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FIXED POINT CHARACTERIZATION 
OF COMPLETENESS ON LATTICES 

FOR RELATIVELY ISOTONE MAPPINGS 

Jlftf KLIMES, Brno 
(Received April 25, 1983) 

0. Introduction 

In this paper we present theorems about fixed points of mappings of partially 
ordered sets (posets) and derive a new characterization of completeness for lattices. 

This paper is organized as follows. In the first section we derive our basic tool 
the fixed point theorem for relatively isotone mappings of a complete lattice into 
itself. Without appealing to the Axiom of choice or its equivalent we also prove 
the fixed point theorem for chain complete posets (partially ordered sets in which 
every chain has a supremum). In the second section we discuss the relationship v 

between the completeness in lattices and the chain completeness in semiuniform 
posets, respectively, and the existence of fixed points of selfmappings. We prove, 
using the fixed point theory, that lattices, having a fixed point for a selfmapping 
of a certain kind, ire complete lattices. We also present a related characterization 
of a chain completeness in semiuniform posets in terms of the fixed points. 

We begin with some definitions and notation from the theory of partially ordered 
sets and from the theory of sets, which will be used throughout the paper. The 
poset denotes a partially ordered set (i.e. k set with a reflexive, antisymmetric and 
transitive relation ^ ) , 0 and 1 being its least and greatest elements (if they exist), 
respectively. Let S be a subset of a poset P. An element x of P is an upper (lower) 
bound of S if s <J x (s 2> x) for all s in S. The terms the least upper bound and the 
greatest lower bound will be abbreviated to sup and inf, respectively. Let S be 
a subset of a poset P and let S* denote the set of all upper bounds of 5 and S+ 

the set of all lower bounds of 5. In particular 0* = P. A subset S of a poset P 
is updirected provided every pair of elements in S has an upper bound in S. Dually, 
we call S downdirected if every pair of elements in S has a lower bound in S. 

A poset P is said to be semiuniform (see [5]) if for each chain C in P, the set C* 
is downdirected. A chain is (dually) well ordered if every nonempty subset of it 
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has a minimum (maximum) element. We will say that a poset P is chain complete 
if every chain (including the empty set) of P has a sup in P. A mapping f:P-+Q 
is called isotone if x g y implies f(x) ^ f(y) for all x9 y from P. For any mapping 
f:P-+P an element xeP is called a fixed point of / i f x =- /(x) and we write 
Fin(f) for the fixed point set. 

A poset P is said to have the fixed point property if every isotone mapping of P 
into itself has a fixed point. While the general problem of characterizing the partially 
ordered sets with the fixed point property remains unsolved a number of sufficient 
conditions as well as some necessary conditions, for this property to hold, are 
known. For lattices the fixed point property is equivalent to lattice completeness 
(Tarski [7] and Davis [4]). 

1. Some new fixed point theorems 

Tarski's classical result (see [7]) states, that the fixed point theorem holds for 
every complete lattice. We can obtain a slightly stronger theorem if isotonicity is 
weakened. 

Definition 1.1. A mapping f of a poset P into itself is called relatively isotone if 
x9yeP9 x £y9 x £ f(y), f(x) g y implies f(x) £ /(y). 

Theorem 1.2. Let L be a complete lattice and let f be a relatively isotone mapping 
ofL into itself Then f has a fixed point. 

Proof. A subset S of L will be called closed if it has the following three pro­
perties 

( l ) O e S , 
(2) x e S implies f(x) e S, 
(3) if Xc S, then sup XeS. 
There exists a closed subset of L, for example, L itself. Let T be the intersection 

of all closed subsets of L. Certainly, J is closed. By assumption, Thas a supremum, 
say u = sup T. Since Tis closed, (3) implies ueT. Applying (2), we have f(u) ^ u. 
We prove that u is a fixed point of/ 

