Archivum Mathematicum

Ján Jakubík

Retracts of abelian cyclically ordered groups

Archivum Mathematicum, Vol. 25 (1989), No. 1-2, 13--18

Persistent URL: http://dml.cz/dmlcz/107334

Terms of use:

© Masaryk University, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Vol. 25, No. 1-2 (1989), 13-18

RETRACTS OF ABELIAN CYCLICALLY ORDERED GROUPS

J. JAKUBIK
(Received January 29, 1988)

Dedicated to the memory of Professor Milan Sekanina

Abstract

In this paper it will be shown that a nonzero subgroup H of a cyclically ordered group G is a retract of G if and only if H is a large lexicographic factor of G.

Key words. Cyclically ordered group, retract, retract mapping, lexicographic product. MS Classification. 06 F 20, 46 A 40.

Cyclically ordered groups were investigated in [1], [9], ..., [15]. The notion of cyclically ordered group is a generalization of the notion of linearly ordered group.

Retracts of partially ordered sets were studied in [2], .., [5].
Retracts of lattice ordered groups, and in particular, of linearly ordered groups, were investigated in [4]; cf. also [5].

All cyclically ordered groups dealt with in the present note are assumed to be abelian.

Let G be a cyclically ordered group. An endomorphism f of G will be said to be a retract mapping if $f(f(x)=f(x)$ for each $x \in G$. In such a case, the set $f(G)$ is called a retract of G.

It will be shown that to each retract of G there corresponds a two-factor lexicographic decomposition of G. More thoroughly, each retract mapping of G is a projection onto a large lexicographic factor of G, and conversely. This generalizes a result of [7] concerning retracts of linearly ordered groups.

1. PRELIMINARIES

For the sake of completeness we recall the definition of cyclically ordered group.
Let G be a group (the group operation will be denoted additively). Suppose that there is defined a ternary relation $[x, y, z]$ on G such that the following conditions are satisfied for each x, y, z, a, b a G :
I. If $[x, y, z]$ holds, then x, y and z are distinct; if x, y and z are distinct, then either $[x, y, z]$ or $[z, y, x]$.
II. $[x, y, z]$ implies $[y, z, x]$.
III. $[x, y, z]$ and $[y, u, z]$ imply $[x, u, z]$.
IV. $[x, y, z]$ implies $[a+x+b, a+y+b, a+z+b]$.

Under these assumptions G is said to be a cyclically ordered group; the ternary relation under consideration is said to be a cyclic order on G.

Each subgroup of G is considered as to be cyclically ordered under the induced cyclic order. The isomorphism of cyclically ordered groups is defined in the obvious way.

Let G and G^{\prime} be cyclically ordered groups. A mapping $f: G \rightarrow G^{\prime}$ is said to be a homomorphism if the following conditions are satisfied:
(i) f is a homomorphism with respect to the group operation;
(ii) whenever x, y and z are elements of G such that $[x, y, z]$ holds in G and the elements $f(x), f(y), f(z)$ are distinct, then the relation $[f(x), f(y), f(z)]$ is valid in G^{\prime}.

Let L be a linearly ordered group. For distinct elements x, y and z of L we put [x, y, z] if

$$
\begin{equation*}
x<y<z \quad \text { or } \quad y<z<x \text { or } z<y<x \tag{1}
\end{equation*}
$$

is valid. Then G with the relation [] (which is said to be induced by the linear order) turns out to be a cyclically ordered group.

2. LEXICOGRAPHIC PRODUCTS

Let G_{1} be a cyclically ordered group and let L be a linearly ordered group (each linearly ordered group is considered as to be cyclically ordered under the induced cyclic order).

Let $G_{1} \times L$ be the (external) direct product of the groups G_{1} and L. For distinct elements $u=(a, x), v=(b, y)$ and $w=(c, z)$ of $G_{1} \times L$ we put $[u, v, w]$ if some of the following conditions is satisfied:
(i) $[a, b, c]$;
(ii) $a=b \neq c$ and $x<y$;
(iii) $b=c \neq a$ and $y<z$;
(iv) $c=a \neq b$ and $z<x$;
(v) $a=b=c$ and $[x, y, z]$.

