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A NOTE ON HIGHER MONOTONICITY 
PROPERTIES OF CERTAIN STURM-LIOUVILLE 

FUNCTIONS III 

R U D O L F BLASKOand MILOS HAClK, 2ilina 
(Received January 6, 1984) 

Abstract. The authors give sufficient conditions for a sequence 

x' 
W-Mfi.1 •« ( J + W ) \ fM \x dx^-> 

K 
to be n-times monotonic. Here y(x) is a non-trivial solution of an oscillatory differential equation 

(2.1) lg(x) y'(x)]' + f(x) y(x) = 0, 

f(x) > 0, g(x) > 0, f(x)e C2(a, oo), g(x)e d(a9 oo), x\, x'^, ... are consecutive zeros of z'(x\ 
where z(x) is a non-trivial solution of (2.1) which may or may not be linearly independent of y(x)> 
W(x) is a suitable function and A > — 1..-A few intermediate results are also obtained. 

Key words, /i-times monotonic function and sequence; completely monotonic function and 
sequence. 
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. Primary 34A30, 34C10, 34C20. 

1. Definitions and notations 

A function <p(x) is said to be /.-times monotonic (or monotonic of order n) 
on an interval J if 

(1.1) (-1)V°(*) = 0 i = 0, 1, ...,n; xel. 

For such a function we write q>(x)eMn(I) or (p(x)sMn(a, b) in case that /is 
an open interval (a>b). In case the strict inequality holds throughout (1.1) we 
write <p(x)eMn(I) or q>(x)eMn(a, 6). We say that <p(x) is completely monotonic 
on /if (1.1) holds for n = oo. 

A sequence {nk}kmQ denoted simple by {ptk} is said to be /i-times monotonip if 

(1.2) ( - l y ^ ^ O i = 0, l,....,n;k = 0,1,2, ... 

Here A\ik = \ik+1 — fik; A2\ik = A(A\xk\ etc. For such a sequence we write {fik} e 
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e Mn. In case the strict inequality holds throughout (1.2) we write {//*} e M*. 
{/xk} is called completely monotonic if (1.2) holds for n = oo. ' 

As usual we write [a, b) to denote the interval {x \ a ^ x < b}. q>(x) e Cn(I) 
means that <p(x) has (on J) continuous derivative of the n-th order. As usual Dx [<p(x)] 

denotes the first derivative } . 
dx 

2. New result 

Consider a differential equation 

(2.1) lg(x)y'(x)y + f(x) y(x) = 0 xe(a, oo), 

where f(x) e C2(a, oo), f(x) > 0, g(x) > 0, g(x) e CY(a, oo). 
Now if y(x) is a solution of (2.1) then the function 

(2.2) u{x) = &M 
>//(*) 

is a solution of 
(2.3) u" + F(x) u = 0 x e (a, oo), 
where 

Fr^_ /(»)•, - rex) 3rT(x)T 
W " gW 2 /(x) 4[/(x)J-

The change of variable 

<2'4> « " J " J T T ' ^ x > > °' y M e C2(a, oo), 

where the above integral is assumed to be convergent for x e (a, oo), transforms 
(2.3) into 

(2.5) i ^ . + ^ ) ^ = 0, «e(0,oo), 
d<r 

where 

>?(£) - - ^ and .*(«) =" - F ^ 3 + F(x) V4. 

Theorem 2.1* Let y(x) and z(x) be solutions of (2.1) on (a, oo), where f(x) > 0, 
f(x) 6 C3(a, oo), g(x) > 0, g(x) e Cx(a9 oo). * • . 

Suppose that for some n ;> 2 Mere ex/sttf tfMeh a function Y(x) > 0, !P(jt)e 
€ C3(a, oo) Mat *F2(x) G Mw(a, oo) and fhat functions W(x) and 

(2.6) „„{*-*» + (£ + 1 £ - £(-f)')**} 
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are positive and belong to the class Mn„2(a9 oo). Let 

0 < lim #(<*) g oo. 
JC-*CO 

Let z'(x) have consecutive zeros at x[, #2, ... o« [a, oo). rhe/i, for fixed X > — 1 
/here ho/ds 

