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Abstract. In this paper the (cscription of all pointwise transformations between lincar quasi-
differential equations of the n-th order is derived.
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1. INTRODUCTION

In connection with the investigation of linear differential equations several kinds
of pointwise transformations are often considered. In this paper we shall derive
the general form of pointwise transformations of linear quasi-differential equations
of the n-th order.

Let A4 = (4)) be nxn-matrix with component A; in the i-th row and in the
j-th column and let K, be the set of all nx n-matrices 4 such that 4!,, # 0 and
A;=0 for 1 £i4- 2= j < n In accordance with [3] and [4] a linear quasi-
differential equation of the n-th order is by the definition the scclar differential
equation that can be obtained by elimination from the system

(1) 7 =Sz,

where S(f) e K,. If z denotes a column vector in R”, we can compute the i-th

component of z from the equation (1) through the previous components and their
derivatives:

i 1 i—1yr e i—1 j
=) -2 S M], 2s5isn
S ¢ PR
By this procedure we can convert the equation (1) into a scalar linear differential
equation with unknown function z!. Then the i-th component of the vector solu-
tion of the equation (1) is called the (i — 1)-th quasi-derivative of the function z.
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In [5] Stickal proved that the most general pointwise transformation converting
any linear homogeneous differential equation of the n-th order (n = 2) in in-
dependent variable x and dependent variable y into an equation of the same kind
in variables ¢ and z is of the form

t = k(x),
z = m(x) y,

where k'(x) # 0 and m(x) # 0, see also [1] and [6]. Our approach to description
of all pointwise transformations of linear quasi-differential equations of the n-th
order will be rather different. Instead of scalar linear differential or quasi-differential
equations of the n-th order we shall take into account the linear systems (1) which
correspond with scalar equations of the n-th order and pointwise transformations
of scalar solutions will be replaced by pointwise transformations of fundamental
matrix solutions of these systems. The main result of this approach is formulated
in the next section. Its proof, based on Theorem 1 in [2], is given in Section 3.

2. NOTATION AND MAIN RESULT

The first part of this section is a list of symbols used below. Let n > 2 be integer,
let » = 0 be an integer or oo and let I and J be open intervals. The set of all real
n X n-matrices will be denoted as M,. The symbol K, has been already defined in
Section 1 and L, will be the set of all nx n-matrices (AJ‘:) such that 4!, == 1 for
1£i<n—-1and A,i=0for1§i§n~1,i+1 # j. The symbol GL, will
stand for the set of all regular matrices from M,. GL, will stand for the set of all
n X n-matrices with positive determinants. The symbols E, tr, det, —1 * will stand
for the unit matrix, the trace, the determinant, the inverse and the transpose,
respectively. The elements of R” will be considered as column vectors. The principal
diagonal and the subprincipal diagonal of a matrix 4 € M, aie formed by com-
ponents A4} and 4., ,_, for 1 £ i < n, respectively.

The sets of all continuous and r-times continuously differentiable functions
defined on M with values in N will be denoted as C (M, N) and C'(M, N), respective-
ly. We shall write E(S, J) for the equation (1) with S e C(J, K,). This equation
corresponds to the linear quasi-differential equation of the n-th order that will be
denoted as E,(S, J). Analogously, the equation E(R,I) with Re C(I,L,) of the
form '

@ ’

..........................
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POINTWISE TRANSFORMATIONS OF LINEAR QUASIDE

represents the n-th order linear homogeneous differential equation denoted es
E,(p, 1), where p = (I’o, Pis oo pu—l)-
As a pointwise transformation consider a mapping T = (T,, T,): IXGL, —
- J XM,
t =T x,Y), Z =Tyx, Y),

satisfying the following assumptions:

(A) T = (T,, T,) is a homeomorphism of I x GL, into JxM,.

