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LEPAGEAN 2-FORMS IN HIGHER ORDER
HAMILTONIAN MECHANICS
II. INVERSE PROBLEM*

OLGA KRUPKOVA
(Received January 2,1986) -

Abstract. The theory of Lepagean 2-forms is used to formulate and investigate the inverse problem
in higher order Hamiltonian mechanics. Necessary and sufficient conditions for a system of first
order ordinary differential equations to coincide with a system of equations for Hamilton extremals
related with a system of (higher order) variational equations are found. The geometrical interpreta-
tion of the equations for Hamilton extremals in terms of a distribution is proposed and the relation
of the Hamiltonian inverse problem to the problem of *“variational integrating factors” is studied.

Key-words. Hamilton equations, regularity, inverse problem, variationality conditions, Hamilto-
nian vector field, variational integrating factors.

MS Classification. 58 F 05, 70 H 05 : '

The present paper is a continuation of paper [ 16]. We go on in the notations, num-
bering of sections, theorems, examples, and references.

8. INVERSE PROBLEM FOR THE HAMILTON EQUATIONS

In Secs. 4 and 6 the equations for Hamilton extremals associated to variational
equations were introduced. In this section we discuss the inverse problem related -
to such equations. The formulation of the problem is analogous to that in [21]
where Hamilton equations of a lagrangian were considered; the solution is based
on the theory of Lepagean 2-forms..

Theorem 9. Letne Q21 (j'(j* ' Y)) be aform. The following conditions are equivalent.

(1) n is a Hamilton form associated with a locally variational form E e Q%'(j*Y))

(2) Thereexists a2-contact form G e Q*(j*(j*~'Y)) and a Lepagean forma.e Q*(j*~'Y)
such that n + G = (m,—,)} o0t '

* The results of Sec.8 were presented at the Conference on Differential Equations and Their
Applications EQUADIFF 6, Brno, August 1985.
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0. KRUPKOVA

(3) There exists a Lepeagean form o€ Q*(j*~'Y) such that h(Ax), where A is
defined by (2.8), is a (local) lagrangian for 7.

Proof. (2) is obtained by putting i;;,G = p(i;ag) for every =,_,-vertical vector
field ¢ on j*~1Y, where oy is the Lepagean equivalent of E.

(3) is obvious since 7 + G is Lepagean and the Tonti lagrangian x of n is of the
form x = An = h(4a). '

Finally. suppose 7 be locally variational with a (local) lagrangian h(4«) and denote
by E the 1-contact part of a. Evidently A(4«) = A where 1 = AE is the Tonti lagrangian
of E. Hence using dO; = (ns_l)f,o d@; and dO; = a we obtain i;in = h(ia) for
each m,_,-vertical vector field ¢ on j*~1Y, which proves (1).

Let (V,¥), ¥ = (1,4°), 1 £ 0 < m be a fiber chart on Y, and let
s—1
8.1 n =Y H.o] Adt,
i=0
where H:, 0 i< s — l 1 £ ¢ £ m are functions on (V,_,),, be the chart ex-
pression of a form n € QY (j1(*~1Y)).

Corollary. The form (8.1) is a Hamilton form associated with a locally variational
form E € Q3 (j°Y) iff the functions H., satisfy the following relations for 1 < o,v < m:

i k
8.2 aif"— + _f}é_ =0,
a‘h,l 0474

i k k
o, oA, +Fd‘ B, _o, osiks=s-1,

oqx 0q; t _6‘11.1

s—1 aHi

8.3 H, —kzo o (‘h 1 — Qr+1) = lsiss—-1.

Moreover, E is regular iff n is regular, i.e. iff det (0H,/dq;_, ;) # O.

Proof. Let 7 be given by (8.1). The relations (8.2) ensure that # is locally variational.
Hence there exists the Lepagean equivalent o, of 5. It holds d(n:,_,a) = 0 where a
is the (m,_,), o-projection of «,, and (8.3) implies n}',_,a = E + F where

s aHﬂ v (4
(8.4) E=|H,+ ), p (gr,1 — qr+1) |@° AdYL,

k=0 ‘Ik 1
and F is 2-contact. This means that « is Lepagean, i.e. 5 is a Hamilton form associated
with (8.4). '
. The converse assertion follows from Theorem 3 and the definition of thc Hamilton
form (relations (4.4)—(4.5) and (3.4))..
The regularity of E is equivalent with the regularity of n since by (5.3) and (8.4)
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HAMILTONIAN MECHANICS. II.

i
(8.5) det( oH, ) det (F) + 0« det(aE ) = det( oH, ) +0
a‘h 1 dq, 0q5-1,1

where Fi¥ are defined by (3.20).

