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ON THE CONNECTIONS NATURALLY INDUCED 
ON THE SECOND ORDER FRAME BUNDLE 
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Abstract. All natural operators transforming every linear connection into a connection on the 
semi-holonomic second order frame bundle form a 9-parameter family. Some geometric pro­
perties of these operators are deduced. There is a unique natural operator transforming every 
symmetric linear connection into a connection without torsion on the holonomic second order 
frame bundle. 

Keywords. Linear connection, connections on the second order frame bundle, natural 
operators. 

Let HXM be the first order frame bundle (i.e. the bundle of all linear frames) 
of a manifold M and H2M or R2M be the second order frame bundle or the semi-
holonomic second order frame bundle, respectively. Further, let QHXM9 QH2M 
and 0/72Mdenote the corresponding bundles of connections. For every manifold Af, 
consider an operator AM transforming every linear connection F : M -» QHXM 
into a connection AMT : M -> QR2M on the semi-holonomic second order frame 
bundle. Such a family of operators A = {AM} is said to be a natural operator, if 
every commutative diagram on the left is transformed into a commutative diagram 
on the right 

QlPf QÍPf 
QHHi 

for every local diffeomorphism / : M -> N. In other words, if a connection T is 
transported into a connection A by a local diffeomorphism, then AT is transpoi ted 
into AA by the same local diffeomorphism. The first author deduced analytically, 
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under the assumption that one considers finite order operators only, [1], that all 
natural operators transforming every linear connection on M into a connection 
on R2M form the following 9-parameter family 

(i) / ^ = rr}fc + ( i - o n , , 
r}„ = arjkJ + brjltk + brkjtl + drklJ + er\jfk + 

+ fr\kJ + (t-c-e-d + a)rjmrz + (i-f-t- a)F}mF£ + 
+ (c + e - a) miFS + aFw,.Fr* + (c + d + e-l+t + p)rkmr]l + 

+ ( !_<-_ ,_ /?)F;mF£ + (a + f - p)rmkri + f}rmkr?j + 
+ (t-a-b-d + y)r\mri + (-c - y)rLT5 + (b + d-t- y)rmlrjk + 

+ yrlnirZv 
with constant coeficients satisfying a + b + c + d+e+f= 1. 

The basic purpose of the present paper is to study some geometric properties 
of the above operators. We first show that two basic operators of (1) can be de­
termined by two original constructions related with arbitrary fibred manifolds. 
Our Proposition 4 describes in a direct geometric way a simple system of indepen­
dent generators of (1). Then we discuss the most interesting classes of linear con­
nections such that the values of some of those generators coincide or the induced 
family of connections on H2M degenerates in a specific way. These problems lead 
frequently to some special properties of the curvatures of the connections in 
question. In the last section we (deduce that there is a unique natural operator trans­
forming every, symetric linear connection into a connection without torsion on 
H2M. 

Our considerations are in the category C00. 
1. The first author deduced, [1], that (1) can be constructed in a simple way 

from two basic operators. We now describe another constructions of both operators 
in a more general situation. We recall that a generalized connection on an arbitrary 
fibred manifold Y -» M means any smooth section F : Y -> JXY (= the first jet 
prolongation of Y). If Y is a principal bundle and F is right-invariant, we have 
a connection in the classical sense. If we want to distinguish the latter connection 
from an arbitrary generalized connection, we shall say that it is a principal connec­
tion. We first explain two geometric constructions of a generalized connection 
on the fibred manifold JXY' -> M fro pi a generalized connection F on Yand a linear 
connection A on M. 

If x* are some local coordinates on M, yp are some additional local fibre co­
ordinates on Y and yf are the induced local coordinates on JXY> then the equations 
of a generalized connection F on Y are 

(2) yf = Ff(x\ yp) ij, ... = ! , . . . , dim M, 
P, q, ... = 1, ..., dim Y—dim M. 
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The linear connection A on M can be interpreted as a map A : TM -+ JlTM with 
the following coordinate expression 

