Miroslav Bartušek
On oscillatory solutions of nonlinear differential equations of the \(n \)-th order vanishing at infinity

Archivum Mathematicum, Vol. 26 (1990), No. 2-3, 83--91

Persistent URL: http://dml.cz/dmlcz/107374

Terms of use:

© Masaryk University, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz
ON OSCILLATORY SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS OF THE n-th ORDER VANISHING AT INFINITY

M. BARTUŠEK
(Received March 8, 1989)

Dedicated to Academician Otakar Borůvka on the occasion of his 90th birthday

Abstract. In the paper the oscillatory proper solutions of nonlinear differential equations are studied. There are given sufficient conditions for the existence of such solutions vanishing at infinity.

Key words. Ordinary differential equations, nonlinear oscillations.

MS Classification. 34 C 10.

Consider the differential equation

\[y^{(n)} = f(t, y, \ldots, y^{(n-1)}), \quad n \geq 4. \]

Let $R = (-\infty, \infty)$, $R_+ = [0, \infty)$, n_0 be the entire part of $n/2$, $D_n = R_+ \times R^n$, $N = \{1, 2, \ldots\}$.

In all the paper we shall suppose that $f : D_n \rightarrow R$ fulfills the local Carathéodory conditions, there exists $\alpha \in \{0,1\}$ such that

\[(-1)^{\alpha} f(t, x_1, \ldots, x_n) x_1 \geq 0 \quad \text{in } D_n \]

holds and $n + \alpha$ is odd; n_0 is even.

Denote $C^k(I)$, $I \subset R_+$ the set of all continuous function which have continuous derivatives up to the order k on I. $L_{loc}(R_+)$ is the set of all functions, defined on R_+, integrable on every finite segment of R_+.

By a solution of (1) defined on $I \subset R_+$ we shall mean a function $y \in C^{n-1}(I)$ for which $y^{(n-1)}$ is absolutely continuous on each segment of the interval I and y satisfies (1) for almost all $t \in I$. Let y be a solution of (1) defined on $[\bar{t}, \infty)$, $0 \leq \bar{t}$. y is called proper if for large t: $\sup_{\bar{t} \leq s < \infty} |y(s)| > 0$ holds. y is called singular if there exists $b \in (\bar{t}, \infty)$ such that $y \equiv 0$ on $[b, \infty)$ and $\sup_{\bar{t} \leq s < b} |y(s)| > 0$ for $t \in [\bar{t}, b)$. The proper (singular) solution y is called oscillatory if there exists an increasing sequence
of its zeros tending to ∞ (to b). In the other case y is called nonoscillatory. The solution $y \equiv 0$ on R_+ is called trivial.

In the two last decades a great effort is devoted to the study of proper solutions of (1), (2). One of the important problems consists in the study of conditions under which the proper solution of (1), (2) tends to zero for $t \to \infty$ (see [3], [6], [7], [9]). Our goal lies in studying this problem for oscillatory solutions.

The problem of vanishing of a solution y for $t \to \infty$ is very closely tied to the validity of the condition

$$I(y) = \int_0^\infty [y^{(\nu)}(t)]^2 \, dt < \infty$$

as it is shown in [3, 7]. Moreover, if $I(y) = \infty$ for an oscillatory proper solution y and for f being continuous on D_n, then $y^{(n-\alpha)}$ is unbounded, and under the validity of some assumptions on f, y is unbounded, too (see [3]).

First, let us state an inequality of Kolmogorov–Horny type:

Lemma 1. Let $-\infty < a < b < \infty$, $k \geq 2$, $y \in C^{k-1}[a, b]$, $y^{(k-1)}$ is absolute continuous, $v_i = \max_{a \leq t \leq b} |y^{(i)}(t)|$ for $i = 0, 1, \ldots, k-1$, $v_k = |y^{(k)}(t)|$ for almost all $t \in [a, b]$. Let $y^{(i)}$ have a zero in $[a, b]$ for $i = 1, 2, \ldots, k-1$. Then

$$v_i \leq \frac{2(k+i-1)(k-i)}{\prod_{j=0}^{i-1} j!} \max_{a \leq t \leq b} v_k, \quad i = 0, 1, \ldots, k.$$

Kiguradze [6] proved this statement for $y \in C^k[a, b]$ when proving his lemma 9.1. In our case the proof is the same.