It is easy to verify that $G_{1} \times L$ with this ternary relation is a cyclically ordered group; it will be denoted by $G_{1} \oplus L$ and it is said to be a lexicographic product of G_{1} and L. We call G_{1} and L the large lexicographic factor or the small lexicographic factor of $G_{1} \oplus L$, respectively.

If $G=G_{1} \oplus L, g \in G, g=(u, x)$, then we denote $u=g\left(G_{1}\right)$ and $x=g(L)$.

Let us remark that if H_{1} and H_{2} are linearly ordered groups and if H is their lexicographic product $H_{1} \circ H_{2}$ (cf., e.g., Fuchs [6]), then the cyclically ordered group H is a lexicographic product $H_{1} \oplus H_{2}$ of the cyclically ordered groups H_{1} and H_{2}, and conversely.

The following assertion is obvious.
2.1. Lemma. Let G_{1} be cyclically ordered groups and let L be a linearly ordered group. Put $G=G_{1} \oplus L$ and for each $g \in G$ let $f(g)=g\left(G_{1}\right)$. Then f is a retract mapping of G.

Let G_{1} and L be as above and let φ be an isomorphism of a cyclically ordered group G onto $G_{1} \oplus L$. Put

$$
\begin{aligned}
G_{1}^{0} & =\varphi^{-1}\left\{(a, 0): a \in G_{1}\right\} \\
L^{0} & =\varphi^{-1}\{(0, x): x \in L\}
\end{aligned}
$$

Then G_{1}^{0} is isomorphic to G_{1}, and L^{0} is isomorphic to L^{0}. The mapping

$$
\varphi^{\prime}: G \rightarrow G_{1}^{0} \oplus L^{0}
$$

defined by $\varphi^{\prime}(g)=a^{0}+x^{0}$, where $\varphi(g)=(a, x), a^{0}=\varphi^{-1}((a, 0))$ and $x^{0}=$ $=\varphi^{-1}((0, x))$, is an isomorphism of G onto $G_{1}^{0} \oplus L^{0}$. In such a case we write $G=G_{1}^{0} \oplus_{i} L^{0}$ and G is said to be an internal lexicographic product of G_{1}^{0} and L^{0}.

Analogously as above, G_{1}^{0} and L^{0} are called a large lexicographic factor and a small lexicographic factor of G, respectively.

In view of 2.1 we obtain:
2.2. Corollary. Each large lexicographic factor of a cyclically ordered group G is a retract of G.

Internal lexicographic product decompositions can be characterized intrinsically as follows.
2.3. Proposition. Let G be a cyclically ordered group. Let G_{1} and L be subgroups of G such that L is linearly ordered. Then the following condit!ons are equivalent:
(a) $G=G_{1} \oplus_{i} L$.
(b) The group G is an internal direct product of its subgroups G_{1} and L. Whenever u, v and w are distinct elements of G with $u=a+x, v=b+y$, $w=x+z$ (where $a, b, c \in G_{1}$ and $x, y, z \in L$), then $[u, v, w]$ is valid if and only if some of the relations (i) - (v) above holds.

The proof can be performed by a routine verification. (Cf. also [10].)
Let us denote by K the set of all real numbers x with $0 \leqq x<1$; the operation + on K is defined to be the addition mod 1 . For distinct elements x, y and z of K we put $[x, y, z]$ if the relation (1) above is valid. Then K is a cyclically ordered group.
2.4. Theorem. (Cf. [12].) Let G be a cyclically ordered group. Then there exist a subgroup K_{1} of K and a linearly ordered group L such that G is isomorphic to $K_{1} \oplus L$.

A subgroup H of a cyclically ordered group G is said to be c-convex (cf. [9]) if some of the following conditions is fulfilled:
(i) $H=G$;
(ii) for each $h \in H$ with $h \neq 0$ we have $2 h \neq 0$; if $h \in H, g \in G,[-h, 0, h]$ and [$-h, g, h$], then $g \in H$.

The following lemma is an easy consequence of 2.4 .
2.5. Lemma. Let f be an endomorphism of a cyclically ordered group G. Then the kernel of f is a c-convex subgroup of G.