(2.7) fjfVoO / ( X ) g ^ L ^ U M : _ 2 , 
14 nx)y/f(X) J 

Remark 2.1. If !P = 1 we obtain a slight modification of [3]. Theorem 3.3. 
Proof: Mappings (2.2) and (2.4) transform (2.1) into (2.5) where £ e(0, f(oo)) 

y'(x)g(x) 

k=l,2,... 

and ff({) = 
nx)y/m 

Now „,(*«)) - ! « • « » $ - » , « « ) 1 - W But ™der hypotheses of ,he 

theorem Dx[#(£)] e Mn_2 and !F2(JC) e Afn on (a, oo). So we have .0€(*(<J))e 
€ Mn_2(0, £(oo)). Now we can apply [4] Theorem (or [1] Theorem 2.1 with 
g(x) = 1) from which (2.7) follows immediately. 

As example we introduce the differential equation (2.8) where we can apply 
Theorem 2.1, but [3] Theorem 3.3 does not lead to any result. 

Consider the differential equation 

(2.8) (x2yy +x?*y = 0 xe (0, oo), m £ 2 

is a real value. 
2-m 

If we choose V(x) = x 4 , then for m ^ 2 we have that !P2(x) e M^O, oo). 
Further there holds 

« ( 0 = l - ( l l w 2 " 8 m + 1 2 ) • 

It is obvious that 

lim #(£) = ! 
x-+oo 

and 
r, r /̂tcxT (11m2 - 8m-f 12)m 1 # / A v 
£>*[#(0] = ^ — 6 M J , oo). 

Therefore when W(x) e Af^O, oo) then for k > — 1 we get 

y'(x)x2 | \ V , ,* 
(2.9) ( WÇx) {Xk + 1 

j WÇx) ---. я ,4̂ -
2 — m m (m —6)A m — 6 

Now if we choose W(x) = [JC
 4

 JC2 x " 2 ] A = JC"""*- , then in case '" • v A <£ 0 

we obtain fV(x) e M^(0, oo) and there holds 
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/ 

Xk+1 

(2.10) { J \y\x)\xdx}eMt. 
"- ' . 

We can see that in case X Si 0 there must be fulfilled m e [2; 6]. 

Theorem 2.2. Let the hypotheses of Theorem 2.1 be fulfilled. Moreover let 

-HKfK )fl 
be positive and belong to the class AfM_2(

a> °°)- Let x[ > a. Then 

(2.12) [z(xSV(xff]2eM:.lt fc=l,2,... 
Proof: Using ([2] Lemma 3.2 Theorem 3.2) we have for x\ > a that 

-([-(*i+i) nx'k+i)T - iz(xk) nxk)V = 

--t[^M(TK)f>-t"wr^r 
where W(x) = -f(x)Dx ( ( -7") + •—1-7- • T h e r e s u , t n o w f°ll°ws f r o m 

Theorem 2.1 with X = 2 once it is shown that FV(x) > 0, and W(x) e Mn-2(af 00). 
But it is guaranteed by (2.11). This completes the proof. 

As example again consider the equation (2.8). By easy calculation we obtain that 

n i n ( 2 w - 2 ) ( m - 2 ) ( 5 m + 2 ) ^ . w . 3 3 
(2.11) = -rz x -\-(m + l)\ , 

16 
which belongs to M^O, 00) when m ^ 2. Now all hypotheses of Theorem 2.2 are 
fulfilled, therefore (2.12) holds. 

Remark 2.2. If W ^ 1, we obtain a slight modification of [3] Theorem 4.3. 

R E F E R E N C E S 

[1] M. HaSik: A note on higher monotonicity properties of certain Sturm—Liouville functions, 
Arch. Math. (Brno) XVI (1980), 153 -160. 

[2] M. H&cTk: Some analogues for higher monotonicity of the Sonin — Butlewski—Polya theorem, 
Mathematica Slovaca 31 (1981), 291-296. 

13] L. Lorch, M. E. Muldon and P. Szego: Higher monotonicity properties of certain Sturm— 
Liouville functions IV, Canad. J. of Math., Vol. XXIV (1972), 349-368. 

[4] M. Oslej: Remark on Sturm-Liouville functions, Mathematica Slovaca, 33 (1983), 41 - 4 4 . 

R. Blasko, M. Hddik 
Katedra mate mat iky FPEDaS 
VSDS 0 

Marxa aEhgelsa 155 
OI0 882ilina 
Czechoslovakia 

204 


		webmaster@dml.cz
	2012-05-09T19:12:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




