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Dedicated to the memory of Milan Sekanina 

Abstract Sufficient conditions for the equality of edge-connectivity and minimum degree of 
a graph or a bipartite graph are presented. Also previously known conditions are surveyed. 

Key words. Graph, bipartite graph, edge-connectivity, minimum degree, distance. 
MS Classification. 05 C 40, 05 C 38. 

Our terminology is based on [1]. Given a graph G, V(G) and E(G) denote its 
vertex and edge sets, respectively; n : = V(G) is its order; X(G) is its edge-connectivity 
and 5(G) is the minimum degree of G. The distance between two vertices x and y 
is denoted d(x, y) and diam (G) is the diameter of G. The vertex neighbourhood of 
a vertex x is denoted V(x). For brevity, X often stands for X(G) and S for 3(G). 

It is well known that X(G) ^ 8(G) and one may ask for conditions on G ensuring 
the equality X(G) and S(G). In this paper we give first a survey of known sufficient 
conditions and then provide some new ones. 

§1. A SURVEY OF KNOWN RESULTS 

In this section we will give a series of known conditions ensuring X = 5 in terms 
of various parameters of a graph. Each of these conditions can be also referred 
to as a result, in which case it is meant the assertion that the condition yields 
X = 8. 

The first such condition is due to Chartrand [3]: 

0) 6(G) g[n/2]. 
This was refined by Lesniak [6]: 

(2) deg(x) + deg(» £ M - 1 

for any pair of nonadjacent vertices x, y. 
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The following result of Plesnik [7] is based on the diameter and obviously 
implies results (1) and (2): 

(3) diam (G) ^ 2. 

Goldsmith and Entringer [5] observed: It is also sufficient that for each vertex x 
of minimum degree, the vertices in the neighbourhood V(x) have large degree 
sums; more precisely: 

I [n/2]2 — [n/2] for all even n and 
for odd n ^ 15, 

[n/2]2 - 7 for odd n ^ 15. 

This result implies (1) but is independent of (2) and (3). Indeed, the graph in 
Fig. 1 fulfils (2) and (3) but not (4); on the other hand the graph from Fig. 2 fulfils 
(4) but not (3) or (2). 

f i g 1 f i g . 2 

Bollob£s [2] uses maximal graphs with 5 > X and derives several results. The 
following is a typical one and perhaps the most important of them: The degree 
sequence dx i> d2 ^ ... ^ dn = 8 of G with n ^ 2 fulfils 

(5) £ ( 4 + dn_f)^fcn-l 
i = i 

for each k with 1 ^ k ^ min {[n/2] - 1, <5}. 

f i g . 3 f i g . 4 

Although the result (5) implies (1) if n is even, in general (5) is independent of 
(1)—(4). This can be seen with aid of graphs in Figs. 3 and 4. The former fulfils 
(l)—(4) but not (5) and the latter works conversely. 

20. 
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: Esfahanian [4] has given lower bounds on the edge-connectivity and, as a con
sequence, the following condition (A is the maximum degree of G and D :== 
:=diam(G)): > 

(6) •n*(S-l)V-»D-\\f-2)-l+L 

The following similar condition is due to Soneoka, Nakada, Imase and Peyrat 
[8] and slightly improves (6): 

(7) n > (d - 1)-- '- + A - 1. 
A —• 2 

As shown in [8] this bound is best possible (at least) for diameters D = 3 and 4. 
On the other hand, the graph of Fig. 3 does not fulfil (7) but fulfils (l)-(4). 

Soneoka et al. [8] have established also the following generalization of, (3) with 
g standing for the girth of G: 

•-fi:ì (8) D<1*-* [or goad, 
"" ~ 2 for g even. 

They show that this condition is best possible for an infinite number of values 
of 3 when g is 4 or g is odd. 

Figs. 2 and 4 provide examples of graphs fulfilling (4) and (5), respectively, 
and not fulfilling (8). Also there are examples in [8] where (7) works but (8) 
does not. 

We conclude the survey by a result of Volkmann [9]: 

n -4- 1 

(9) G is bipartite and 8 ^ ——— . 