Let us suppose the contrary, that is/(w) < u. Let R be a subset of T defined as 
R as {xe T\ x ^ /(«)}. It is evident that the set R satisfies the conditions (1) 
and (3). Let x be now an arbitrary element In R9 i.e. we have x <> u and x ^ /(«). 
As x is also in T, it holds/(x) <; w, since T satisfies (3). Hence f(x) jj /(«), a s / i s 
relatively isotone. Thus f(x) e R and (2) is also satisfied. We conclude that R is, 
closed and R is properly contained in T, in contradiction to the minimality of T. 
This makes u a fixed point off 

Since each isotone mapping of a poset P into itself is relatively isptone, we obtain, 
as an immediate consequence of the previous Theorem, the well known fixed point 
theorem by A. Tarski 
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Corollary 1.3. LetX be a complete lattice and let / b e an isotone mapping of L 
into itself. Then a fixed point of/exists. 

Remark 1.4. Unlike the isotone mapping the set Fix (/) of fixed points of a rela­
tive isotone mapping/of a given complete lattice L into itself need not form, with 
respect to the inductive partial order, a complete lattice. Further, for a commuting 
family F of relatively isotone mappings of a complete lattice*!, into itself a common 
fixed point of all mappings from Fneed not exist, which is obvious from the follow­
ing 

Example 1.5. The set of all positive integers will be denoted by N Let P « 
= {0,1, xx, x2, •••} be the poset, where 0 (1) is the smallest (greatest) element of P 
and {xlf x2, ...} is an infinite antichain. For every n € Nlet us define the mappings 
/„ from P into itself in the following way: 

/»(0) = /„(1) = fn(xt) - xn for / £ n, 
f„(xt) = xt for i > n. 

It is easy to see that F == {fn | n e N) is the commuting family of relatively 
isotone mappings of P into itself. From the definition of/„ it follows at once that 
for each n e N the set Fix (fn) of all fixed points of the mapping /„ is formed by 
incomparable elements {xn,xn+l9 . . .} . But for the set Fix(F) of common fixed 
points of all mappings /n , n e N, we have 

Fix (F)-=f) R* (/») = 0. 
fi«N 

The next theorem is the strengthening and generalization of the corresponding 
result for isotone mappings according to Abian and Brown [1] and we will 
suggest a proof without using any of the equivalent statements of the Axiom of 
Choice. 

Theorem 1.6. Let P be a chain complete poset and f be a relatively isotone mapping 
of P into itself Then f has a fixed point. 

Proof. A subset S of P will be called chain closed if it has the following three 
properties 

(l).'OeS, 
(2) if x e S, then f(x) eS , 
(3) if C is a chain in S, then sup Ce S. 
Since / : P -* P and since P is chain complete, the poset P satisfies the above 

conditions. Therefore, there exists a chain closed subset. Let T be the intersection 
of all chain closed subsets. It is easy to see that T is a chain closed subset of P. 
Since T is the smallest chain closed set, any set satysfying the above conditions 
and contained in T must be T We will make heavy use of this fact in proving 
that T is a chain. An element c in T will be called chainable if 
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(i) c is comparable with every element in T, 
(ii) if y e T and y < c, then f(y) 5g c, 

(iii) if y e T and c < y, then c <g /(y). 
There exists a chainable element in P, for example 0 is chainable. 

For an arbitrary chainable element c e T w c have by (2)/(c) e T and hence by (i) 
either c :g /(c) or /(c) <J c. We want to show that for each chainable element it 
holds c 5| /(c). Let us suppose, on the contrary, that there exists a chainable 
element d e Fsuch that /(d) < d. We will prove that the set R = {x e T | x 5g f(d)} 
is chain closed. It follows from the definition of the least element and from the 
definition of suprema, respectively, that R satisfies the conditions (1) and (3). Let x 
be in JR. Since d is chainable and x <J f(d) < d, (ii) implies f(x) <g d. Applying 
relative isotonicity, we have f(x) g f(d) and hence f(x) e R. This proves that R 
satisfies (2). Therefore R is a chain closed subset properly contained in T, and 
this contradicts the minimality of T. 