3. LARGE LEXICOGRAPHIC FACTOR CORRESPONDING

 TO A GIVEN NONZERO RETRACT MAPPINGLet G be a cyclically ordered group. In view of the consideration performed in Section 2 and according to 2.4 there exist subgroups G_{1} and L of G such that
(i) G_{1} is isomorphic to a subgroup of K;
(ii) L is linearly ordered;
(iii) $G=G_{1} \oplus_{i} L$.
3.1. Lemma. Let f be an endomorphism of G. Then either $f(G)=\{0\}$ or $f^{-1}(0) \subseteq L_{1}$.

Proof. This is a consequence of 2.5, and [9] (3.5 and 4.6).
An endomorphism f of G is said to be nonzero if $f(G) \neq\{0\}$. In what follows we assume that f is a nonzero endomorphism of G.
3.2. Lemma. Assume that f is a retract mapping of G. Then $f(x) \in L$ for each $x \in L$.

Proof. By way of contradiction, assume that there exists an element $x \in L$ such that $f(x) \notin L$. Thus there are $a \in G_{1}$ and $y \in L$ with $f(x)=a+y, a \neq 0$. This yields that $f(a+y)=a+y$, hence $f(a+y-x)=0$. The element $a+y-$ - x does not belong to L, therefore the kernel of f fails to be a subset of L. In view of $3.1, f(G)=\{0\}$, which is a contradiction.

Denote $f_{2}=f \mid L$. According to 3.2 we have
3.3. Corollary. Let f be as in 3.2. Then f_{2} is a retract mapping of L.
3.4. Lemma. Let f be as in 3.2. Next let $f_{1}=f \mid G_{1}$. Then f_{1} is an isomorphism of G_{1} onto $f\left(G_{1}\right)$.

Proof. According to the definition, f_{1} is a homomorphism of G_{1} onto $f\left(G_{1}\right)$. Let $a \in G_{1}, a \neq 0, f(a)=a_{1}+x, a_{1} \in G_{1}, x \in L$. Hence $f\left(a_{1}+x\right)=a_{1}+x$,
thus $f\left(-a+a_{1}+x\right)=0$. In view of $3.1,-a+a_{1}+x \in L$ and therefore $a=a_{1}$. Hence $f(a) \neq 0$. Thus f_{1} is a monomorphism. By summarizing, f_{1} is an isomorphism.

We have clearly $f\left(G_{1}\right) \cap L=\{0\}$. If $g \in G$ and $g=a+x, a \in G_{1}, x \in L$, $f(a)=a+x_{1}$, then $g=\left(a+x_{1}\right)+\left(-x_{1}+x\right)$ with $a+x_{1} \in f\left(G_{1}\right)$ and $-x_{1}+$ $+x \in L$. Hence we infer:
3.5. Lemma. The group G is a direct product of the groups $f\left(G_{1}\right)$ and L.
3.6. Lemma. Let f be as in 3.2. Then $G=f\left(G_{1}\right) \oplus_{i} L$.

The proof consists in a routine verification by applying 3.5 and 2.3.
3.7. Lemma. Let f_{2} be as above. There are subgroups L_{1} and L_{2} of L such that $f_{2}(L)=L_{1}$ and $L=L_{1} \oplus_{i} L_{2}$.

Proof. Since L is linearly ordered and since in view of $3.2, f_{2}$ is a retract mapping of L as cyclically ordered group, it is also a retract mapping of L as linearly ordered group. Thus, according to [7], Theorem 3.4, there are l-subgroups L_{1} and L_{2} of L such that

$$
\begin{equation*}
L=(i) L_{1} \circ L_{2} \tag{2}
\end{equation*}
$$

(an internal lexicographic product of linearly ordered groups L_{1} and L_{2}, cf. [7]). From (2) we obtain that the relation

$$
L=L_{1} \oplus_{i} L_{2}
$$

holds.
Put $L_{3}=f\left(G_{1}\right)+L_{1}$. The relation $L_{1} \subseteq L$ and Lemma 3.6 yield

$$
\begin{equation*}
L_{3}=f\left(G_{1}\right) \oplus_{i} L_{1} \tag{3}
\end{equation*}
$$