Remark. It is easy to show that (8.2) and (8.3) imply 0H./dq; , = Ofors S i+k <
25— 2.

A Hamilton form associated with a locally variational form E being given, there
arises a question under what conditions E is (globally) variational (the global inverse
problem). The following theorem shows that this problem has a trivial solution.

Theorem 10. Let n € Q121 ,(j*(j°~*Y)) be the Hamilton form associated with a locally
variational form E € Qy*(j°Y). n is variational iff E is variational.

Proof. Suppose n be variational. Then, according to a theorem by Anderson
and Duchamp [1], there exists a (global) lagrangian » for n defined on j!(j*~'Y).
Since 7 is a Hamilton form of E there exists a covering of j'(j*~'Y) by open sets W
and an extended lagrangian 1’ = h(©,.) on each W such that (locally) E = E,.
and % | = 2’ + h(df) for a function f defined on (r,-,),,oW. This implies that the
lagrangian x is an éxtended lagrangian and x = h(@,) where A is a (global) lagrangian
of order s for E.

The converse is obvious.

Theorem 9 and its Corollary give necessary and sufficient conditions for a system
of first order O.D.E. to be identical with a system of equations for Hamilton extremals.
However they do not answer the question whether the given system of equations
for Hamilton extremals is given in the canonical form, i.e. whether the given co-
ordinates are the Legendre coordinates of the associated locally variational form E.
We shall deal with this question now.

In what follows = : ¥ — I is a fiber manifold such that I = R is an open mterval
and Y = Ix B where B = R™ is an open ball with center at the origin. Fiber co-
ordinates on Y (resp. the associated coordinates on j*~'Y) will be denoted by (¢, g°),
1206 =m(resp. (t,47), 1 S0 <m, 0 <i=<s— 1) Recall that ¢ denotes the
integer (s/2) — 1 < ¢ < s/2.

Lemma 3. Let pX, 1 < v <m, 0 < k <5 — ¢ — 1 be functions defined on j*~'Y,
let Ee Q}'(j°Y) be a variational form. The following conditions are equivalent:

M g0 150, vEm 0sisc—1,05k<s—c—1are Legendre
" coordinates of E.

(2) It holds det (9p;/0qy) # O if s = 2c + 1, E is regular and there exists a function
H on j*=1Y such that the Lepagean equivalent oy of E is of the form

s-c-1

(8.6) aE = -—dH Adt + Z dp}A dg,
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0. KRUPKOVA

Proof. The assertion follows from Theorems 6 and 5.

Lemma 4. Let Ec Qy'(j*Y) where s =2 be a regular variational form, let
(T,Q°%...,00_,Pic"1 ..,P), 1 <0 <m be Legendre coordinates on j*~'Y
associated with E. Then the mapping j* 'Y e(T, Q% ..., 0%_,, P~ 1, ...,P) >
= (t,q°% ..., q5-1) €j* 'Y defined by

0H

8.7 t=T, q°=0 ‘17=E“_1—, Isise
£ oH ’
d 1£kLs—c—-1, 1o m,

Qs =7 Ty
e de* ops~t’
where H is the Hamilton function of E, is the inverse to the Legéndre transformation.

Proof. It is sufficient to show that (8.7) is a coordinate transformation on j*~ 'Y~
and that A.X = 1 where A (resp. Z) is the Jacobi matrix of the Legendre trans-
formation (resp. of (8.7)).

Lets = 2c + 1. Lemma 1 and 2 and Theorem 8 ensure the existence of a lagrangian
A2, = L2, dte Qi(j°*'Y) such that det (02L2;,/0q%,, 8q}) # O at each point of
j°*1Y; then the momenta and the Hamilton function of E are of the form P* =
= (fmi)i ! with (f;,), defined by (2.2), and

s—2
(8.8) H= -Lr(t)lin + ZP;Q?+1 +P§'1q:+P,ﬁq:“,
i=0

respectively, where L2, , q° and ¢°,, are considered as functions of the Legendre
coordinates. Computing dg?/d¢ we obtain that the matrix (0g7/0P¢) is regular and
inverse to (0Pi/0g?), and that

aqe
8.9 —=< =0, 0k=£ce-1
(89) op* :
holds. Using (8.9) we arrive at
oH dp* dP: odq7 OH
8.10) =—-—t-—2"%, 1ZkSc—-1, ——=05,
0k=£c-2,
oH v - 0H » dP; 9q7 <
= ’ = - ) =V é m
a :rl qt aP:. qc+l d‘ aP:

The matrix X is of the form

: oq; oq;
1 0\ op: ] " \'oP,

@11 = 1 ], J=

J (6q5c) (3q§c)
_ oP¢ OP,
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Let us introduce the following matrices: C = (C,,), N = (N,,), B = (B,,), where

(8.12) C.. = oP; 8L} _ 0Py 0P B - _OE
7 g 09, 0q. Toagly 9qr " 0gees

Obviously, detC # 0, N,, = (—1)°B,, and det N # 0 (c.f. (6.12), (5.3), (5.1)).
Computing the elements of J we obtain that J is a triangle matrix with 0 over the
diagonal and with the matrices C~! = (0*H/0P;0P;™"), N71, ..., (=1)°"!N!
the diagonal. Since A is the matrix (see (6.12), (5.3))

C

. 1 N

(8.13) A= 1%, k= S

_ K (=1)°"'N
it holds .4 = 1.

