
Archivum Mathematicum

Ravi P. Agarwal
On Urabe's application of Newton's method to nonlinear boundary value problems

Archivum Mathematicum, Vol. 20 (1984), No. 3, 113--123

Persistent URL: http://dml.cz/dmlcz/107194

Terms of use:
© Masaryk University, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107194
http://project.dml.cz


ARCH. MATH. 3, SCRIPTA FAC. SCI. NAT. UJEP BRUNBNSIS 
XX; 113-124, 1984 

ON URABE'S APPLICATION 
OF NEWTON'S METHOD TO NONLINEAR 

BOUNDARY VALUE PROBLEMS*) 

AGARWAL RAVI P., Singapore 
(Received April 22, 1983) 

1. Introduction 

In this paper we shall consider following boundary value problem 

(1.1) ~~g(x,t), 

(1.2) f(x) = 0, 

where x and g(x, t) are n dimensional vectors and f(x) is an operator from C(I) 
into Rn, C(I) is the space of all real n vector functions continuous on / « [a, V\. 

We shall show that the results of Urabe [13, 14], which he calls application of 
Newton's method, can be obtained as an application of Contraction mapping 
theorem. In section 2, we begin with certain properties of square matrices and 
state Contraction mapping theorem in complete generalized norm spaces. This 
theorem is a particular case of more general result contributed by Schrdder [12] 
also see [5, 7, 8, 11]. Since it is well recognized that working with generalized norm 
spaces have qualitative as well as quantitative advantages [1—4, 7, 8, 11], our 
theorem 4.1 is more general and informative than the results obtained in [10,13,14J. 
In section 5, we shall show that the solution obtained in theorem 4.1 is infact 
isolated. In section 6, we shall consider a perturbed problem of (1.1), (1.2) arid, 
as an application of our theorem 4.1, show that the perturbation method produces 
an approximate solution within the error 0(A2). 

*) This paper was presented in the meeting on „Gewohnliche Differentialgleichungen" at Ober-
wolfach, W. Germany (March 27-April 2, 1983), also in the Department of Mathematics, Uni­
versity of J. E. PurkynS, Brno, Czechoslovakia. The financial support from the Alexander von 
Humboldt-Stiftung is thankfully acknowledged. 
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More general results than those obtained in [17,18] for the least square problems 
can be obtained as an application to our theorem 4.1 and this we shall take up 
some where else. We also remark that merely the existence and uniqueness of 
solutions of (1.1), (1.2) (even for more abstract problems) has been discussed under 
weaker conditions e.g. see [6,9 and references therein], however the results obtained 
here have practical advantage and should be called Picard's iterative methods. 

2. Fixed Point Theorem 

Throughout, we consider the inequalities between two vectors in JR" component­
wise where-as between two nxn matrices element-wise. The generalized norm 
(vector norm) space B is a linear space with norm || . || which is a mapping into Rn+ 
satisfying the properties of usual norm component-wise e.g. see [7, 11]. 

The following well known properties of matrices will be used frequently without 
further mention: 

(a) For any square matrix A, lim Am = 0 if and only if Q(A) < 1 where Q(A) 
m-+oo 

denotes the spectral radius of A. 
00 

(b) For any square matrix A, (E - Ay1 exists and (E - A)"1 = £ Am if 
m = 0 

Q(A) < 1 also if A £ 0 then (E - A)"1 .> 0. If 0 g A < B and Q(B) < 1 then 
Q(A)<L 

(c) For all square matrices A and B, Q(A + B) <* Q(A) -F Q(B). 
We shall need the following particular case of more general Contraction mapping 

theorem proved in [8, 12] also see [5]. 

Theorem 2.1. Let B be a complete generalized norm space, and let for reRn+, 
r > 0; S(x0, r) « {xe B : || x - x0 || g r}. Let T map S(x0i r) into B and 
(ct) for all x9yeS(x0ir) 

\\Tx-Ty\\£K0\\x-y\\, 

where K0 g: 0 is an n x n matrix with Q(K0) < 1 

(c2) r0 = (E - Ko)"1 II Tx0 - x0 || £ r. 
Then, 

(1) Thas a fixed point JC* in S(x0, r0) 
(2) x* is the unique fixed point of Tin S(x09 r), 
(3) the sequence {jcm} defined by 

*»+i = TxM9 m « 0 , 1, ... 
converges to JC*, with 

|| x* - x J S Kr0 
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(4) for any xeS(x09r0) 

x* =-= lim Tmx 
яi-*ao 

(5) any sequence {xm} such that xm e S(xm> K0r0), m = 0, 1, ... converges to x*. 