Next, from $f(L)=L_{1}$ we obtain

$$
f(G)=L_{3}
$$

Also, from 3.6 and 3.7 we infer that

$$
\begin{equation*}
G=f\left(G_{1}\right) \oplus_{i}\left(L_{1} \oplus_{i} L_{2}\right) \tag{5}
\end{equation*}
$$

Clearly

$$
f\left(G_{1}\right) \oplus_{i}\left(L_{1} \oplus_{i} L_{2}\right)=\left(f\left(G_{1}\right) \oplus_{i} L_{1}\right) \oplus_{i} L_{2}=f(G) \oplus_{i} L_{2}
$$

Thus in view of (5) we obtain

$$
\begin{equation*}
G=f(G) \oplus_{i} L_{2} \tag{6}
\end{equation*}
$$

Let $g \in G$. In view of (6) there are uniquely determined elements $a \in g(G)$ and $x \in L_{2}$ such that $g=a+x$. Then $f(a)=a$. Next we have $f(x) \in f(G)$ and in view of 3.2, $f(x) \in L_{2}$. Hence $f(x) \in f(G) \cap L_{2}=\{0\}$ and so $f(x)=0$. We obtain

$$
f(g)=f(a)+f(x)=a
$$

By summarizing, we have the following result:
3.8. Theorem. Let f be a nonzero retract mapping of an abelian cyclically ordered group G. Then the retract $f(G)$ is a large lexicographic factor of G and for each $g \in G, f(g)$ is the component of the element g in the factor $f(G)$.

Theorem 3.8 and Lemma 3.1 yield:
3.9. Corollary. Let G be an abelian cyclically ordered group and let $H \neq\{0\}$ be an l-subgroup of G. Then the following conditions are equivalent:
(i) H is a retract of G.
(ii) H is a large lexicographic factor of G.

This generalizes Theorem 3.4, [7] concerning retracts of linearly ordered groups.

REFERENCES

[1] S. Černák, J. Jakubik, Completion of a cyclically ordered group, Czech. Math. J. 37, 1987, 157-174.
[2] D. Duffus, M. Poguntke, I. Rival, Retracts and the fixed point problem for finite partially ordered sets. Canad. Math. Bull. 23, 1980, 231-236.
[3] D. Duffus, I. Rival, Retracts of partially ordered sets. J. Austral. Math. Soc. Ser. A, 27 1979, 495-506.
[4] D. Duffus, I. Rival, M. Simonovits, Spanning retracts of a partially ordered set. Discrete Math. 32, 1980, 1-7.
[5] D. Duffus, I. Rival, A structure theory for ordered set. Discrete Math. 35, 1981, 53-118.
[6] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford 1963.
[7] J. Jakubik, Retracts of abelian lattice ordered groups. (Submitted.)
[8] J. Jakubik, Retract varieties of abelian lattice ordered groups. (Submitted.)
[9] J. Jakubik, G. Pringerová, Representations of cyclically ordered groups. Čas. pěst. matem. 113, 1988, 184-196.
[10] J. Jakubik, G. Pringerová, Radical classes of cyclically ordered groups. Mathem. Slovaca 38, 1988, 255-268.
[11] L. Rieger, On ordered and cyclically ordered groups I, II, III, Věstnik král. české spol. nauk 1946, 1-31; 1947, 1-33; 1948, 1-26. (In Czech.)
[12] S. Swierczkowski, S., On cyclically ordered groups. Fundam. Math. 47, 1959, 161-166.
[13] A. J. Zabarina, K teorii cikličeski uporjadǒ̌ennych grupp. Matem. zametki 31, 1982, 3-12.
[14] A. J. Zabarina, O linejnom i cikličeskom porjadkach v gruppe. Sibir. matem. žurn. 26. 1985, 204-207.
[15] A. J. Zabarina, G. G. Pestov, K teoreme Sverčkovskogo. Sibir. matem. ž. 25, 1984, 46-53.

Ján Jakubik
Matematicky $\mathbf{~ u s t a v ~ S A V ~}$
dislokované pracovisko
Ždanovova 6
04001 Kossice