Let D be the set of all chainable elements. We have shown that d 5g f(d) for 
each deD. We assert that if de C and x e T, then either x <g d or f(d) 5g *• To 
prove this assertion, let de C and define D(d) = {xe T\ x <g d or /(d) <i x}. It 
suffices to show that Z>(d) is chain closed. Since OeT and it holds 0 5g d, (1) is 
satisfied. Let x 6 />(d). Then we have either x < d, or x == d or /(d) <S x. If x < d, 
then/(x) g d, because de D. If x = d, then/(d) <g /(JC). If/(d) g x then applying 
(iii) we have d <s /(*), because d < x. Since / is relatively isotone and d <> x, 
d <g /(*), /(<0 ^ x we have /(d) <£ /(JC). Thus in every case f(x) e D(d) and (2) is 
satisfied. Next, let C be a chain in D(d). Then either c 5g d for each c e C, in which 
case sup C 5g d, or there exists ceC such that/(d) <g c. Hence /(d) <i c 5g sup C. 
Thus sup Ce D(d) and (3) is also satisfied. We conclude that D(d) is chain closed 
and so T = D(d). 

We next assert that each element of T is chainable. We prove this by showing 
that D is chain closed. Since 0 is the least element there is no element yeP such 
that y < 0 and therefore 0 satisfies (ii) trivially. It follows immediately from the 
definition of the least element that D satisfies (i) and (iii). As we observed above, 
0 is a chainable element and therefore D satisfies (1). Furthermore, let de D and 
y e T be such that y < /(d). Since y e T = 2)(d), we have y <g d. (The inequality 
f(d) ^ y being impossible.) If y < d, the definition of D yields f(y) 5g d <J /(d). 
If ^ = d then /O) g /(d). Hence /(d) satisfies (ii). Let y e T be now such that 
/(d) < jy, then we have d g /(y), since d <g /(d) and de 2). From these inequalities 
and from the relative isotonicity of/i t follows /(d) S f(y\ so (iii) is satisfied. The 
expressions T -= D(d) and d <g /(d) involve the fact that /(d) satisfies (i). Hence 
/(d) is also chainable. 

Further, let C be a chain in D and let y e T have the property y < sup C. Since 
yeT= D(c) for each ce C, we have either y jg c for some ce C or /(c) <g j ; for 
every ceC. If the latter alternative were true, we would have sup C <g 
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^ sup {/(c) I c€ C} £y which is impossible. Thus there is some ceC such 
that y g c. If y < c, then, since c e D9 we have f(y) <* c g sup C. If y =- c, then 
>> e D and sup C e l = Z>0). As y < sup C we obtain again f(y) £ sup C. Thus 
sup C satisfies (ii). Let ye The such that sup C < y. Then c < y for each c6C. 
Hence c ^ /(>>) for each ceC9 i.e. sup C ^ /(>>). This proves that sup C satisfies 
(iii). To show that sup C satisfies also (i), let x be an arbitrary element in T. Since 
xeT as Z>(c) for every ce C, we have either x ^ c for some ce C or /(c) <£ x 
for every c e C. In the first case we have x ^ sup C and in the latter one we obtain 
sup C ^ x, since c g /(c) holds for every ceC. We conclude that sup C satisfies (i) 
and hence it is chainable. This proves that D satisfies (3). Therefore D is chain 
closed and we have T =- D. 

We conclude from the above arguments that if x e Tand y e T = D(x)9 (i) implies 
either y <L x or x gj y. Accordingly, Tis a chain. Let 1/ = sup T. Since Tis chain 
closed, (3) implies ueT. Applying (2), we have f(u) g u. On the other hand we 
have u g f(u)9 since u is chainable. Therefore u is the fixed point of/. 

As an immediate consequence of this Theorem we have the following 

Corollary 1.7. (Abian and Brown [1]) Let P be a chain complete poset and let / 
be an isotone mapping of P into itself. Then/has a fixed point. 

A brief proof of this Corollary based on Zorn's lemma may be found in Wong 
[8, Theorem 1], The preceeding Corollary, however, may be proved independently 
and without using of Axiom of Choice. A more involved proof that does not use 
any form of the Axiom of Choice is given by Abian and Brown [1, Theorem 2]. 