For s = 2c¢ the proof is similar; the diagonal of J is of the form (—~1)°B~!,
(=1)%*"'B~* where (—1)°B;} = 0*H/oP;™' 0P{™*, (= 1)°B,, = (—1)° 0E,{oq}, =
= aszin/aq: aq:"

Let (T,0/, P9, 1<6<m 0<i<c—-1,0<k<s—c—1 be fiber co-
ordinateés on j*~'Y, and denote by (T, Qf, P¥, Of,, P% ) the associated coordinates
on j'(j*~1Y). A form n € Q}21,4(j*(j*~'Y)) has the chart expression

c—1 s—c—1

(8.14) n=Y K.do{AdT + Y K7dP.AdT
i=0

i=0

in this chart, where K., K7 are functions defined on J'(*~'Y). Lemma 3 and (4.2)
obviously imply that a necessary condition for (8.14) to be the canonical form of
a regular Hamilton form is
s—c—1
(8.15) K,=F,—-P,, — Y RAP,,, K’=G/+0Q/,
k=c
c—-1 .
KI=Gl+ Y RYQ: + M”P;;, O0<isc-11Z¢<m,
k=0

where F., R, R%, M®,G{,0<i<c— 1,02k <S¢, 1< a,v< mare functions
nj*oly. '

Theorem 11. (1) Let s = 2c, s = 2. Let (T, Q,,P’)0<z<c—l 1s6sm
be fiber coordinates on ]2" 1y, let

(8.16) n= Z[(F: - P:;,l)in + (G + 97 1)dP a] A dT
be the chart expression of ne Q1 (j* (i~ 1Y)) nisa Hamzlton form associated
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0. KRUPKOVA

with a regular variational form E and (T, Qf, P.) are Legendre coordinates ¢of E if the
foHowing conditions are satisfied:

(a) n is variational :

(b) the functions G;_, do not depend on Pro<k<c-2
. (C) the mapping j2c—1Y3 (T’ Qdo °e Q:—h P:-l, cee Pa) - (” q.,’ et q;c—l) €
€ j2°~1Y defined by

8.17) t=T, ¢=0Q/, 0=isc-1, gqi=-G,,
o aqgﬂ dq; 99c+x_ et 0q;
q = - c GQ + c+k Fl,
erkri T oT .;, Q¢ Z, -x 0P, ¢

0§k§c—2,1~§a§m

is a coordinate transformation on j*¢~'Y
(d) in the coordinates (t, q7) the relations
dPt
(8.18) F,',-—d—t!-, 1gisc—-1, Gi=-gfy,, 0Sk=<c-2
hold.
Q Lets=2c+ 1,52 2.Let (T, 0/, P9),0<i<c—-1,0<k < ¢, 1So<m
be fiber coordinates on j*Y, let

®19)  n= {230[(” = Po1 ~ RP; 1) dQS + (G + QF ) dPi] +
c-1
+ (G2 + YL RI0L, + M™'P;, 1) dP;} AT,
k= .

-be the chart expression of 1€ Q:5(j*(j*°Y)). n is a Hamilton form associated with

a regular variational form E and (T, Qi » PY) are Legendre coordinates of E iff the Jfollow-
ing conditions are satisfied:

() n is variational
(b) the functions G._, do not dependon P* 0 < k < ¢ — 1
(c) .it holds

, ‘ dG?_ ‘
(8.20) Ri=R3=~-—=L o0gksge-1,
00
' 6GZ-1 G’
M = ———= 4 —ez1 det (M° 0
. oP, opc et(M7) +

(d) themappingj*<Y 5(T, Q% -+» 2y, P, ..., P) = (1, 4", ..., 43.) €Y defined
by
8.21) t=T, q¢/=Ql, 0SisSc~1, ¢0= G-y, Qlers1=

097, ‘' 0454 Gt + e 0qe+x (gt oq°
= — 1 P F R:ln c+k ,
orT 12; o0} "-;-k oP, o ¢ o) = oP; T'

e
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0fk=c—-1 1Z£6=m,

where
c—1

(8.22) T, = M,,(G} + Y. Rigisy)
i=0

and (M,;) = M ™", is a coordinate transformation on j*Y
(e) in the coordinates (1, q;) the relations

(8.23) Gi+ai+1=0, 0sk<c-2, G+ _2 Riqle, +
4 dP¢ , dP} . dP¢” o
+M"—t=0, F-—f-RL—*=0, 1Sisc-1

hold.