Remark. Most of his [15, 16] component-wise study can be deduced from 
theorem 2.1 and this we shall take up in our later papers. 

3. Linear Problems 

Here, we consider the differential system 

(3.1) ^jr~A(t)x(t) + <p(t) 

together with 

(3.2) L [ x ] « e , 

where A(t) is an n x n continuous matrix on I, (p(t) is an n x 1 continuous vector 
on IyL is a linear operator mapping C(I) into Rn i.e. eeR*. 

In what follows, we shall denote Y(t) as the fundamental matrix solution* of the 
homogeneous system 

(3.3) ^~A(t)y(t)9 

such that Y(a) = E (unit matrix). G = L[Y(t)\ represents the nxn matrix whose 
column vectors are L[y(<)(0]> - S -' S n where y{i)(t) is the i-th column vector 
of Y(t). 

Lemma 3.1. If the matrix G is non-singular then, (3.1), (3,2) has a unique solu­
tion x(t) and ctin be represented as 

(3.4) *(o - tfxiyo] + -v., w, 
where Ht is the linear operator mapping C(I) into C(1)(/) such that 

tfilXO] = Y(t) } Y-\s)<p(s)ds - Y(t)G~lL{Y(t) \ F ^ O ^ d s ] 
« « 

and H2 is the linear operator mapping R* into C(1)(7) such that 

H2[t\ « Y(t)G~le. 

Proof. Any solution of (3.1) can be expressed as 

(3-5) x(t) - r ( 0 c + 7(0 J Y~\s) q>(s) ds, 
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where c is a constant vector. The solution (3.5) satisfies (3.2) if and only if 

(3.6) L[y(0]c + L[y(OjY-1(s)fl»(s)dS] = e. 
a 

Since det G ¥* 0, from (3.6) we get 

(3.7) c = G^e-G^LlYit) J Y'x(s)qf(s)ds]. 
a 

Substituting (3.7) in (3.5) the result (3.4) follows. 

4. Existence and Uniqueness 

In what follows, we consider the generalized norm space B as C(I) and for 
x(t)e C(I), II x || = (max | xx(t) \, max | x2(t) |, ..., max | xn(t) |). In (1.1), (1.2) the 

tC/ t€l ! « / 

function g(x, t) is assumed to be continuously differentiable with respect to x 
in Rnxl and gx(x, t) represents the Jacobian matrix of g(x, t) with respect to x; 
f(x) is continuously differentiable in C(7) and fx(x) denotes the linear operator 
mapping C(I) in J?*. 

Definition 4.1. A function x(t) e C(1)(-9 is called an approximate solution of(l.l), 

(1.2) if there exist 5X and b2 nonnegative vectors such that ѓðt 

and \\f(x) || £ 82 i.e. there exists a function rj(t) and a constant vector e' such that 

~ - g(m> 0 + n(t) andf(x) L e' with \\ fj(t) || ^ 5X and || e' \\ £ 82. 

Theorem 4.1. With respect to (1A), (1.2) we assume that there exists an approximate 
solution x(t) and 

(i) there exists annxn continuous matrix A(t), t el and L a linear operator mapp­
ing C(I) into Rn such that if Y(t) is the fundamental matrix solution ofy' -= A(t)y, 
then G = L[Y(t)~\ is nonsingular, 

(ii) there exist nxn nonnegative matrices Mx and M2 such that || Hx\\ <i Mx, 
|| H2 || ^ M2, where Hx and H2 are linear operators defined in lemma 3.1, 

(iii) there exist nxn nonnegative matrices M3 and M4, and a positive vector r 
such that for all x(t)eS(x, r) = {z(t)e C(I) : || z - x \\ £ *}, || gx(x, t) L A(t) || £ 
£M3and\\fx(x)±L\\ £ M4, 

(iv) K0 = MXM3 + M2M4, Q(K0) < 1 and (E - K0)~
l (MXSX + M282) g r . 

