infty, \gamma), \]

where \(t_1 \geq t_0 \) and \(\beta < \gamma e^{-\kappa} < \infty \), then

\[z(t) \in \text{Cl} \ K(\infty, \beta) \quad \text{for} \ t \geq t_1, \]

where \(\beta = e^{-\kappa} \min[\gamma, \delta] \).

3. AN EXAMPLE

Suppose \(q(t, z) \in \tilde{C}(I \times C) \) and consider an equation

\[\dot{z} = z^2 q(t, z), \]

where \(q(t, z) \) satisfies locally a Lipschitz condition with respect to \(z \). Putting \(G(t, z) \equiv 1, h(z) = b(z - a) z^2, g(t, z) = [q(t, z) + b(a - z)] z^2 \), where \(a, b \in C, \ a \neq 0 \neq b \), we can write (26) in the form

\[\dot{z} = G(t, z) [h(z) + g(t, z)]. \]

From [9, Example 2] we have \(h'(z) = b(3z - 2a) z, \ h''(z) = 2b(3z - a), \ n = 2, \ W(z) = |a| |z| |z - a|^{-1} \exp \{\text{Re} [-az^{-1}]\}, \ \lambda_+ = \lambda_- = |a|, \ k = a/2. \) For \(t \geq t_0, \ z \notin \{0, a\} \), we get

\[
G(t, z) \text{Re} \left\{ k h^{(n)}(0) \left[1 + \frac{g(t, z)}{h(z)} \right] \right\} = \\
= \text{Re} \left\{ \frac{a}{2} (-2ab) \left[1 + \frac{z^2 [q(t, z) + (a - z) b]}{bz^2 (z - a)} \right] \right\} \leq \\
\leq - \text{Re} (a^2 b) + \frac{|a|^2}{|z - a|} \frac{|q(t, z) + (a - z) b|}{|z - a|}.
\]
Supposing that there is an $H(t) \in C(I)$ such that $|q(t, z) + (a - z)b| \leq H(t) |z - a|$ for $t \geq t_0$, $z \in C$, we obtain

$$G(t, z) \Re \left\{ k h'(0) \left(\frac{1 + \frac{g(t, z)}{h(z)}}{h(z)} \right) \right\} \leq -\Re (a^2 b) + |a|^2 H(t).$$

Applying Theorem 1 and Theorem 2, we get the following assertion: Let $a, b \in C$, $H(t) \in C(I)$ exist such that $b \neq 0$,

$$|q(t, z) + (a - z)b| \leq H(t) |z - a| \quad \text{for } t \geq t_0, z \in C,$$

and the function

$$|a|^2 \int_0^t H(\xi) d\xi - \Re (a^2 b) (t - s) \quad \text{is upper bounded on } t_0 \leq s \leq t < \infty.$$

Then every solution $z(t)$ of (26) satisfying

$$|z(t)| |z(t) - a|^{-1} \exp \{\Re [-az^{-1}(t)]\} = \omega < e^{-x},$$

where $t_1 \geq t_0$ and

$$\kappa = \sup_{t_0 \leq s \leq t < \infty} \{|a|^2 \int_s^t H(\xi) d\xi - \Re (a^2 b) (t - s)\},$$

is defined for all $t \geq t_1$, and

$$|z(t)| |z(t) - a|^{-1} \exp \{\Re [-az^{-1}(t)]\} \leq \omega e^x \quad (1)$$

holds for $t \geq t_1$. If, in addition,

$$\lim_{t \to \infty} [|a|^2 \int_{t_0}^t H(\xi) d\xi - \Re (a^2 b) t] = -\infty,$$

then every solution $z(t)$ of (26) satisfying (29), where $t_1 \geq t_0$ and κ is defined by (30), fulfills the condition

$$\lim_{t \to \infty} z(t) = 0.$$

Analogously, applying Theorems 5' and 6', we get the statement: If there exist $a, b \in C$, $H(t) \in C(I)$ such that $b \neq 0$ and the conditions (27), (28) are fulfilled, then each solution $z(t)$ of (26), for which

$$|z(t_1)| |z(t_1) - a|^{-1} \exp \{\Re [-az^{-1}(t_1)]\} = \omega > 1,$$

$$\Re [az(t_1)] < 0,$$

where $t_1 \geq t_0$ and κ is defined by (30), satisfies the condition

$$|z(t)| |z(t) - a|^{-1} \exp \{\Re [-az^{-1}(t)]\} \leq \omega e^x$$

or all $t \geq t_1$ for which $\Re [az(t)] < 0$. If, in addition, the condition (31) is fulfilled,
then to any solution $z(t)$ of (26) satisfying (32), where $t_1 \geq t_0$, and to any ε, $e^x < \varepsilon < \infty$ there is a $T > 0$ such that

$$|z(t)| |z(t) - a|^{-1} \exp \{\text{Re}[-a z^{-1}(t)]\} < \varepsilon$$

for all $t \geq t_1 + T$ for which $\text{Re}[\dot{az}(t)] < 0$.

Notice that the conditions (28), (29) imply $a \neq 0$, $\text{Re}(a^2 b) \geq 0$ and the condition (31) implies $\text{Re}(a^2 b) > 0$. Similarly, the conditions (32), (28) imply $a \neq 0$, $\text{Re}(a^2 b) \geq 0$.

It can be easily verified that the conditions (28) and (31) are fulfilled if $\text{Re}(a^2 b) > 0$ and there holds $\int_{t_0}^{\infty} H(s) \, ds < \infty$ or $\limsup_{t \to \infty} H(t) < |a|^{-2} \text{Re}(a^2 b)$.

Application of the rest of Theorems 1—8 and Theorems 1′—8′ yields further results describing the asymptotic behaviour of the solutions of (26).

REFERENCES

[3] Tesařová, Z.: The Riccati differential equation with complex-valued coefficients and application to the equation $x'' + P(t)x' + Q(t)x = 0$, Arch. Math. (Brno) 18 (1982), 133–143.
[8] Kalas, J.: Asymptotic behaviour of equations $\dot{z} = q(t, z) - p(t)z^2$ and $\ddot{x} = x\varphi(t, x^{-1})$, Arch. Math. (Brno) 17 (1981), 191–206.

J. Kalas
Department of Mathematics, University of J. E. Purkyně
662 95 Brno, Janáčkovo nám. 2a
Czechoslovakia