Proof. We shall sketch the proof for s = 2¢ + 1; the case s = 2¢ is dealt with
in a similar way.
Suppose (a)—(e). Variationality of n ensures the existence of the Lepagean

equivalent «, of 7. It holds .
c-1

(8.29) %=1+ Y (% A®] + Ron; A ) + %M"a; AR
i=0
where @] =dQf — QF,,dT, n¥ =dPf — P¥  dT, 0<igc-1, 05k=Zo,

1 £ ¢ £ m. Denote by a the (n,.),, o-projection of «,. We shall transform a to the
coordinates (, g7). Using (¢) we obtain o = E + F where

(8.25) E=( . dP, _ gro 4Py w)w Adt

dt co dt

and F is 2-contact. Since da = 0, « is the Lepagean equivalent of E. According to
Theorem 9 n is the Hamilton form of (8.25). We shall show that the assumptions of
Lemma 3 are satisfied. From (b) and (a) we obtain 6g /0P, = 0,0 < k S c — 1,

which easily leads to the condition det (6P,/dg5.) # 0. Since the second condition
of (8.23) implies P:/dq;, = 0, we arrive at

(8.26) det(——aTEL—) = —de t( oP, )#0
0q32c41 093,

i.e. E is regular. Regularity of (d) implies that det (3G - /dP;) # 0 holds. Finally,

variationality of n and (c) ensure the existence of a function H on j2°Y such that for

0isc-1L,1Z20=m

8.27 F, = ——‘—’5-, G = —ﬂf—, G + 0Ge-y _ _O0H :
- aQ¢ _ oP, - oT oP¢

H is obtained by putting
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c=-1

(828) H _,_2 Q; IF,‘,(T uQl, uP}) du — 2 P j G(T, uQ}, uP*)du —

i=0
1

— P (G: 9z ‘)(T w0y, uP*)du.
0

Thence (using (c)) we obtain
c=1

(8.29) o= —dH AdT + ), dP, A dQ; + dP; Adg;
i=0

which proves that (T, 07, P¥) are Legendre coordinates of E.

Conversely, suppose (8.19) be the Hamilton form of a regular variational form E,
where (T, QF, PX) are Legendre coordinates of E. Considering the inverse of the
Legendre transformation (8.7) we obtain using (8.9) and (8.10) that it has the bro-
perties (b) and (d), and that (e) and (c) hold. The matrix M = (M°") is regular since
M = CNCT where C, N are defined by (8.12) and C7Y, = C,,. Variationality of 7
is ensured by Theorem 3.

This completes the proof.

Remarks. (1) The ADK-conditions (3.2) for ¥8. 16) have the following form: for
02i,ksc—-1,1506,vEm

oF, _ OF; -0 oF.  oG; —0 9G] 4Gy
agy 007 P aQr aP" oP}

(8.30)

Notice that the conditions (8.30) (meaning that the equations dP:/dT = F!,dQ¢/dT =
= —G;],02i<c—1,1Z 6 < m are variational as first order equations) ensure
the existence of a function H on j2¢~1Y such that F{ = —dH/dQf, G = —0H/oP.;
it is sufficient to put

c—1 1 c—1 1
(®31)  H= -} 0f [F(T, uQ;,uPy)du —3, P, [ G{(T, ugy, uP;) du.
i=0 o i=0 0

However (8.30) do not ensure that these equations are Hamilton canonical equations
(cf. [22], [18]).

Variationality conditions for (8.19) (where M°” and R’ are defined by (8.20)) are
of the form (8.30) and

[ v ; i v 2y
32 860 %G _o O 3G 0Ge-r _g  ggige-y,
7 aps Pt 0P~ 007 0T aQ7

0G; _ 4G, + 2’67, _ 9°G;-,
0P  9P: 9T dP¢  OT oP:

(2) The transformation (8.17) (resp. (8.21)) can be defined equivalently by ¢t = T,
a9 =0,05isc—-1,4gc=-Gi-y, q:+k= _ded—lldt*’ Iskss—-c—-1,

=0, 120, vEm.
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1 £ 6 £ m. The Jacobi matrix of (8.17) (resp. (8.21)) is a triangle matrix with zeros
over its diagonal and with the matrices (3¢7/0P;™ "), —(8q2/oPS™Y), ..., (=171
(8q2/0PS™ 1Y) (resp. (02/0FP), N, ..., (—1)°"!N, where
_ 9G;-, M 0Gi—,

XA ’

0P, " PC

(8.33) N°°

N = (N°9) on the diagonal. Thence the regularity condition of (8.17) (resp. (8.21)) is
of the form det (0G%_,/0PS™") # O (resp. det (0G7_,/0P;) # 0 and det M # 0).