Now, we give two existence theorems for oscillatory proper solutions tending to zero for $t \to \infty$ which generalize some results in [4].

Theorem 1. Suppose that there exist positive numbers ε, M and functions $a : R_+ \to R_+$, $g : [0, \varepsilon] \to R_+$ such that $a \in L_{loc}(R_+)$, $g \in C^0[0, \varepsilon]$, $g(0) = 0$, $g(x) > 0$ for $x > 0$ and

$$a(t) g(|x_1|) \leq |f(t, x_1, \ldots, x_n)| \leq M \sum_{i=1}^n |x_i| \quad \text{on} \quad R_+ \times [-\varepsilon, \varepsilon]$$

holds and let one of the following assumptions be valid

1° \[\alpha = 1, \quad a(t) = \frac{1}{1 + t}; \]

2° \[\lambda \in [1, \infty), \quad g(x) = x^\lambda, \quad \lim_{t \to \infty} t^{\frac{\lambda - 1}{2}} \frac{1}{(1+t)} a(t) = \infty; \]

3° \[\alpha = 0, \quad a(t) = M_1 > 0 \quad \text{for} \quad t \in R_+. \]
ON OSCILLATORY SOLUTIONS

Then there exists an oscillatory proper solution y of (1), defined in some neighbourhood of ∞ and y fulfils the conditions

$$\lim_{t \to \infty} y^{(i)}(t) = 0, \quad i = 0, 1, \ldots, n - 1.$$

Proof. Let $\alpha = 1$ and $\lambda = 1$ in the case 1°. We can suppose, that g is non-decreasing for 1° without loss of generality. Let us define functions $f : D_n \to \mathbb{R}$ and $g : R_+ \to R_+$

$$x_i = x_i \quad \text{for} \quad |x_i| \leq \varepsilon,$$

$$\bar{x}_i = \varepsilon \text{sign} x_i \quad \text{for} \quad |x_i| > \varepsilon, \quad i = 1, 2, \ldots, n,$$

$$f(t, x_1, \ldots, x_n) = f(t, \bar{x}_1, \ldots, \bar{x}_n) \quad \text{for} \quad |x_i| \leq \varepsilon,$$

$$f(t) \bar{g}(|x_1|) \leq |f(t, x_1, \ldots, x_n)| \leq a(t) |x_1|^4 + M_n \leq M_1 |x_1|^4 + M_n,$$

where M_1 is a suitable constant. Thus, with respect to [8, Th. 1.1, 1.3] and [7, Lemma 1.5] there exists a non-trivial solution y of the differential equation

$$y^{(n)} = f(t, y, \ldots, y^{(n-1)})$$

defined on R_+ and satisfying (3); such solution fulfils

$$\lim_{t \to \infty} y(t) = 0$$

in case 2°. As according to (4) singular solutions do not exist, y is proper. Further, with respect to (7) the equation (8) has only oscillatory proper solutions (see so called Property A, [6, Consequence of Th. 14.1]) and the relation (9) follows the case 1° from Theorem 4 of [3] (this theorem is proved only for $f \in C^0(D_n)$, but if f fulfils the local Carathéodory conditions, the proof is similar). Thus (9) is valid in both cases and y is oscillatory proper. It is clear from (7), (8), (9), that $y^{(n)}$ is bounded for almost all t on R_+ and according to Lemma 1 (5) holds. It is clear that with respect to (6), y is a solution of (1), too. For $\alpha = 0$ the proof is similar. We must use Property B (see [6]) instead of Property A and [2] instead of [3]. The theorem is proved.