Then, , 
(1) there exists a solution x*(t) of (1.1), (1.2) in S(x,r0), 
(2) x*(t) is the unique solution of(l.l), (1.2) in S(x, r), 
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(3) the sequence {xm(0} defined by 

xm+1(0 = ff,|X.t.(0,0 - At)xm(ty] + H2iL{xm] ±f(xj], 

(4.1) x0(0 = x(t); m = 0,l, ... 

converges to x*(t), with 
|| x* - xm || = KZr0, 

(4) for x0(0 = XO 6 S(x> ro) the iterative process (4.1) converges to x*(t), 
(5) any sequence {xm(0} such that xm(t)e S(xm, K0r0), m = 0,1, ... converges 

to x*(t), 
where r0 = (E — K0)~

l || x. — x ||. 
Proof. We note that the approximate solution x(t) can be expressed as 

(4.2) x(0 - ff.Cg(X(0, 0 + «7(0 " Mt) *(0] + H2lL{x] ± f(x) T <J. 

Next, we define an operator T : S(x, r) ~* B as follows 

(4.3) 3X0 = *ilX*(0, 0 - -4(0 XO] + # 2 M > ] ± /(*)]• 

Obviously any fixed point of (4.3) is a solution of (1.1), (1.2). 
For all x(0, XO e S(x, r), we find from (4.3) 

3X0 - Ty(t) = 

= Hdg(x(t), t) - g(y(t), t) - A(t)(x(t) - y(t))] + H2[L[x - y] ± (f(x) -f(y))] = 

= H.[} [g*(X0 + oxO-O) - XO). 0 " Mt)l(XO - XO)d6>.] + 
0 

+ H2J [L ± L(x + 02(y - x))] [x - y\ d©2] 
o 

and hence, from (ii) and (iii) and the fact that x(t) + 0t(y(t) - x(t)) e S($, r)I 
* = 1, 2 we obtain 

\\Tx-Ty\\ g (M,M3 + M2M4) || x - y || = .K0II*- y|L 

Also, from (4.2) and (4.3), we get 

Tx(t) - x(t) = Tx0(t) - x0(t) - /^[-iKO] + H2[±f\ 

and hence from (ii) and the definition 4.1 it follows that 

(4.4) II Tx0 - x0 || £ MtSx + M2S2 

of from (iv) 
r0~(E-Koy

t\\Tx0-x0\\£r. 

Thus, the conditions of theorem 2.1 are satisfied and the conclusions (1)—(5) 
follow. 
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Remark. From the conclusion (3) and (4.4), we obtain 

(4.5) 

Also, since 

we obtain 

** - x H £ r0 = (E - Ko)-1 || *i - *o II § 

£ ( £ - Koy
t(MlSl + M282). 

dx* dx . . . , - „\ , . 
~ďT ~ ~ď7 = g ( x ' ř ) ~ g(x' ° ~ m = 

= í [gx(** + &i.x - x»), 0](** - * ) d e - »?(0. 
o 

dx» dx 
dí d( £ M5 H x * - x H + || ifCO II £ 

£ MS(E - tfo)-1 (Ml81 + M2d2) + 6lf 

where Ms is an n x n nonnegative matrix such that || gx(x, t) \\ § Ms for all (x, 0 e 
eS(5c,r)xL 

5. Isolated Solution 

Definition 5.1. Any solution jc(t) e C(1)(/) o/ (1.1), (1.2) Will be called isolated 
' / /»(*) [F(0] & nonsingular, where Y(t) is the fundamental matrix solution of 

Theorem 5.1. Let Jc(t) be an isolated solution o/(l.l), (1.2). Then, there is no other 
solution in a sufficiently small neighborhood of X(t). 

Proof. Let Y(t) be as in definition 5.1, for this Y(t) there exists M* and M*, 
nxn nonnegative matrices such that || H% || S M* and || H2 || £ M*, where Ht 

and .fif2
 a r e defined in lemma 3.1. Since gx(x, t) and fx(x) are continuous, there 

exists a positive vector rx such that for all x(t) e S($, rt), || gx(x, t) — gx(%91) \\ £ 
£ M6, ||/c(x) - /*(*) II £ M7, where M6 and M7 are nxn positive matrices 
such that Q(MtM6 + M*M7) < 1. 