(3) For s = 2 we can formulate the assertions (a)—(d) of Theorem 11 in the
following form: 5 is variational and det (6G°/0P,) # 0.

(4) If s = 1 we obtain the following trivial assertion: Let (T, P,), 1 S =m
be fiber coordinates on Y, let n = (G° + M*P, ;) dP, A dT be the chart expression
of ne Qy'(j'Y). nis the Hamilton form associated with a regular variational form E -
iff M® = —-M", 0G°/|oP, — 0G"/oP, + OM*°[oT = 0, OM°%0P, + OM®/dP, +
+ OM"/0P, = 0, and det (M°") # 0. (Clearly E = n and the inverse to the Legendre
transformation is any coordinate transformation (T, P,) - (¢,q°) such that
det (8q°/0P, — 0q4"/0P,) # 0 and M = dq°/0P, — 0q"[0P,).

Example 7. Let Z = R®, I = R be open sets, consider a fiber manifold n : Zx I —

— I, denote by (¢, z,, ..., z¢) fiber coordinates on Z. Consider a system of equations
Z'1=0, z.2=0, 2'3_26=0’ Z.4+25=0,
(8.25) . =25 —zy +2z¢=0, 22542, +25=0

0

for sections 6 : I - Z. We shall show that there exist integers m, s, and a regular
variational form E defined on j°Y where dim ¥ ='m + 1 such that (8.25) are Hamilton
equations of E and (¢,z,,...,2¢) are Legendre coordinates associated with E.
Obviously it is sufficient to apply Theorem 11 to the case ZxI = j* 'Y, dim Y =
=m+ l,wheres = 1,m = 6, resp. s = 2, m = 3, resp..s = 3,m = 2, resp. s = 6,
m = 1. A (unique) solution is obtained for s = 3, m = 2, and z, = P, z, ='P‘;,
2y =0, 24 = Q,, 25 = P}, zg = P} (ie. M, = —M,, =2, M, = M,, = 0); it
is of the form E = E, dx A dt + E,dy A dt, where E, = —X% — 2y, E,=—-j+ 2%
in a fiber chart (1, x, y) on Y. The inverse to the Legendre transformation is defined
byx=0,,y=0,,%=-G; = P,,y=~G) = —P,,i=F,= — (1/(P) + P),

j=—Fi=~22)P, - P o - '

9. THE EULER — LAGRANGE DISTRIBUTION

.In [10] the Euler —Lagrange distribution of a lagrangian was introduced. In this
section, using analogous constructions, we shall associate a distribution (= differen-
tial system) to the equations for Hamilton extremals. Clearly in the case of regular
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problems this distribution will provide a geometrical description of extremals of
a given locally variational form. In the second part of this section we associate
a distribution to an arbitrary system of regular higher order equations linear in the
highest derivatives and we show that variationality of this distribution means the
existence of the “variational integrating factors* for the system of equations.

Let 7 :Y — X be a fiber manifold, dim X = 1. Let Ee Q}*(j°Y) be a locally
variational form (not m, ,-projectable for any k < s), aze Q*(j*~'Y) its Lepagean
equivalent, denote by E = E,w° A dt the chart expression of E in a fiber chart
V,¥), ¥ = (¢, q°) on Y..Let ¢ be a m,_,-vertical vector field on j*~'Y, ¢ =
£,0/0q, (summation over 0 £ k £ s — 1) its chart expression in the chart (V, y).
Using (3.21) we obtain

s=1
©.n iop = ‘Zo e
where |
* s—1 A s—1-i
9.2 Tgs-1Me = E,dt + 3 2Fjwy, = Y. 2Fjoy,
k=0 k=0 .

12igs-1, 1£a0m.

It is easily seen that the forms nt, 0<i<s—1, 1 <0 <m on V,_, define
a distribution on 7j*~'Y, which in general has not a constant dimension. This
distribution will be denoted by 4 and called the Euler-Lagrange distribution associated
with the locally variational form E. '

Theorem 12. Let U < j*~1Y be an open set. dim Az = 1 on U iff E is regular at
each point ji~'ye U.