Theorem 2. Let there exist a number $\varepsilon > 0$ and functions $a : R_+ \to R_+$, $d : R_+ \to R_+$, $g : R_+ \to R_+$, $h : R_+^{n_0+1} \to R_+$, such that $a, d \in L_{loc}(R_+)$, $g \in C^0(R_+)$, g is nondecreasing, $g(x) > 0$ for $x > 0$, $h(x_1, \ldots, x_{n_0}) \in L_{loc}(R_+)$ for arbitrary $x_1, \ldots, x_{n_0} \in R_+$, h is nondecreasing with respect to the last n_0 variables. Further, let at least one of the cases $1^\circ, 2^\circ$ from Theorem 1 be valid and
M. Bartušek

(10) \[|f(t, x_1, \ldots, x_n)| \leq d(t) \sum_{i=1}^{n} |x_i| \quad \text{on } R_+ \times [-\varepsilon, \varepsilon], \]
\[a(t) g(|x_1|) \leq |f(t, x_1, \ldots, x_n)| \leq h(t, |x_1|, \ldots, |x_n|) \times \]
\[\times [1 + \sum_{i=n_0+1}^{n} |x_i|^\gamma_i] \quad \text{on } J \]

hold where \(J = R_+ \times [-\varepsilon, \varepsilon]^{s+1} \times R^{n-s-1}, \) \(\gamma_i = \frac{2n - 2n_0 - 1}{2i - 2n_0 - 1} \) and \(s = n_0 - 2 \)
\((s = n_0 - 1) \) in the case \((1^\circ) \) (2\(^\circ\)). Then there exists an oscillatory proper solution \(y \) of (1) defined in some neighbourhood of \(\infty \) such that
\[\lim_{t \to \infty} y^{(i)}(t) = 0, \quad i = 0, 1, \ldots, s \]
holds. If \(J = D_n \), then this solution is defined on \(R_+ \).

Proof is similar to that one of Theorem 1, only we use
\[f(t, x_1, \ldots, x_n) = f(t, \bar{x}_1, \ldots, \bar{x}_{s+1}, x_{s+2}, \ldots, x_n) \quad \text{for } |x_i| \leq \varepsilon \]
\[= a(t) |x_1|^4 \text{sign } x_1 + f(t, \bar{x}_1, \ldots, \bar{x}_{s+1}, x_{s+2}, \ldots, x_n) \quad \text{for } |x_i| > \varepsilon \]
instead of (6). If \(J = D_n \), we use directly \(f \) instead of \(\tilde{f} \).

Remark. If the inequality (10) is omitted from the assumptions of Theorem 2, then there exists a solution of (1) with the property (12) which is either oscillatory proper or oscillatory singular. This conclusion follows from the proof and from the fact that nonoscillatory singular solutions do not exist (see Kiguradze's lemma [6, lemmas 14.1, 14.2]).

In the rest of the paper we shall study the differential equations of the fourth order, \(n = 4, \alpha = 1 \).

Lemma 2. Let \(n = 4, \alpha = 1 \) and let \(y \) be an oscillatory proper solution of (1) or which (3) holds. Then \(\lim_{t \to \infty} y^{(i)}(t) = 0, \) \(i = 1, 2. \) If, moreover, there exist \(\varepsilon > 0 \) and a continuous function \(g : R_+ \to R_+ \) such that \(g(x) > 0 \) for \(x > 0 \) and
\[\frac{1}{t+1} \cdot g(|x_1|) \leq |f(t, x_1, x_2, x_3, x_4)| \quad \text{on } R_+ \times [-\varepsilon, \varepsilon]^4 \]
hold, then \(\lim_{t \to \infty} y^{(j)}(t) = 0, j = 0, 1, 2 \) is valid.

Proof. Define \(z(t) = -y'(t) y(t) + 2 \int_0^t [y'(s)]^2 ds, \) \(t \in R_+ \). Then (see (1), (2))
\[z'(t) = -y''(t) y(t) + [y'(t)]^2, \quad z''(t) = -y'''(t) y(t) + y'(t) y''(t), \]
\[z'''(t) = -y^{(4)}(t) y(t) + [y'(t)]^2 \geq 0 \quad \text{for almost all } t \in R_+ \]
In [3] it was proved for \(f \in C^0(D_4) \) that \(|z^{(i)}| \) are nonincreasing

\[(13) \lim_{t \to \infty} z^{(i)}(t) = 0, \quad i = 1, 2, \quad \lim_{t \to \infty} y'(t) = 0, \quad \int_0^\infty t \, y'(|t|) \, y(t) \, dt < \infty \]

hold. This statement can be proved for \(f \) fulfilling the local Carathéodory conditions similarly.