(B) For every equation E(R, I) with Re C'(I, L,) there is an equation E(S, J) with.
S e C(J, K,) such that for every solution y € C*(I, GL,") of the equation E(R, I)
the couples (t, Z)

= Tl(.x, Y(x))’ Z = TZ(x’ Y(x))
for x € I form a graph of a function Z(t) representing a solution of E(S, J).

Theorem. Let n = 2. Every mapping T = (T, T,) satisfying (A) and (B) is of
the form

3 Ti(x, Y) = k(x)

and either

(42) Ty(x, Y) = M(x)(det Y)* YC, A+ _%,
or

(4b) Ty(x, Y) = M(x) (det Y)* (Y1) *C, A+ %

where AeR, C e GL,, k is a C!-diffeomorphism of I onto J, M € C*(I, GL,), for
every x € I the matrix M(x) has only zeros above the principal diagonal in case (4a)
and M~ '(x) has only zeros under the subprincipal diagonal in case (4b).

Conversely, if a mapping T is of the form (3) and (4a) or (4b) with A, C, k and M
satisfying the above conditions then (A) and (B) hold even if the condition R € C'(I, L,)
in (B) is replaced by the condition R € C(I, K,).

Remark 1. Denote h the inverse function of k and put N = Mo h. As it has
been already noted in [2], the transformation (3), (4) converts the equation E(R, I)
either into the equation

(5a) Z'=[N'@ON* )+ Aw'() tr R(h(1)) E + W () N() RIB() N"1(D] Z
in case (4a), or into the equation

(5b) Z'=[N'@) N~ X1) + AW (1) tr R(A(H) E — h'(¢) N@t) R*(h(D) N~*()] 2
in case (4b).

29



M. CADEK

Let the previous Theorem be illustrated by an example. Consider the transforma-
tion (3) and (4b), where k is an identity, A = 0 and

0, 0, ey 0, —1
0’ 0, teey 1’ 0
0, (=)~ ..,0 0
(—=1" 0, ..., 0, O

Similarly to [4] we can make sure that this transformation converts every equa-
tion (1) that corresponds to the equation '

(6) Y+ pui(x) yOY L+ po(x) y =0,

into the equation (1) that represents the adjoint equation to (6)
(o = pp-r(X) 2) + pp-2(x) 2) — ... + (=1)"7py(x) 2)’ + (=1)" po(x) z = O.

The next statement is a consequence of the main Theorem. It describes all
pointwise transformations of equations (1) with coefficients in L, into equations
(1) with coefficients in K,, taking into account only vector solutions.

Consequence. Let n = 2 and let 1 = (1, t,) be a homeomorphism of I xR" into
JXR" satisfying the assumption:

For every n-th order linear differential equation E,(p, I) with p, e C'(I, R) there
is a linear quasi-differential equation of the n-th order E,(S, J) with S € C(J, K,)
such that for every solution y e C*(I,R) of the former equation the couples
(t,z"0<i<n-1,

t = 1y(x, (y(x), yl(x)’ (EEE) y(”_ 1)(x»*)r
M, 21, ..., 2T ) = oy (x, (06x), V' (%), .., YO (X)),

for x € I form graphs of functions 2V} (1) € C'(J, R) and z'°Xi) is a solution of

the equation E,(S,J) with the following quasi-derivatives z!1)(f), 212)(y),
{n—1)

Y | .

Then =t is of the form

71(x, y) = k(x),
@ 0 y) = M)y,

where k is a C*-diffeomorphism of I onto J, M € C\(I, GL,) and M(X) is g matrix
having only zeros above the principal diagonal for every x € 1.

ceey

Remark 2. According to the statement of Consequence every solution y ¢ C"(I, R)
of some equation E,(p, I) is converted into the function

214(5) = M(h(s)) y(h()),
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where h denotes the inverse function to k. That means, roughly speaking, that
the pointwise transformations of the above type do not depend on derivatives.

