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A PURELY NUMBER THEORETIC ATTEMPT 
TO PROVE PICARD'S THEOREMS 

ALEXANDER ABIAN 
(Received March 3, 1983) 

Abstract. In this paper a purely number-theoretic formulations for Picard's Little and Big 
theorems are given. Specifically, it is shown that Picard's Little theorem is equivalent to the 
vanishing of every term an of a sequence (an) of complex numbers where an is related to the terms 
bn and cn of two appropriate sequences (bn) and (c„) of complex numbers with vanishing w-th 
root limits of | a„ |, \ bn\ and \ cn\. Analogous formulation for Picard's Big theorem is also 
stated. 
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In 1879 and 1880 Picard proved his celebrated Little and Big Theorems which 
initiated one of the most important stages in the history of the development of the 
theory of analytic functions of a complex variable. The initial proof of Picard 
(based on modular functions) is quite intricate and does not reveal in a straight 
forward way the reasons why the machinery of his proof works. Subsequently, 
there were massive attempts to give simpler and more tangible proofs of Picard's 
Theorems by Hadamard, Borel, Schottky, Caratheodory, Bloch, Landau and 
Nevanlinna [1]. These endeavors are still continuing. However, none of these 
attempts seem to reveal the true nature of the reasons behind the proofs. More­
over, all of these proofs require several preliminary lemmas which, in their turn, 
obscure the central line of reasoning. 

In what follows we suggest a novel and purely number-theoretic approach to 
prove Picard's Theorems. We are not proving anything since we are unable to 
derive the desired conclusions from an infinite set of interrelated numbers. How­
ever, our suggestion strikes directly at the heart of the matter, and, in its purely 
number-theoretic formulation (see Theorems 1 and 2) requires no prior knowledge 
of any part of the theory of analytic functions. Indeed, our suggested approach 
reveals the true, tangible and easily comprehensible nature of Picard's Theorems. 
In fact, our Theorem 1 shows that Picard's Little Theorem is equivalent to the 
statement that if each of the limits of a certain three interrelated convergent se­
quences is equal to zero then each of these sequences is the zero sequence (i.e., 
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every term of the sequence is equal to 0). Our Theorem 2 shows that analogous 
considerations apply to the Big Theorem of Picard. 

We hope that a reader with a deep insight in number-theoretic combinatorics 
will come up with a proof of our Theorems 1 and 2, naturally without invoking 
Picard's Theorems. 

In order to motivate our formulation of Picard's Little Theorem, we first recall 
its statement and then make some observations. 

Picard's Little Theorem states that if an entire function / does not take on two 
values, say, 0 and 2 then / is a constant. Expressed in a more detailed form, we 
have: 

Picard's little theorem. Let f given by 

(1) f(z) = 1 + axz + a2z
2 + a3z

3 + ... + anz
n + ... 

be an entire function such that 

(2) f(z) # 0 and f(z) # 2 for every z 
Then 
(3) 0 = ax = a2 = a3 = ... = an = ... 

Now, let us observe that since/is entire, the radius of convergence of the power 
series appearing in (1) is oo, Thus, by Cauchy—Hadamard formula: 

(4) Hm V K l = 0 = lim VKT, 
n-*oo n~>oo 

since if the limit superior of a sequence of nonnegative terms is equal to 0 then the 
sequence converges to 0. Also, from (1) and (2) it follows that each of 

1 + axz + a2z
2 + a3z

3 + ... and —1 + axz + a2z
2 + a3z

3 + ... 

never vanishes. Consequently, each of 

(5) \ ; and 1 

1 + atz + a2z
2 + a$zz + ... — 1 + atz + a2z

2 + a3z
3 + ... 

is an entire function. Hence, each has a power series representation whose radius 
of convergence is oo. Accordingly, let 

(6) . \ = 1 + bxz + b2z
2 + b3z

3 + ... 
1 + atz + a224 + a3z + ... 

where the feg's in terms of af's are given by: 
bt + ax = 0 

b2 + btaA + a2 = 0 
63 + M i + M 2 + c3 = 0 

bn + bn^xa1 + bn„2a2 + ... + M » - i + <*n = 0 

2 
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The above equations are easily obtained by cross multiplying the two sides of the 
equation appearing in (6) and by setting the coefficients of the various powers of z 
equal to 0. 

Since, as mentioned above, the radius of convergence of the power series appear­
ing in (6) is co, we (as in the case of (4)) have: 

(8) limVlM-0. 
и-*oo 

Applying the same considerations to the second fraction appearing in (5), we 
obtain: 

(9) = - 1 + cxz + c2z
2 + c3z

3 + ..., 
— 1 + axz + a2z + a3z + ... 

where the q's in terms of at

9s are given gy: 

ct + at = 0 
c2 — cxax + a2 =-= 0 

c3 — c2ax — cxa2 + a3 = 0 

(10) cn — cn.1al — cn_2a2 — ... — cxan.x + an = 0 

Here again, we have: 

(11) l i m V K I = 0 . 
I I - * CO 

Denoting the set of all positive integers by N, from the above it immediately 
follows that Picard's Little Theorem can be equivalently stated as: 

Theorem 1. (Picard's Little Theorem). Let (an)neN and (bn)neN and (cn)HmN be 
sequences of complex numbers such that for every ne N 

(12) bn + b^.a, + bn-2a2 + ... + 6 A M + an = 0 

and 

(13) cn — cn,1ai — cn.2a2 — ... — clan^l + an = 0 

and 

(14) lim VI an \ = lim Vl K \ - lim Vl cJ - 0. 
n->oo n-*oo n-*oo 

Then 

(15) 0 = at = a2 = ... = an = ... 

