
Archivum Mathematicum

Ivan Chajda
Congruence distributivity in varieties with constants

Archivum Mathematicum, Vol. 22 (1986), No. 3, 121--124

Persistent URL: http://dml.cz/dmlcz/107253

Terms of use:
© Masaryk University, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107253
http://project.dml.cz


ARCHIVŮM MATHEMATICUM (BRNO) 
Vol. 22, No. 3 (1986) 121-124 

CONGRUENCE DISTRIBUTIVITY IN VARIETIES 
WITH CONSTANTS 

IVAN CHAJDA 
(Received February 4, 1985) 

Abstract. An algebra A with a nullary operation c is c-distributive if [c]n = [c]r for every 
three congruences <2>, !P, @ e C0/1 9?, where Q =*<P A(Sv V) and P = (0 A 0) v (0 A 5F). 
Varieties of c-distributive algebras can be characterized by a Malcev condition in binary poly
nomials. Such polynomial condition can be easy applied in varieties of semilattices with constants. 
In weakly regular varieties, the concepts of distributivity and c-distributivity coincide. It implies 
that the variety of implication algebras is distributive. 

Key words. Congruence distributivity, variety with nullary operation, weak regularity, semilattices 
implication algebras. 
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An algebra 51 is (congruence) distributive if 

* A (© V 80 = (*'A ©) V (# A ¥) 

holds for each three congruences <P, W, 0 e Con 51. A variety IT of algebras is 
distributive if each 51 elT has this property. For the sake of brevity, denote by 
Q = $ A (0 V W) and P = ($ A 0) V (4> A !P) in the whole paper. The foregoing 
property can be formulated also in the following way: 

an algebra 51 is distributive if [z]fl ~ \z]r for each element z e l 
This formulation enables us to generalize the congruence distributivity by fixing 
the element z. 

Let 51 bs an algebra with a nullary operation c. 51 is c-distributive if [c]n = [c]r 
for each three congruences $, W, 0 e Con 51. A variety y having a nullary opera
tion c in its type is c-distributive provided each 51 e ^ has this property. This 
property can be characterized by a Malcev condition: 

Theorem 1. Letybe a variety of algebras with a nullary operation c. The following 
conditions are equivalent : 

(1) y is c-distributive; 

(2) there exist binary polynomials d0(x,y), ...,dn(x,y) such that d0(x,y) = c, 
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dn(x,y) = x and df(c, y) = c for i = 0, . . . , « , d^x, c) = di+1(x, c) for 1 
cuc/i awd d^*, x) = di+1(x, x)for i odd. 

P roo f goes along the classical scheme by B. Jonsson [3]: 
(1) => (2): L e t ^ be a variety with a miliary operation c which is c-distributive. 

Let F2(x, y) be a free algebra of ^ with two free generators x, y. Clearly 

<c, x} e G(c, x) A [0(c, y) V 0(x, y)\ 

thus, by c-distributivity, also 

<c, x> G [0(c, x) A 0(c, v)] V [0(c, x) A 0(x , y)]. 

Hence, there exist elements b0, bx, ..., bn e F2(x, y) such that c = b0, x =* bH and 

<bi,bi+iye0(c,x) for j = 0, . . . , « - 1 

(*) * <&f, fei+1> e 0(c, >>) for i even 
(bi,bi + iye 0(x, y) for i odd. 

Since bieF2(x,y), there exist binary polynomials d0(x,y), ...,dn(x,y) such that 
&i = di(x, y) and (*-) implies immediately 

di(c, y) = di+1(c, y) for i = 0, . . . , « - 1 

df(x, c) = di+1(*, c) for i even 

di(x, x) = di+1(x, x) for z odd. 

(2) => (1): Let ^ be a variety with a miliary operation c satisfying the identi
ties (2). Suppose 91 e ^ , <P,W, 0 e Con %. To prove c-distributivity, it clearly 
satisfies only to prove that for each ae %, the inclusion 

<c, a> e $ A (0 V V) 
implies the relation 

<c, a> e ( * A 0 ) v (<JP A !F) = F. 