3. PROOFS

First, we shall prove Theorem. Let us suppose that T is a mapping satisfying
(A) and (B). Then (A1) and (B1) of Theorem 1 in [2] hold for T as well. Therefore,
due to this Theorem 1, we get that T is of the form (3) and (4a) or (4b), where
AeR, CeGL,, k is a homeomorphism having the inverse function h e C!(J, I)
and N = MoheC'(J, GL,). It remains to show the claim on the form of the
matrix M(x) and h'(¢) # 0 for every t e J.

According to Remark 1 the transformation T converts every equation E(R, I)
into the equation E(S, J) of the form (5a) or (5b). We shall request S € C(J, K,)
for every Re C'(I, L,). Let us distinguish cases (5a) and (5b).

(i) In case (5a) we seek all functions N e C'(J, GL,) and he C'(J,I) so that
for every R e C'(I, L,) there exists a function S € C(J, K,)) such that

®) N’ + W' NRoh = 3N,

where S =S — Ak’ tr Ro hEe C(J, K,).
Write R o h in the form (2) and compare the i-th rowsin (8) for1 < i <n — 1.

i+1

(N’ — W'Nopo =2 SiNt,

1+1
(N))'+WN{ —KNp, =3 SN,
=1

)

i+1
(N + WNboy ~ W'Npey = 3 $iV4, 25 m s,
o

....................................

i+1

(ND' + HN -y — W'Nip,—, =!21§§N£.

Supposing h'(f) Ni(t) # 0 for some teJ and 1 £i<n—1, we can choose
P00 P1(), .., pa_(?) for the left hand side of (9) to vanish. Since S}, ,(r) # 0,
we get from (9) that a nontrivial linear combination of i + 1 rows of the matrix
N(f) is zero, which is in contradiction to N(z) € GL,. Hence, h'(f) Ni(#) = 0 for
every teJ and all i, 1 £i < n— 1. The function h is strictly increasing or
decreasing, therefore the set {t e J, h'(f) # 0} is dense in J and, that is why the
. set {te J, Ni(r) = 0} is dense in J as well. Continuity of the function N implies

31



M. CADEK

N'(#) = 0 for every te J. Consequently, from the last equation in (9) we obtain
h'(f) N._(f) = 0 for every teJ and 1 £i < n — 2. The same consideration as
above yields Ni_,(f) = 0 for every teJ and 1 £i < n — 2. In the same way
it can be proved by induction in (9) that the necessary condition for (8) is

(10) N,'(t) =0 for 1 £i < j < n and for every t € J.

Let us assume there is a ¢ € J such that h'(f) = 0. Taking into account (10), from
the ( 4 1)-th equation in (9) we get

NORBHOEI
which contradicts to Si,,(s) # 0, det N(f) # 0 and (10). Hence,
(1 h(t) #0 for every te J.

Let us prove the converse: If h e C'(J, I), Ne C'(J, GL,) and (10) and (11) are
fulfilled, then the equation (5a) corresponds to linear quasi-differential equation
of the n-th order for every Re C(I,K,), i.e. for every Re C(I,K,) the equation

(12) N + AW tr RohN 4 W"'NRoh = SN

has a solution S € C(J, K,). Comparing the i-th rows in (12) for 1 £i<n — 1,
we get

! n
(ND)' + K( Y NRioh+AtrRohNY) = ¥ SINj,
=1 &
‘ n . N}
(NY +W( Y, N'RLoh+AttRohN)= Y SINL,  2smsxi,
j=m-1 j=m

...................................................

n
h,N:R:+10h= Z S;N:.f.;’
J=it+1

n
0= Y SiNI, i+2<msn.
j=m

Then the fact that det (N,) # 0, j, me{i +2,i+3,...,n,, for 1 Sisn—-2
implies S§ = 0 for j = i + 2. Consequently, from the (i 4 1)-th equation in (13)
we obtain :

K'(9) Ni(t) Ris(h(8)) = Siy 1(8) Ni1(0).
Therefore according to (10) and (11), we have S}, ((r) # 0 for all e J.
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(i) Now we are going to examine case (5b). First, we shall find a necessary
condition on N e (J, GL,) and he C!(J, I) so that for every Re C’'(l,L,) there
exists a function S e C(J, K,) satisfying the equation

N'N™ ' 4+ MW tr RohE — W NR*o hN~! = §.