(3) ^ = Alj(x)e,x = (x% 

where £' -= dxl are the additional coordinates on TM. It is well-known that JlY -> 
-> Y is an affine bundle with the associated vector bundle VY ® r*M, where VY 
means the vertical tangent bundle of Y. Section F : Y -> J1 Y determines a point 
at each affine space, which identifies these spaces with the corresponding vector 
spaces. Hence F induces an identification Ir : JXY « VY® T*M. Construct the 
vertical prolongation VF : VY -» VJ1 Y of the map F and use the canonical 
identification VJXY & JXVY. This gives a generalized connection i^T : VY-* 
-> JXVY on VY -* My see also [3]. The coordinate expression of ^ T is (2) and 

(4, , f - ^ ^ ' , 
vy 

where rjp = dyp are the additional coordinates on VY. Further, A induces by 
duality a linear morphism A* : T*M -> JXT*M. Since (4) is linear in Y\P

9 we can 
define the tensor product 'VT ® A*, [3], which is a generalized connection on 
VY ® T*M. Then Ir transforms iTT ® A* into a connectionp(F, A) on JXY -> M 
with the coordinate expression (2) and 

(5) yfj = jJrW- F*> - 4 0 * - ^p) + 0 + - ^ 1-

On the other hand, consider the lifting map y : Y® TM -» TYof F and construct 
its first jet prolongation Jxy : JXY® JXTM -> JXTY. If we add the linear connec­
tion A:TM-+JXTM and a natural map \i: JXTY -+TJXY introduced by 
Mangiarotti and Modugno, [6], we obtain \i o Jxy o (id ® A) : JXY® TM -+ 
-> TJ1 Y. This map is linear in TM, so that it is a lifting map of a generalized 
connection q(F, A) on JXY. (This connection was constructed in [3] in another 
way by the second author, who is grateful to Marco Modugno for suggesting this 
shorter procedure.) The coordinate expression of q(P, A) is (2) and 

f)Fp r)Fp 

(6) yfj = ^ i + 44- J* + ^ F * ^ ^ > ' 
dx dyq 

Let /l denote the linear connection conjugate to A. If we compare (5) and (6) 
with the curvature form of generalized connection F, [3], we deduce. 

Proposition 1. It holds p(T, A) = q(T, A) if and only ifT is integrable. 
Every local coordinates xl on M are canonically extended into local coordinates 

x\ Xj on HXM and into local coordinates x\ x), x)k on H2M9 det jcj -̂  0, the sub-
bundle H2M c: H2M being characterized by xl

jk = xl
kj. The equations of# connec­

tion F on HXM are 
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(7) dx} = r'fc(x)x'dxk, 

where r)k differ by sign and by the order of subscripts from the classical Christoffel's 
of r (i.e. the Christoffel symbols of F as defined e.g. in [4] are —rkj). The equations 
of a connection on H2M are 

(8) dx) = r\k(x)x)dxk
9 

dx'ju = (FL(x) x]xM + r}n(x) xl
jk) dx\ 

and such a connection is reducible to H2M c H2M iffrjw = rkjl, [ l ] . 

There is a canonical identification J1H1M « #2Af over the identity of HXM9 

[5], the coordinate expression of which is xl
jk = x*.jXfc, where xl

jk are the induced 
jet coordinates on JXHXM. If we take Y = HXM9 then a direct evaluation shows 
that p(r9 A) is a principal connection on H2M « JXHXM if and only if T = A. 
This gives a natural operator/? of (1),p(T) = p(F, F), with the following coordinate 
expression 
/ Q \ pi __ ru r>i ___ p i _|_ F* F w _i_ F* F m F* F m 

W J jk ~ A jk> l jkl ~ l jk,l "+" -* mM yz "r -* jm1 <U "" l ml* j*> 

where r(
jkt - are the induced coordinates on JXQHXM. (This operator was constructed 

in another way in [2].) In the same situation, one finds easily that q(T9 A) is 
a principal connection on #2Af if and only if P = A. This gives another natural 
operator q of (1), q(T) = q(T9 f), with the following coordinate expression 

00) -T/fc = rjk9 rjkl = Tjitk + rjmrkl. 

This operator was constructed in another way by Oproiu, [7]. 
By Proposition 1, we obtain immediately. 