Proof. Let dimdg = 10on U. Then !, 0 < i< s — 1,1 £ ¢ £ m are linearly
independent at each point of U, i.e. the rank of the msx m(s + 1) — matrix 4 whose
columns are coefficients at dt, dg’, ..., dg™, ..., dgf -, in (9.2) is maximal. Since 4
is equivalent with '

FO® ... F%*"' E,
.3 : S ‘
Fi 00 0

where o (resp. v) labels rows (resp. columns) and (5.3) holds, we arrive at
det (F%*~1) # 0, i.e. E is regular.
The converse is obvious.

Remarks. (1) Let 4z = Tj*~ 1Y be an Euler— Lagrange distribution of dimension 1,
E = E,»° A dt the chart expression of E in a fiber chart (¥, V), ¥ = (,¢°) on Y.
Then locally ' ‘ ‘
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9.9 4 = span {0}, 0 £ i £ s —2,4,dt + B,,dq}_,,1 S0 S m} =
= span{ 0 +s22q 0 _pug, 9 }
ot &6 age “ogi_, )

where A,,B,, are defined by (3.23). If (V,_y, ¥5-y), Vyuy <Y, Qo =

=(T,Q, P 0<i<c—1,5—c—12=k=0 are Legendre coordinates of E
one obtains

9.5) Ag = span {— Hv dT — dP* - 94: —=dP;, ——aik dT + dgQy,
. (7[0)4 90 oP,

0skZc—-1, — aH. dT+qu—£q%dP§, cSisSs—c-—1, 1§v§m}=

oP, oP,

—span{—a—+cil>aH G Z(6H+_<3q_: dP;)__@__+
ot 0Pt 8Q; =o\oQr oQ; dt ) op:
A Z TLdPt 9 }
k=c dt aP:

where g7 and dP;/dr are defined by (8.7) and (8.10). Each (local) vector field generat-
ing Ag is called Hamiltonian vector field and denoted by {. Notice that (a) i,z = 0,
(b) there exists a global generator { of A iff there exists a nowhere zero function f
on j*~'Y such that in each fiber chart (V,¥), ¥ = (t,g°) on Y

s—2 a ve a ,
©.6) {= 105+ X dfer F B );
i=0 a aqs—l

evidently, the integral curves of ¢ generally do not coincide with Hamilton extremals
of E.

(2) If A; < Tj*~'Y is the Euler— Lagrange distribution of a regular locally varia-
tional form E then A4j is integrable, and the collection of all maximal connected
integral manifolds of A4y is a 1-dimensional regular foliation of j*~1Y. Let Z be an
integral manifold of 4. Then there does not exist any point of j*~'Y such that Z
would be tangent to a fiber m,*,(x), x € X, at this point. (If ze n;_}(x) would be
such a point it should hold 4.(z) = T,n,',(x), i.e. a vector &(z) € 4x(z) would be
vertical which contradicts (9.4)).

Lemma 5. Let 8 : I — j*~1Y be a section defined on an open set I = X. é is a Hamilton
extremal of a locally variational form E € Qy'(j*Y) iff 8 is an integral mapping of 4x.

Proof. One has to show that 6*p, = 0,0<i<s— 1,1 <0 S miff 6%,z =0
for every m,_,-vertical vector field ¢ on j*~ 'Y, where 1, are generators of 4y defined
by (9.2). This is easily done with help of (9.1) and (4.13).

Thence the image of each Hamilton extremal & of E is an integral manifold of 4.
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We shall show that the Euler — Lagrange distribution of a regular form E has no other
integral manifolds.

Theorem 13. Let Ay = Tj*~'Y be the Euler—Lagrange distribution of a regular
locally variational form E € Qy''(j°Y), let Z < j*~'Y be a maximal connected integral
manifold of Ag. Then to each point z € Z there exists a neighbourhood W < Z, W 3 z
and a section § : I — j*~'Y defined on an open set I = X such that 6 is a regular
Hamilton extremal of E and 6(I) = W

Proof. Let Z < j*~'Y be a maximal connected integral manifold of the Euler —
Lagrange distribution 4 associated with a reguldr locally variational form E, let
ze Z be a point. Denote by f: U » Z where U = X is an open set an integral
mapping of 4 such that z € f(U). By the Inverse Mapping Theorem and Remark (2)
there exist a neighbourhood W of z, W < Z and a mapping /! : W — U, where
U, = U such that the set I = n,_ (W) is open in X and f|y,0 f~! = idy. Define
a mapping g : I —» U, by g(x) = £~ '(n;,(x) n W) and put § = f|,,0¢g. Obv1ously
8 : I - j*~1Y satisfies (n,_, 0 8) (x) = x, i.e. 6 is a section of n,_,, and 5(I) =
Since W < Z is an integral manifold of 4; Lemma 5 implies that § is a Hamilton
extremal of E.

Corollary. (a) Let E € Q}'(j°Y) be a regular locally variational form. Then to each
point y € Y there exists an extremal y : I - Y of E defined on an open set I = X such
that y(x) = y for some x € I.