Let i*(r) be any other solution of (1.1), (1.2) in S(x, r t). Then, for x(t) ==- *(t) -
-£*(*), we find 

(5.1) 

and 

(5.2) 

dř ** g(*(0, 0 - g(**(0, o - í ыm + *i*(0, 0] *(0 dв. -
0 

o - /(*) - /(**) - j ш* + ø2x)] м dв2. 
0 
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From lemma 3.1, the system (5.1), (5.2) can be written as 

(5.3) x(0 = Ht[J [g,(*(0 + 0!X(O, 0 - g»(*(0, 0] *(0 d^il + 
0 

+ tf *[} - [/-(* + 02x) - L(*)] W de2]. 
0 

Since jc(0 + &ix(t)e S(St9 rt% i = 1, 2; equation (5.3) provides 

|| x || g (Af*Af6 + M*M,) || x II 

and from Q(M\M6 + M*M7) < 1, we get 

ll * ll s o 
which is a contradiction and hence £(0 = $*(t). 

Theorem 5.2. The solution x*(t) of (1.1), (1.2) obtained in theorem 4.1 is 
isolated solution. 

Proof. If not, then there exists a nonzero vector p such that/*(**) [*T0]Ps 

where Y(t) is the fundamental matrix solution of ---—- -= gx(x*9 0y-
at 

We define z(t) == Y(t)p, then 

(5.4) ^ « g , ( x * , 0 4 0 , 

(5.5) /,(**) [ * ] = 0 . 

From lemma 3.1, the system (5.4), (5.5) is equivalent to 

-K0 - Htlgx(x*(t)9t)z(t) - ^(r)z(r)] +fH2iViz] ±/*(**)[*]]. 

Thus, from (ii) —(iv) of theorem 4.1 

|| z 1 S (M,M3 + M2MA) || z || - K0 II z || 
or 

11*11 £ 0 

which implies z(0 s 0 or F(/)p s 0. Since Y(t) is nonsingular we find p 
This contradiction proves that x*(t) is isolated. 

6. Application to the Perturbation Method 

Here, we shall consider the boundary value problem 

(6.1) ^~~i(x9t) + Xh(x9t9X)9 



(6.2) f(x) + X d(x9 X) = 0 

as the perturbed problem of (1.1), (1.2). In (6.1) and (6.2) A is a small parameter 
such that X G A — {X : \ X\ S Q}> Q > 0; h(x919 X) is continuously differentiable 
with respect to x in RnxIxA and hx(x919 X) represents the Jacobian matrix of 
h(x919 X) with respect to x; d(x9 X) is continuously differentiable in C(I)xA and 
dx(x9 X) denotes the linear operator mapping C(I) x A into Rn. 

Let x(t) be an isolated solution of (1.1), (1.2) and for X ̂  0 we seek the ap­
proximate solution x(t) of (6.1), (6.2) of the form x = x — Xu. We substitute this 
in (6.1), (6.2) and neglect the terms higher than order one in X and obtain 

(6.3) ^=gx^t)u„h{x,t,G), 

(6.4) * ' /,(*) M = d(x, 0). 

Since x(t) is isolated G -= fx(x) [Y(0] is nonsingular and from lemma 3.1, (6.3) 
(6.4) is equivalent to 

(6.5) u(t) = ^ [ - ^ ( O , t, 0)] + #2[d(Jc, 0)] 

and hence 
x(t) - x(t) - Wil~h(x(t), t, 0)] + H2{d(x, 0)]). 

Next, for this approximate solution x(t) of (6.1), (6.2) we shall show that the 
conditions of theorem 4.1 are satisfied. For this, we take .4(0 = gx(x91)9 L = fx(x) 
so that condition (i) is satisfied. As in the proof of theorem 5.1, we have M* 
and M* such that || Ht \\ ̂  M*, || H2 \\ ̂  M* so condition (ii) is also satisfied. 

Let <53 and <54 be nonnegative vectors such that || h(Sc(t)919 0) || <g 53, || d(x9 0) || <£ 
S 54 . Then, from (6.5) it follows that 

|| ii(0 II SM*d3 + M*St~S5. 

Next, let rx be the positive vector as in theorem 5.1, we choose r2 a positive vector 
and X so that 

(6.6) r2 + \X\55Srx. 