Two disjoint copies of complete bipartite graph K(n/4, n/4) provide an example 
demonstrating that this result is best possible. Moreover, it is not a corollary of (8), 
because there is a bipartite graph with g = 4 and D > 2 fulfilling (9) (e.g. with 
n = 7, d = 2). A generalization of (9) for p-partite graphs is given in [10]. 

§2. A NEW D I S T A N C E C O N D I T I O N 

Here we show that the condition (3) can be slightly relaxed in sense that some 
distances can be greater than 2. 

2.1. Theorem. If in a connected graph no four vertices ul9vl9u2l v2 with 

(10) d(ui, u2)9 d(ui, v2), d(vt, 1/3), d(vt ,v2)^3 

exist, then X = S. 

21 
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Proof. For a contradiction consider a graph G fulfilling the distance condition 
with X <b. Let E0 be an edge cut of cardinality X and let A and A be the vertex 
sets of the components arising after deleting E0 from G. Further, let Ax £ A 
and Ax ^ Abe the sets of vertices incident with edges of E0 and put A0 := A — Ax 

and A0 : = A — ^ (see Fig. 5). Denote the cardinalities of A0,*AX, Ax and A0 

by a0,ax, ax and a0, respectively. Clearly X ^ ax and A ^ a t . 

—I | 1 л | , 
M 0 M 1 7 * ^ ^ м l м o 

The distance condition in our theorem implies that a0 ^ 2 and a0 ^ 2 cannot 
hold simultaneously (otherwise there are ux ,vxeA0 and u2,v2e A0fulfilling (10)). 
Thus owing to the reason of symmetry we can assume that a0 g 1. Each edge 
going from a vertex x of A ends in A0 u Ax or belongs to K0. Since G has no 
loops or multiple edges, we have 

X = Aax if 
X if 

Yde g (x)<H a i - 1 ) + A = A ( a i " 1 ) + A 

On the other hand 

T den(x) > h S ~ "l(X + !> = A f li + fli 
X.A

 W - \(ai + 1)5 ^ («i + D(A + 1) = A«! + at + X + 1 

Being compared these inequalities give a contradiction in either case. 

a 0 = ü, 
a0 = 1. 

if a0 = 0 , 
l if a0 = 1. 

Fig. 6 shows that Theorem 2.1 is in a sense a best possible result. We have 
immediately: 

2.2. Corollary. If a connected graph G contains such a vertex v0 that d{x, y) S 2 
for all x,ye V(G) - {v0}> then X = <5. 

§3. D I S T A N C E C O N D I T I O N FOR BIPARTITE GRAPHS 

Now we will give an analog of Theorem 2.1 for bipartite graphs and show that 
it yields the result (9). 
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3.1. Theorem. Let G be a bipartite graph with bipartition [A, B). Then X = 8 
whenever at least one of the following two conditions holds: 

(i) diam(G) ^ 4 and neither part contains four vertices ul,vi,u2,v2 such that 

(11) d(uv, u2), d(ut, v2), d(vt, u2), d(vx, v2) = 4. 

(ii) There exists a. part P with d(x, y) ^ 2 for all x,yeP. 
Proof. Suppose for a contradiction that there is an edge cut E0 with cardinality 

X < d. Clearly X > 0. After deleting the edges of E0 from G, we obtain two com
ponents with vertex sets S and S :== V(G) - S. In accordance with Fig. 7, AV,AX, 

B. в„ 

f i g . 7 

Bl, 2?! denote the sets of vertices incident with some edge of the cut E0 and lying 
in A n S, A n S, B n S and B n S, respectively. The remaining vertices form the 
sets A0,A0, B0 and B0, i.e. A0 = A n S — Ai, etc. Let the number of edges' 
between Ax and Bx be Xt and that between At and Bt be X2. Thus X = Xt + X2. 
Finally, let the cardinalities of the sets A0, A0, ..., Bx be denoted by the correspond
ing small letters, i.e. a0,d0, ..., hx. Clearly WQ have 

ai =» ^ I J &i ^ ^i) #i ^ X2, bi & X2. 

(i) First suppose that the condition (i) holds. We have to distinguish several 
cases, but owing to the reason of symmetry we can confine to the following: 
Case 1: a0 ^ 2 and a0 = 2. Then we can find u1,vie A0 and u2,v2e A0 fulfill
ing (11). 