In Theorem 1.2 we do not need the Axiom of Choice when proving that 
{x e L I x -= f(x) } is nonempty. At the same time we do not know whether the 
fixed point property for the relatively isotone mappings in chain complete posets 
can be proved with using the Zorn's lemma. 

Example 1.8. We will show, that the set Fix (/) of fixed points of a relatively 
isotone mapping/from a chain complete poset P into itself need not form a chain 
complete poset. Further, a common fixed point for a commuting family of relatively 
isotone mappings need not exist. 

Let P = {0, 1, xl9 xl9 ...} be a poset, where 0 (1) is the smallest (greatest) 
element of P and xv g x2 ^ ... is a countable chain of type co. Let N be the set 
of all positive integers and̂  let us define the mapping fn from P into itself for all 
n e N in the following way 

/n(0) =/„(-) -/„(*,) = V for !<£/!, 

fn(*d = *i f o f ' > «• 

It can be seen from the definition of the mappings/, that F -* {/« | n e N}is the 
commuting family of relatively isotone mappings from P into itself and Fix (fn) » 
as {xn9 xn+1, ... }is not chain complete for any n e N. For the set Fix (F) of common 
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fixed points of all mappings/,, n e At, it holds 

Fix (F) = f| Fix (/B) = 0. 
neN 

2. A new characterization of completeness for lattices 

In this section we shall be concerned with the question of characterization of 
completeness for posets by fixed points. Davis [4] studied this problem for posets 
which are lattices and Markowski [6] characterized chain complete posets in terms 
of the least fixed points of isotone selfmappings. We will be especially interested 
in the characterization of completeness in lattices for relatively isotone self-
mappings. 

We believe that the Davis' result gives also the sufficient condition for com­
pleteness of lattices in the case of relatively isotone selfmappings. Let each relatively 
isotone mapping of a lattice L into itself have a fixed point. Then L is complete. 
The proof of this fact is closely related to the Davis's construction #f the fixed 
point free selfmapping of a given lattice into itself. Hence we obtain the following 
characterization of corApleteness for lattices, which is related to characterization 
by fixed points used by Tarski and Davis A lattice L is complete if and only if each 
relatively isotone mapping of L into itself has a fixed point. 

In general this characterization follows directly from the Theorem*1.2 and from 
the Theorem of Davis cited above. However, Davis' proof method does not require 
lattice operations by means of constructing a fixed point free selfmapping. Now, 
we present a fixed point characterization of completeness which shows that we 
may restrict our attention to very special relatively isotone mappings in proving 
that a lattice is complete. In the proof of the next Theorem we^present a technique 
for finding the fixed point free mapping of a given lattice into itself by the use of 
lattice operations. We need the following definition. 

Definition 2.1. A mapping f of a poset P into itself is called comparable if for 
each x in P x comparable with f(x). 

Theorem 2.2. A lattice L is complete if and only if every relatively isotone mapping 
ofL into itself which is comparable has a fixed point. 

Proof. The necessity follows from the Theorem 1.2. To prove the converse, 
assume that L i sa lattice that is not complete. Then L contains a chain C that does 
not have a supremiim. Let U be a well ordered chain cofinal with C. By Hausdorff 
Maximality Principle there is a maximal chain D in the set C* of all upper bounds 
of C. Let V be a dually well ordered chain coinitial with D. 

Observe that if there were an element x e L such that u g x <; v for all u e U 
and all v e V, then x would be an upper bound of C, and since C does not have 
a supremum, an element y e C* would have to exist with x % y, and as x A y e C* 
and x A y < x, the set D u {x A y } would be a chain in C* properly containing D, 
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and this contradicts the maximality of D. Therefore, there is no element xeL 
such that u g x ^ v for all u e U and all veV. 

We are now ready to define a relatively isotone comparable mapping that 
does not have a fixed point in L. For each x e L set 

Ux = {ueU\u&x), Vx = {vsV\x£v}. 