Let x(t) € S(Jc, r2), then we find 

\\x-~x\\<\\x-x\\ + \\x-x\\<,r2 + \X\55Sri 

and hence S(x9 r2) £ S(Jc, r^. As in the proof of theorem 5.1 for all x(t)sS(x, r2), 
II Zx(x, t) - gx(x, 0 II £ M69 || fx(x) - /,(*) II sS M7. Further, Ax(x, r, A) and 
dx(x, A) are continuous* there exists nxn nonnegative matrices M8 and M9 such 
that for all JC(0 e S(x9 rt)9 t G / and A e ,4, || /*,(*, t, A) || ^ M8 and |j dx(x, A) || £ 
^ M9. Thus, for all x(t) e S(x9 r2), t e /, A G Al we have 

|| gx(x9 0 + AAx(x, t, A) - gx(x9 0 II £ M6 + | A | M8 
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and 
|| fx(x) + X dx(x, X) - fx(x) || < M7 + | A | M9 

so condition (iii) is also satisfied in S(x, r2). In condition (iv) we need Q(KQ) < 1, 
i.e. 

Q(M*M6 + I A I M*Mt + M*M7 + | A | M*M9) - Q(K$ < 1. 
(6.7) 
In theorem 5.1, Q(M*M6 + M*M7) < 1, and hence (6.7) is satisfied provided 

1 - Q(M*M6 + M*Mi) (6.8) | A | < 
Q(M*MS + M*2M9) 

Next, we assume that for all x(t) e S(x, r,), te I and A e A, the following holds 

|| h(x, t, X) - h(x, t, 0) || < | A | S6 

and 
d(x,X) - d(x, 0) || < \X\Ô7, 

where S6 and 57 are nonnegative vectors. 
An easy computation shows that 

dx * 
---- - g(*, t) - Xh(x, f, A) = A í [gx(x - Ø̂ Aм, 0 - gx(x, 0] « dØ t -

o 
dř 

- X[h(x - Aи, t, X) - h(x - Xu, t, 0)] + A2 J hx(x - 2Xu, t, 0) u d 0 2 . 

Since x — 6>fK e 5(Jc, rt)9 we find 

dx 
- j- - g(*> 0 - Ж*> ř» ^) (6.9) 

Similarly, we obtain 

<|A |M 6 <5 5 +|A | 2«56 + |A| 2 M 8 S 5 . 

(6.10) 

|| f(x) + X d(x, X) || = || - A f [/x(* - otA«) - fx(x)-] u do. + 
0 

1 

+ A[d(Jt - Au, 0) - d(x - ku, 0) | - A2 J dx(# - 02ku, 0) u d02 || £ 
o 

ú\k\Mn85 + |A|2<57 + |A|2M8<55. 
If (6.8) is satisfied, we have Q(KQ) < 1 and hence (£ - K6V1 exists and non-

negative. Thus, the second part of condition (iv) i.e. (E - K0)'
1(Ml81 + Af252) ^ 

g r is satisfied provided 

(6.П) rt = | A|(E - K^)-l(Kk

08s + \X\(M*d6 + M*257)) < r2 

Thus, we see that if | A"| < Q and if (6.6), (6.8) and (6.11) are satisfied (which is 
always the case if | k | is sufficiently small) the conditions of theorem 4.1 for the 
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system (6.1), (6.2) with this approximate solution x(t) are satisfied and hence, 
all the (1)~(5) conclusions of theorem 4.1 for this problem also follow. 

If we further assume that for all x(t) e S(X, rt) and t e J, || gx(xf t)-gx($, t) || S 
& Cx || x - 5t || and || fx(x) - fx(X) || g C2 || x - St || where Cx and C2 are 
constant 3rd order tensor with nonnegative components, then the right side of (6.9) 

can be replaced by \X \2 (— CtSs + S5 . 8€ + M8S5} and of (6.10) by by L A | * ( y C , « 5 + 55 <5« + M855) 

U | 2 ( y C 2 5 5 . 5 5 + <57 + M955y 

With this replacement (6.11) takes the form 

\X\\E-K^yi(YC1S5.S5 + S6 + M985 + ̂ C2S5.S5 + ST + M9d5\^r2. 

Hence, if x*(t) is the solution of (6.1), (6.2), we find from inequality (4.5) that 

|| x*(t) - x(t) || ^ r** 

i.e. the perturbation method produces an approximate solution within the error 

oa2). 
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