(b) Let 6, : 1, »j*°Y, 6, : 1, »j°'Y where I, n I, # 0 be two Hamilton
extremals of a regular locally variational form E, suppose (1)) n 8,(I,) = 9. Denote
by y,:1, > Y, y,:1, > Y the corresponding extremals (i.e. y; = me_y o0 &;,
i =1,2). Then either y,(I,) N y,(I,) = 0 or y,(xo) = 7,(xo) at a point xoe€ I, N I,
and there exists a neighbourhood I of x, such that y,(x) # y,(x) for each xe I, x # Xx,.

Proof. (a) follows directly from Theorem 13, Remark (2) and the definition of
a regular Hamilton extremal.

- (b) Let U< I, n I, be a set such that y,(x) = yz(x) for each x € U. Then for
each open subset U, = U, U, # @ the section y : U, — Y defined by y =y, [, =
= v, |y, satisfies 6,(U,) = j*~19(U,) = 6,(U,) which contradicts our assumption.
Hence U, = 9 which means that either U = @ or U is a union of one-point sets, i.e.
for each x, € U there exists an open set I = X, I3 x, such that y,(x) # y,(x) for all
xel, x # x,.

LetEe Qy1(j°Y) be a form such that in a fiber chart (V,¥), ¥ = (t,¢°) on YE =
= FE o’ A dt, !

o7 - . E,= A, + B,.q,
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where the functions A4,, B,y, 1 S 6, v < m do not depend on g?. Obviously this
remains true for each fiber chart (¥, ) on Y. Denote by QL1'"(j*Y) the module
of such forms; it holds Q}' "(j*Y) = QL1(j*Y). We say that a form Ee QL1 '"(j*Y) is
regular if

©.8) det ( ZE> = det(B,,) + 0.

v
s

Evidently, if E € Q)'(j*Y) is locally variational thén E € Q4! "(j*Y) and the concepts
of regularity (5.1) and (9.8) coincide. ' :

Let w :j*~'Y — j°Y be a (global) section. There arises a distribution 4,, such that
in each fiber chart (V, ¥), ¥ = (t,¢°) on Y

9.9) A4, =span{w],0 £ i<s— 1, —w'dt +dg’_,,1 S0 S m}

where w’ = g7 O w. 4,, is 1-dimensional thus integrable, and to every integral section
deI(n,_,) of 4, there exists a section y € I'(n) such that 6 = j*~!y and it holds
wO § = j%.

Let E € QL1 "(j*Y) be a regular form, w : j*~1Y — j*Y a section, 4,, its distribution.
We say that E and 4,, are related if

9.10) W*E = 0.

Locally w’ = —B®A,, or equivalently, E, = B,,(q; — w"). It is easily seen that
a section y e I'(n) is a solution of the equation EO j% = 0 iff j*"!y is an integral
section of the related to E distribution 4,. Two regular forms E, E € Q' l"(°Y)
are called equivalent if their related distributions 4,,, 4; coincide. Obviously, E and E
are equivalent iff for each fiber chart (V,¥), ¢ = (¢,4°) on Y where E, = 4, +
+ B,,q,, E, = 4, + B,,q; there exist functions G,, 1 < ¢, v £ m defined on V,_,
such that det (G)) # 0 at each point of V,_, and it holds E, = G,E,. Obviously
G, = B,,B® where (B%") denotes the inverse matrix to (B,,). In this way we obtain
a splitting of the submodule of all regular forms of Q}!"*(j*Y) into equivalence
classes of forms (such that for equivalent forms the sets of solutions of the correspond-
ing equations coincide). A section w :j*"'Y — j*Y (resp. its distribution 4, <
< Tj*~'Y) is called variational if there exists a regular locally variational form E e
€ Q)11n(j*Y) related with 4,,; in this case the regular mx m — matrix (B,,), B,, =
= 0F,/dq;, is called variational integrating factor for 4,,. Notice that a variational
distribution related with a regular locally variational form E is precisely the (regular)
Euler — Lagrange distribution 4 of E. '

Remark. As a simple consequence of the definitions and Theorem 9 we obtain
the following characterization of variational distributions 4,, = Tj*~'Y:

(1) For each fiber chart (¥, ¥), ¥ = (¢, ¢°) on Y there exist 1-formsn.,,1 £ ¢ < m,

0 < i< s— 1 defined on V,_, such that 4, = span {r.}, and the form o defined
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by i, = &5l (summation over 0 < i < 5 — 1) for each m,_,-vertical vector field ¢
on j*~'Y is Lepagean. :

(2) For each fiber chart (V, ¥), ¥ = (¢, ¢°) on Y there exist 1-forms#’,, 1 < ¢ < m,
0 i< s — 1 defined on ¥, such that 4, = span %3, and the form deﬁned
by the relation n = @7 A A(rl) is a Hamllton form.