Proposition 2. It holds pT = qriffr is integrable. 
The second author deduced in the case of an arbitrary fibered manifold, [3], 

that q(r9 A) is an integrable connection iff both r and A are integrable. This 
implies 

Proposition 3. qT is integrable iffT is integrable. 
2. The canonical involution of semi-holonpmic 2-jets, [8], determines an 

involutive automorphism H2M --+ H2M9 (x\ xl
j9 x**) -» (x\ Xj9 xkj). This map is 

extended into an involutive automorphism i: QH2M -* QH2M9 whose coordinate 
effect consists in the exchange of the first two subscripts in rl

jkl. Denote by p or q 

the operators r -> pf or T -+ qf9 respectively. Further, write I = — F + — f 

for the classical symmetrization of linear connection F and define sT = pS and 
i?r = 9-L Hence we have 12 natural operators p,q,p,q,s,S,ip,iq,ip,iq,is,is 
transforming any linear connection into a connection on the semi-holonomic 
second order frame bundle. 
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Lemma 1. It holds s = —(p + ip + p + ip). 

Proo f. This follows easily from (9). 
Applying i to the relation of Lemma 1, we obtain s = is. 

Proposition 4. The operators p9 q,p,q, s9ip9 iq9 ip9 iq9 is generate affinely the 
9-parameter family (1). 

Proof. The family affinely generated by our operators is axp + ... + al0is 
10 

with £ at = 1. Using direct evaluation one verifies that the latter family is equi-
» = i 

valent to (1), QED. 
Let S denote the torsion tensor of a linear connection F, i.e. Sjk = rl

jk — rkJ. 
Proposition 5. It holds pT = ipT iff Vr5 = 0. 
Proof. This follows directly from (9). 
We recall that the coordinate expression of the curvature tensor (2(F) of T is 

U -7 Kjkl — -~T ^ "TT + i m*1 J* l mll /*• 

ox ox 
Lemma 2. It holds iqT = t(pT) + (\—t)qT with teR iff fH}w + R\Jk = 0, 

where R1^ is the curvature tensor of the conjugate connection T. 
Proof. By (9) and (10) we have 

(12) | J + FLIT, = t {^- + r'jrz + r)mrz - rUj^ + 

Comparing with (11) we prove our assertion. 
For t = 0 Lemma 2 implies 

Proposition 6. It holds iqT = qT ifff is integrable. 
3. If T is a symmetric linear connection, then T = f = S and Proposition 5 

implies pT = ipT9 so that all connections naturally induced on H2M by T are 
affinely generated by pT9 qT and iqT9 i.e. they form the following two-parameter 
family 
(13) ApT + BqT + (\— A — B)iqT9 A9BeR. 

Moreover, if T is also integrable, then pT = qr by Proposition 2 and qT = iqT by 
Proposition 6. Taking into account Proposition 3, we prove. 

Proposition 7. An integrable symmetric linear connection determines naturally 
a unique connection on R2M9 which is also integrable. 

Conversely, if all connections of (13) coincide, we have pT = qT9 which implies 
by Proposition 2 that T is integrable. 
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It remains to discuss under what conditions (13) is a one-parameter family. 
In this case pT # qT and iqT = tpT + (1 — t) qT, te R. By Lemma 2 the latter 
condition is equivalent to tRljkl + R\jk = 0. This gives. 

Proposition 8. Connections (13) form a one-parameter family iff tR)kl + R\jk = 0. 
4. Consider an arbitrary linear connection F. In (1) there is an 8-parameter 

family of connections over every linear connection tT + (1 —t)f, t e R. If all 
connections of each of these families coincide, we shall say that the prolongation 
of T is unique in the pencil sense. 

Lemma 3. (Generalized Bianchi identity.) It holds 
(14) Rjki + Rl

kij + Rljk + RjM + Rl
kij + S\jk = — Sl

mjSkl — S^S1^ — Sl
mlSJk. 

Proof consists in direct evaluation. 

Proposition 9, The prolongation ofT is unique in the pencil sense iff all connections 
tT + (l—t)f,'teR, are integrable. 