As we observed above, for a given xeL either Ux or Vx is nonempty. If Ux is 
nonempty, define ux to be the least element in Ux. If Ux is empty define vx to be 
the greatest element in Vx. Now for any xeL either ux % x ox x % vx. 

We define a mappingffrom L into itself according to the following prescription 

f(x) = xVux i f x £ C * , 
f(x) = x A vx if x e C*. 

Thenfis well defined and for any xeL either x < f(x) oxf(x) < x, sofis a com­
parable mapping, which does not have a fixed point. It remains only to show thatf 
is relatively isotone. 

Let x and y be elements in L with x g y, x g f(y), f(x) ^ y. If Ux is empty 
then Uy is also empty and inasmuch as Vy 2 Vx, it follows that i;x = vy and hence 
f(x) = xAvx^yAvy = f(y). If both Ux and Uy are nonempty, then again 
f(x) = xVux^yVuy = f(y), because Uy £ Ux and hence ux :g wy. Finally, 
if Ux is nonempty but Uy is empty, then ux e U, while vy e V, so that «x ^ wy. As 
y e U*, vy e U* we have y A vy e U*. Also ux ^ y Avy. From our assumption 
x ^ f(y), it follows that x V ux ^ y A vy. We conclude that f(x) ^ f0>). Let us 
remark that the case Ux empty and Uy nonempty is, with respect to our assumption 
x ^ y, impossible. Thusfis relatively isotone and the proof is complete. 

At the end of this paper we show, that the existence of fixed point for each 
relatively isotone mapping from a semiuniform poset into itself is a necessary 
and sufficient condition for this poset to be chain complete. 

Theorem 2.3. A semiuniform poset P is chain complete if and only if each relatively 
isotone mapping ofP into itself has a fixed point. 

Proof. The necessity follows from the Theorem 1.6. To prove the converse, 
assume that P is a semiuniform poset that is not chain complete. Then there exists 
a chain C in P that does not have a supremum. Let U be a well ordered chain 
cofinal with C. In C* there exists a maximal chain D. Let Kbe a dually well ordered 
chain coinitial with D. 

If there were an element xeP such that u ^ x <; v for all u e U and all v e V, 
then x would be an upper bound of C, and since C does not have a supremum, 
an element yeC* would have to exist with x $ y. As C* is down directed, a lower 
bound zeC* of the set {x, y} would have to exist such that z < x. Then the 
set D u {z} would be a chain in C* greater than D9 which yields a contradiction. 
Hence there is no element xeP such that u £ x g v for all ue U and all veV. 
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For each xeP set Ux » {ue U\ u £ *}> Vx - {ve V\ x £ v}. As we observed 
above, for a given xeP either Ux or Vx is nonempty. If Ux is nonempty, define 

f(x) = min #*, 
if Vx is nonempty, define 

/(*) = max Vx. 

Now, for any xeP either /(*) $ x or x £ /(*), so/does not have a fixed point. 
We must show that/is relatively isotone. Let x and y be elements in P with x g >>, 
^ a* /(y) and /(*) <; y. We have two possibilities, either f(x) e U or /(x) e V. 
If /(x) € 11, then /(>0 e Uy u F, since /(*) ^ y. Hence /(x) == min Ux £ /(y). 
If/(x) e K, then we have f(y) e V, because x• <£ y implies Fx £ lVy. Hence it follows 
again /(x) <j /(y). Then / is a fixed point free relatively isotone selfmapping, 
which completes the proof of the theorem. 

Remark 2.4. It can be easy seen, that the selfmapping / constructed in a proof 
of the Theorem 2.3, is even isotone. Hence we have the following: 

Corollary 2.5. A semiuniform poset P is chain complete if and only if each 
isotone mapping of P into itself has a fixed point. 

Proof. The necessity follows from the Theorem 1.6 and the sufficiency from the 
Remark 2.4 and the Theorem 2.3. 

Acknowledgement. My thanks go to Professor V. Novak for many discussions and helpful 
suggestions during the preparation of this paper. 
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