(3) Each (local) vector field { generating A4, is Hamiltonian, i.e. there exists
a Lepagean form o € Q*(j*~'Y) such that ix = 0.

(4) For each fiber chart (V, ¥), ¢ = (¢, ¢°) on Y the system of equations (g, — w*") O
O j* = 0 for sections y € I'(m) has a variational integrating factor.

The existence of a variational integrating factor for 4, is equivalent with the
existence of a regular matrix (B,,) which is a solution of a system of partial differential
equations which arise from the ADK-conditions (3.2). The set of all equivalent
locally variational forms related with 4,, is then obtained by finding all the solutions.
As concerns the problem of finding certain ,,variationality conditions* for 4,, (for
s = 2) we refer to e.g. [14], [20], [19], and references cited therein.

Two following examples provide a classification of variational distributions in
certain sirmple cases.

Example 8. Let dim Y = 2 (i.e. m = 1), consider a section w :j2Y — j2*1y.
Using the ADK-conditions (3.2) we obtain that no distribution 4, c Tj*Y is
variational.

Example 9. Suppose ¥ = Ix B where I = R (resp. B = R™) is an open interval
(resp. an open ball with the center at the origin), denote by (¢, ¢°) (resp. (¢, 4%, 4°))
fiber coordinates on Y (resp. the associated coordinates on j2Y). Let B,, = B, (t, ¢°),
1 £ 0, v £ m be functions on Y such that the matrix B = (B,,) is symmetric and
regular at each point y(x) € Y. Put g = (g;;), 0 < i,j < m, where o9 = 1, g,, = Bey»
8.0 = 8os = 0. g is a metric on Y, the Christoffel symbols of g are of the form _

©1)  ry=l(2Be, B B, . _ 138,
2 aqo aqv aqu 2 at
F000=05 1<o,v,0=Sm

Let w:j'Y —»j2Y be a section, put w’ = §°0O w and w, = g,,w" = B, w". The
following proposition characterizes all variational distributions 4,, of w which arise
from the metric g.

Proposition. The following two conditions are equivalent:

(1) The distribution 4,, is variational, related with a variational form E = E, dq° A
AdL E, = B, (§" — w") onj’Y

(2) It holds

9.12) -, =';0F.ué'é’ + Agd’ +Cos 1SS0S m,
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where ¢° = 1, I,y are defined by (9.11) and A,,;, C, are functions on Y satisfying

: , ) 0A A
(9.13) Aty = —Apors Afov) + [:m] + 0 [:aj_ =0,
' 0q° dq dq
aA[a'V] — aco‘ acv

ot oq" aq° )

Proof. Suppose (1). Since E is variational it satisfies the ADK-conditions (3.2)
which reduce to the conditions

Q Q
9.14) 9B,y + %qe + 1 B,,-aw— + Bvaf_“i_ =0,
ot aq° 2 a¢" a4°
9.19) 2 (B — L (B =
oq" aq°
1(0 i G 0
= (== +§ — ) =B, —————B,w")).
2(0t i aq")(aq'( M)~ g7 P
Put , '
. 2 %
(9.16) [y = B, 2"

Differentiating (9.14) with respect to §° we arrive at 0B,,/0g° — 4y, — Iyge = 0,
hence . '

(9.17) Ipp = % (ZB,., + aaB.,, _ aaB:v)'
q’ q’ q

Since 0I,,,/0¢* = 0, we obtain B, w* = —I,,4d"4* — 4,4’ — C, where 4,,, C,
-are functions on Y. Substituting into-(9.14) we arrive at

(9.18) B, W* = — I, d"® — 2o

at ‘A[av]q C

where [ov] means antisymmetrization in the indices o, v. Finally, (9.15) implies that
the relations (9.13) hold. Hence (2) is satisfied.

Conversely, suppose (2). Then E, = B,(j" — w") sansﬁes 3.2), ie. 4, is
varlatxonal

Notice that the relations (9.13) are necessary and sufficient for the existence of
functions a,(t,'q'),v(p(t, q") on Y such that

(9.19) Apy = 2o _ Sy o D0 G,
. aqv aqv aqc at

hence if B,, = ,, and dimY — 1 = m = 3 (9.12) becomes the “Lorentz force”
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(this result has been obtained in [13] and [17]). Similarly, if B,, are functions of g*
only and , = ¢ = 0, we obtain the result of [15] (Theorem 1).
Form=dimY — 1 =1 (9.12) is of the form
1 a ln B 2 0 InB

(9.20) —jow == g 4 +—; 4 + C(1, 9).
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