Suppose the first relationship holds. Then <c, a> e $ and there exist elements 
Co» Ci, ..., cfce 91 such that c0 = c, ck = a and 

^ - C j + ^ e © fory even 
v ' (cj,cj+1yeW for7 odd. 

By (2), we have immediately 
dt(a, Cj) $di(c, Cj) = c 

for each i = 0, ..., n andf = 0, ..., k. By the transitivity o f #, we obtain 

di(a, Cj)$di(a, cj + 1). 

Hence and by (•**) we have 
; dt{a, c0) (<P A 0 ) dt(a, cx) ($ A SO dt(a, c2) ...dt(a9 ck), 
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thus 
d{(a, c) rdt(a, a) for i = 0, ..., n. 

By (2) it implies 

c = d0(a, c) = dx(a, c) Tdx(a, a) = d2(a, a) Td7(a, c) = d2(a, c) T ... = a, 
i.e. 

<c,a>e_T. 

Example 1. Evidently, each distributive variety if with a miliary operation c 
is c-distributive. Formal polynomials dt(x, y) can be constructed from J6nssons* 
ternary polynomials t0, ..., tn by the formula: 

di(x,y) = tn_i(x, y, c). 

Then d0(x, y) = tn(x, y, c) = c, dn(x, y) = ^(x, y, c) = x and 

di(c, v) = tn_i(c, v, c) = tn_i_i(c, y, c) = di+l(c, y) for i = 0, ..., n - 1 
dt(x, c) = tn_i(x, c, c) = f„_^(x, c, c) = di+1(x, c) for i even 
d((x, x) = t„__i(x, x, c) = tn^i.^x, x, c) = di + 1(x, x) for i odd. 

The following examples show that there exist c-distributive varieties which are 
not distributive: 

Example 2. A variety *V of idempotent groupoids with zero 0 is O-distributive. 
We can put n = 2, d0(x, y) = 0, dx(x, y) = x. y, d2(x, y) = x. Then 

do(0, y) = 0, d,(0, v) = 0 . y = 0, d2(0, y) = 0 
do(*> 0) = 0 = x . 0 = dx(x, 0) (i even) 
di(x, x) = x . x = x = d2(*, ^) (i odd). 

Example 3. The variety of all join (meet) semilattices with 1 (with 0) is l-distribu-
tive (O-distributive). 

It follows directly from Example 2. 
In the next part we show how the concept of c-distributivity can be applied in 
weakly regular varieties. 

An algebra 9t with a miliary operation c is weakly regular (see [1], [2], [4]) if 
[c]0 = [c]<P implies 0 = $ for each two congruences 0, <P e Con 91. A variety "T 
with a miliary operation c is weakly regular if each %ei^ has this property. 
Clearly, every regular variety with a nullary operation is also weakly regular. 

Lemma. A variety *f with nullary operation c is weakly regular if and onlv if 
there exist binarv polynomials ql9 ..., qn such that 

[?i(*, y) = c and ...and qn(x, y) = c] o x = y. 

For the proof, see e.g. Theorem B in [5], 

123 



I. CHAJDA 

Theorem 2. Let "K be a variety with nullary operation c which is weakly regular. 
if is distributive if and only if if satisfies the condition (2) of Theorem 1. 

The proof follows immediately from Theorem 1 and the definitions of c-distri-
butivity and weak regularity. 

Remark. Theorem 2 enables us to characterize the congruence distributivity 
in weakly regular varieties by Malcev condition using binary polynomials only. 

An implication algebra (introduced by J. C. Abbott) is an algebra with one 
binary and one nullary operation, denoted by . and 1, satisfying the identities 

(a . b) . a = a 
(a.b).b = (b.a).a 
a . (b . c) = b .(a . c) 

a . a = 1. 

Corollary. A variety 'V of implicative algebras is distributive. 

Proof. Put n -a 2, qi(x, y) = x .y9 q2(x, y) = v . x. It is well known that 

(x. y = 1 and y . x = 1) if and only if x = y, 

thus, by the Lemma, if is weakly regular. Moreover, every implicative algebra is 
a join senvlattice with the greatest element 1 with respect to the induced order 

x <£ y if ond only if x . v = 1. 

By Example 3, if is 1-distributive and, by Theorem 2, if is distributive. 
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