Remark 1. We observe that Theorem 1, although equivalent to Picard's Little 
Theorem is a statement detached from any function-analytic considerations. It 
requires and is based only on the notion of the limit of a sequence. Indeed, 
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Theorem 1 says that if two sequences (bn) and (cn) are related to a third sequence (an) 
via (12) and (13) and jf the limit of each of the sequences (VI an \) and (\J\ bn \) 
and (Vl cn |) is equal to 0 then every term an of the sequence (an) is equal to 0. 
The latter, clearly, in view of (12) and (13) also implies that every bn and cn is also 
equal to 0. 

It seems incredible that in order to prove that (12), (13), (14) imply (15) one has 
to develop all the sophisticated machinery which is usually used in the standard 
proofs of Picard's Little Theorem. It seems almost certain that there should be 
a direct and straightforward way to prove that (12), (13), (14) imply (15). 

Next, in order to motivate our formulation of Picard's Big Theorem, we first 
recall its statement and then make some observations. 

Picard's Big Theorem states that if/ is an analytic function on a disk punctured 
at the center and if/does not take on two values, say, 0 and —1 then the center 
of the disk is either a pole or a removable singularity o f / Expressed in a more 
detailed form, we have: 

Picard's big theorem. Let f given by 

(16) /(z) = ... + - ^ + ... + -^i- + a0 + atz + ... + anzn + ... 

be a function analytic in the punctured disk 0 < | z \ < r where r is a positive real 
number. Let 

(17) f(z) 7- 0 and f(z) # —1 for every z with 0 < | z \ <r 

Then 

(18) 0 = a_P -= a-p-! = a-p-2 = ••• = a~p-n = • •- for some positive interger P. 

Now, let us observe that since / is analytic in the punctured disk given by 0 < 
< | z | < r, the radius of convergence of the series of negative powers of z appear­
ing in (16) is oo. Thus, by Cauchy—Hadamard formula we have: 

(19) l i m V l a - J = 0 - = l i m V l a - „ l 
n->co H-+00 

as in the case of (4). Moreover, since r appearing in (17) is positive, the radius of 
convergence of the series of nonnegative powers of z appearing in (16) is positive. 
Thus, by Cauchy—Hadamard formula we have: 

(20) l i m y | a J < o o . 

From (17) and (16) it follows that each of 

and 

tanz" l + £a„z" 
(21) — — and 
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is a function analytic on the punctured disk 0 < | z \ < r. Hence, each has a power 
(Laurent) series representation. Accordingly, let 

1 °° 
(22) = £ bnzn for every z with 0 < | z | < r, ' 

tanzn -
— oo 

where the î 's in terms of at
9s are given by: 

00 00 

(23) 1 = Y, atb-i and 0 = Y a^-* for every n = ±1, ±2, ±3 , ... 
— oo —oo 

The above equations are easily obtained by cross multiplying the two sides of the 
equation appearing in (22) and by setting the coefficients of the various powers of z 
equal to 0. 

From (22), as in the case of (16), in view of (19) and (20) we have: 

(24) lim VI b-я | = 0 and lim ".jl K | < co. 
л-*oo л-+oo 

Applying the same considerations to the second fraction appearing in (21), we 
obtain: 

1 " 
(25) = Y cnz" for every z with 0 < | z \ < r, 

i + £«„-" ~°° 
— 00 

where the £,'s in terms of at's are given by: 
00 00 

(26) 1 = c0 + Y atc-i and 0 = cn + Y a^-i for every n = ±1, ±2, ±3, ... 
— oo — 00 

Here again, we have: 

(27) l i m V k - J = 0 'and lim^/l cn | < oo. 
f | -*00 7I-+00 

From the above it immediately follows that Picard's Big Theorem can be equi-
valently stated as: 

Theorem 2. (Picard's Big Theorem). Let {at \ i = 0, ±1, ±2, ...} and {bt \ i = 
= 0, ±1- ±2, ...} and {ct | i = 0, ±1 , ±2, ...} be sets of complex numbers such 
that 

oo oo 

(28) 1 = Y aib-i and 0 = Y flA-» for every n = ±1, ±2, ±3 , ... 
— oo —oo 

and 
oo oo 

(29) 1 = c0 + Y aiC-i and 0 = cn + Y atCn-i for every n = ±1, ±2, ±3 , ... 



A. ABIAN 

and 

(30) lim VI « - . I - lim VI -»-. I - lim Vl c_J = 0 
л->oo n-*oo л->oo 

(31) lim VI an | < oo and lim \/| 6J < oo aиđ lim У | cn | < oo. 
и-юo 

(32) 0 -== a_p = a - p . ! = tf-p-2 = ••• — 0-p-n = ••• for some positive integer P. 

Remark 2. Let us observe again that Theorem 2 states Picard's Big Theorem 
in a form detached from any function-analytic considerations. Indeed, it says that 
if two sets {b{ \ i = 0, ± 1 , ±2, ...} and {ct / i == 0, ± 1 , ±2, ...} of complex 
numbers are related to a third set {at \ i = 0, ± 1 , ±2, ...} via (28) and (29) and 
if the related limits and limit superiors satisfy the relations given by (30) and (31) 
then all but a finite (possibly none) number of a^'s are equal to 0. 

Remark 3. Comparing the statements of Theorems 1 and 2, one realizes, in 
a rather concrete way, how enormously more complicated is the Big Theorem of 
Picard compared to the Litttle Theorem. The discrepancy is so overwhelming that 
one is almost reassured that Theorem 1 should have a rather easy proof utilizing 
our number-theoretic formulation and approach. We would like to point out also 
that the strengthwise discrepancy between the two Theorems of Picard are revealed 
in a much more lucid way by means of our number-theoretic formulation than by 
their usual formulation. 
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