Since N'N~! = —N(N~'), we can rewrite the previous formula in the following
way
(14) (N"YY + WR*onN~! = —N"1§,

where § = § — Ak’ tr Ro hE € C(J, K,).
Further, let us use V instead of N™! and let R o h be written in the form (2).
For the j-th column, 2 £ j < n, the formula (14) reads as follows

n
vy —kpVy = - Y.V,
i=j—-1 .
n
V) +hvy —hpvt =- 3 VIS,
i=j-1
(15) e e
n
WD +WVP T = hp V=~ Y V"8, 2<ms<n,
i=j-1
" ~
V) + KV —hp, V) = ",_,Z Vi b

Next we proceed similarly as in (i). Assuming h'(¢) V() # 0 for some € J and
some j, 2 < j < n, we can choose py(?), p;(#), ..., po-1(f) for the left hand side
of (15) to vanish. Therefore a nontrivial linear combination of n — j 4+ 2 columns
of the matrix V' is zero, which is a contradiction. That is why h'(?) V]'(f) = 0 for
all te J and all j, 2 < j < n. Similarly as in (i), we derive V}(f) = 0 for all teJ
and 2 £ j < n. From the last equation in (15) we get h'(¢) V]~1(f) = 0 for every
reJ and 3 <j < n As in (i), we can show V}~!() =0 for every teJ and
3 < j S n. The induction analogously yields

(16) V()=0 foreveryteJandi4j2n+2

Considering (16) and supposing h'(f) =0 for some t€J we get from the
(n — j + 2)-th equation in (15)

144 OO EI)
which is in contradiction to §/~1(r) # 0, det ¥ 3 ¢ and (16). Hence (11) is also

true in this case.
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Proof of the converse: If h e C1(J, I) and N e C'(J, GL,) satisfy (11) and (16),
where ¥ = N1, the equation (5b) corresponds to linear quasi-differential equation
of the n-th order for every R e C(l, K,), i.e. for every R e C(/, K,) the equation

(17) V' — AW tr RohV + W"R*o hV = —VS
has a solution S € C(J, K,). Writing (17) for the j-th column, 2 < j £ n, we have

n+1-~-j n
(VY +K( 3 Rieh j=AwRo W)=~ ¥ Vis]
i=1 i=
nt+1-j n+l1-m
(V) +h( Y RyohVi—itrRo hV}) = — Z Vrsi, 2SmsSn+1-j
i=m-1
Jj-1
(18) WREAZ o Ry T = _21 vitaoisi,

0=— Y vrSi, n+3—j<msn.

Since det (V7)) f=33 523" # 0 for 3 < j < n, we get S =0 for j 2i + 2. Con-
sequently, the (n 4+ 2 — _]) -th equation in (18) is

W) RYZZI@) VT A = — VI 5771

Therefore (11) and (16) yield Sj“‘(l) # 0 for every teJ and 2 S j < n. This
completes the proof of Theorem.

- The proof of Consequence proceeds in the similar way as the proof of
Theorem 2 in [2], so we sketch it only. First, we prove that 7, depends on x
only, i.e.
71(x, y) = k(x),
where k is a homeomorphism of I onto J. Then we define the mapping T =
= (T, T,) : IXGL,; — JxM, by the formula

Tl(x’ Y) = k(x)’ .
Tz(x: Y) = (Tz(xv Yl)) Tz(x’ YZ)» ceey Tz(x, Yn))’

where Y, € R" 1 = i < n. The mapping T satisfies the assumptions (A) and (B),
hence the form of this transformation is described by (3) and (4). Because of T
being defined with the aid of (19), we get only

T,(x,Y)= M(x) Y,

(19)
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where M(x) has zeros above the principal diagonal. The remaining part of the
proof follows from (19) and Theorem.
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