Thus without loss of generality in what follows we can suppose a0 £ 1. 
Case 2: a0 = b0 = 0. Then ax + bt > 0 and we can suppose that At & 0. For 
any x e At we have deg (x) <£ Xt + bt. On the other hand deg (JC) ^ 8 ^ X + 1 = 
= Xx + X2 + 1 ^ Xx + bt + 1, a contradiction. 
Case 3: a0 = 0, b0 ^ 1. Then for every xeB0 we have deg (x) g a t ^ At < 8, 
what is impossible. 
COM? 4: a0 = 1, fe0 = 1. Then for x e .^0 we have deg(x) g *i + 1 g A2 + 1 
and for y e £ 0 analogously deg (y) <L at + I £ Xx + L Thus we can write 28 ^ 
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^ deg (x) + deg (y) ^ X, + X2 + 2 = X + 2 ^ 5 + 1, which yields 5 ^ 1 , 
i.e. A =-= 0, a contradiction. 
Castf 5; a0 = 1 and B0 = 1. Then because of Cases 3 and 4 we have b0 ^ 2 and 
ao .§ 2 (use the symmetry). For any xe B0 we get deg (x) g at + 1 g At + 1 
and for any y e A0 we have deg (y) g b, + 1 5̂  A, + 1. Hence 2(A, + X2 + 1) = 
= 2(A + 1) ^ 2<5 ^ deg (x) + deg 0 ) g 2/1, + 2, i.e. X2 = 0 and thus a, = 
= b! = 0. But for ue A0, veB0 we have d(u, v) ^ 5, which contradicts our 
assumption (i). 

Case 6: a0 = 1, b0 ^ 2, b0 ^ 2. This is excluded by Case 1 (use the symmetry). 
Having covered all possibilities the proof is completed if (i) is assumed to hold. 
(ii) Now let the condition (ii) hold. We can assume that P = A9 i.e. d(x, y) g 2 

for all x, y e A. This yields d(u, v) ^ 4 for all u, v e B and d(x, u) g 3 for all 
x e A, ue B. Hence diam (G) ^ 4. However, d(x, y) = 4 for any x e A0, y e A0 

(see Fig. 7). Therefore a0 . a0 = 0 and we can assume that a0 = 0. Then the con
siderations of above mentioned Cases 2 and 3 will work. • 

Fig. 8 shows that the assumption diam (G) ^ 4 cannot be dropped; on the other 
hand this condition is not sufficient if the rest of (i) does not hold (see Fig. 9). 

f .g 8 f ig .9 

3.2. Corollary. Let G be a bipartite graph with diam (G) ^ 4. If in either part P 
there exists such a vertex v0 that d(x, y) g 2 for all x, y e P — {v0}, then X = <5. 

Proof. Immediately, since (i) is fulfilled. I 

3.3. Corollary. If a bipartite graph G has diam (G) ^ 3, then X = S. 
Proof. Now the condition (ii) is fulfilled because the distances in the same part 

are even. • 
Our theorem implies also the above mentioned result (9) of Volkmann [9]: 

3.4. Corollary. 7fG is a bipartite graph with 8 ^ (n + l)/4, then X = 5. 
Proof. We will prove that the condition (ii) of Theorem 3.1 holds. Indeed, 

if it is not the case, then there exist vertices x, y e A with d(x, y) > 2 and so V(x) n 
o V(y) = 0. Consequently, B has at least (n + l)/4 + (n + l)/4 = (n + l)/2 
vertices. Symmetrically, A has at least (n + l)/2 vertices too, what is impossible. I 

Examples from Figs. 10 and 11 show that there are no other relations between 
the conditions (i) and (ii) of Thedrem 3.1 and (9). The graphs have n = 11, 8 = 2. 
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In Fig. 10 we have d(l, 4) - d(l, 5) - 4 and d(x, y) ^ 2 for all x, y e A - {1}. 
Also d(6, 10) = d(6, 11) = 4 and d(x,y) g 2 for all x,yeB - {6}. Thus (i) is 
fulfilled but neither (ii) nor (9) hold. 

In Fig. 11 we see that d(x, y) ^ 2 for all x,yeA. Further d(6, 11) = d(7, 10) = 
= 4. Thus (ii) holds but (i) and (9) do not. 

Moreover, both these graphs have g = 4 and thus not even (8) is fulfilled. 
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