Proof. In general, all connections of a pencil are integrable if three connections 
of the pencil are integrable, [3]. If the prolongation fo F is unique in the 
pencil sense, it holds pT = qT, pT = qT and sF = sF, which implies 
Q(D = 0, Q(T) = 0 and Q(T) = 0. Thus, all connections tT + (l—t)f are 
integrable. Conversely, let Q(T) = Q(T) = Q(2) = 0. Then Proposition 2 gives 
pT = qT, pT = qT, so that ipT = iqT, ipT = iqT. Further, Proposition 6 implies 
qT = iqT, qT = iqT, sT = isT. Hence the family of connections naturally induced 

by T is reduced to XqT + \xqT + QST, X + \i + o = 1. Setting t = X + ~ , the 

latter family can be rewritten as 

(15) tqr + (i-t)qr + ^-(smjsZ), 

where (SmjSk^ is a tensor field on M with the indicated coordinate expression. 
In general, denoting by R)kl the curvature tensor of S, we deduce by direct evalua­
tion 

(16) 1 R)kl + y R\kl - R\kl = 1 (SmkSl + S^SZj). 

Since all T, f and S are integrable, (16) implies SmkS^ + Smlspk = 0 and Lemma 3 
gives SmjSkl = 0. Then our assertion follows from (15), QED. 

By (15), if the assumptions of Proposition 9 are satisfied, then the induced, pencil 
of connections is 
07) ^r + (i_o^r. 

5. If T is integrable, we have pT = qT, ipT = iqT, qT = iqT by Propositions 2 
and 6, so that the induced connections form a 6-parameter family. If f is also 
integrable, we obtain similarly pT = qT, ipT = iqT, qT = iqT. In this case the 
induced connections form a 3-parameter family 

26 



NATURALLY INDUCED CONNECTIONS 

(18) axqT + a2qT + a3sT + aJsT9 at + a2 + a3 + a4 = 1. 

We shall discuss under what conditions this family degenerates. If ST is an affine 
combination of qT and qT9 then qT = iqT and qT = iqT implies iST =- sT9 which 
is the case of Proposition 9. If sT ^ isT and (18) degenerates, the fact that the 
underlying connections T9 f and Z of qT9 qT and sT are different implies 

(19) isT = tqT + uqT + {\ — t — u) sT, t9usR. 

Then the underlying linear connections satisfy Z = tT + uf + (1 — t — u) Z, 
which gives u = t. Thus, 

(20) isT = tqT + tqT + (1 — 2f) s/\ 

Applying i to (20), we obtain 
(21) sT = t?F + tqT + (1 — 2r) wF. 

Since #f, <?r and sT are affinely independent, (20) and (21) imply t2 — t = 0. 
For t = 0 we obtain the case sT = isT. For / = 1 we have isT -= qT + qT — sT. 
Reformulating this expression, we prove 

Proposition 10. / / both T and f are integrable and fi(Z) # 0, then the induced 
connections form a 3-parameter family (18). This family degenerates into a two-
parameter family iff 

(22) i.iqr + qr) = ±-(sr + isr) 

6. Consider the canonical R" © lj — valued form 0 on H2M, n — dim M, 
[ l l ] , where 1,} is the Lie algebra of L\ — Gl(n, R). The coordinate expression of® 
is, [10], 
(23) o'^jdV 

where x) means the inverse matrix to xlj. The torsion form of a connection on R2M 
is defined as the covariant differential of 0 with respect to the connection, [11]. 
One finds easily that the torsion form of a connection (8) vanishes iff it holds 

V^TJ l jk — l kj' J iM i mfc-̂  yi — l jlk l ml1 jk • 

We determine all natural operators transforming every linear connection into 

a connection without torsion on H2M. We deduce by (1) and (24) t = —, a = b, 

c = e9d=f9a = c and /? -= — + y. This is a 3-parameter family. Assume further 

that T is symmetric. One finds easily that connections (13) are without torsion iff 
A -= .fl or r is integrable. The second case was discussed in Proposition 7. Now 
we can add to Proposition 7 that the unique connection naturally induced on 
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R2M is without torsion and is reducible to H2M. On the other hand, a non-
integrable symmetric linear connection determines naturally a one-parameter 
family 
(25) Apr + AqT + (1 — 2A) iqT 

of connections without torsion on R2M. One verifies directly that (25) is reducible 

to H2M iff A = Y • T h i s proves 

Proposition 11. There is a unique natural operator transforming every symmetric 
linear connection into a connection without torsion on H2M. Its coordinate expression 
is 

(26) rJk = rJk, rjki = -z-ruktl) + -r-rOT(jrfc)/ —~r l mrj k , 

where the round bracket means symmetrization. 
We remark that this operator was constructed in another way by Rybnikov, [9]. 
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