It was proved in [1] that there exist sequences \(\{t_k^i\}, k \in \mathbb{N}, \, i = 0, 1, 2, 3 \) and \(\tau \in \{-1, 1\} \) such that \(0 \leq t_k^0 < t_k^2 < t_k^3 < t_{k+1}^3, \lim_{k \to \infty} t_k^i = \infty, \ y^{(i)}(t_k^i) = 0, \ (-1)^i \tau y^{(i)}(t) < 0 \) on \(\left[t_k^i, t_{k+1}^i \right] \), \(i = 1, 2, 3, \ (-1)^j \tau y^{(j)}(t) > 0 \) on \(\left(t_k^i, t_k^i + 1 \right), j = 0, 1, 2, \) \(\tau y^{(i)}(t) \leq 0 \) on \(\left[t_k^3, t_{k+1}^3 \right] \) hold. Thus \(|y''(t)| \) is over the tangent (under the tangent) on \(\left[t_k^3, t_{k+1}^3 \right] \).

\[(14) \quad |y''(t)| \, (|y''(t)|) \quad \text{is nonincreasing on} \quad \left[t_k^3, t_{k+1}^3 \right] \, \left(\left[t_k^3, t_{k+1}^3 \right] \right), \quad k \in \mathbb{N}. \]

Put
\[A_k = t_{k+1}^2 - t_k^2, \quad A_{k1} = t_{k+1}^0 - t_k^2, \quad A_{k2} = t_{k+1}^2 - t_k^1, \quad A_{k3} = t_{k+1}^3 - t_k^2, \]
\[I_{k2} = [t_k^1, t_k^2], \quad I_{k3} = [t_k^2, t_k^3], \quad \mathbb{I} = [t_k^0, t_k^1]. \]

First, we prove that the sequence of the absolute values of local extremes of \(y^* - \{|y''(t)|\}^\infty \) is non-increasing. If \(A_{k2} > A_{k3} \), then by use of (14) we have

\[|y''(t_{k-1}^{3})| \geq |y''(t_k^3)| = \int_{I_k^2} |y'''(t)| \, dt \geq \int_{I_k^3} |y'''(t)| \, dt = |y''(t_k^3)|. \]

If \(A_{k2} \leq A_{k3} \), then by use of (14) we have

\[|y''(t_k^3)| = |y''(t_k^3)| \leq \int_{I_k^2} |y''(t)| \, dt \leq \int_{I_k^3} |y''(t)| \, dt \leq |y''(t_k^3)|. \]

and thus

\[|y''(t_{k-1}^3)| \geq |y''(t_k^3)| \geq |y''(t_k^3)| \frac{A_{k3}}{A_{k2}} \geq |y''(t_k^3)|. \]

From this and from (15), in both cases, the sequence \(\{|y''(t_k^3)|\}^\infty \) is non-increasing. We prove by the indirect proof that \(\lim_{t \to \infty} y''(t) = 0 \). Thus, with respect to the last result we can suppose, that there exists a constant \(M > 0 \) such that

\[(16) \quad |y''(t_k^3)| \geq M, \quad k \in \mathbb{N} \]

holds. By virtue of (3), (14) and (16) we have
\[
\infty > \sum_{k=1}^{\infty} \int_{I_k^2} \left[y''(t) \right]^2 \, dt \geq \sum_{k=1}^{\infty} \left\{ \int_{I_k^2} \left[y''(t) \frac{t - t_k^2}{A_{k3}} \right]^2 \, dt + \int_{I_k^2} \left[y''(t) \frac{t_k^0 - t_k^3}{A_{k1} - A_{k3}} \right]^2 \, dt \right\} \geq \sum_{k=1}^{\infty} \frac{1}{3} \left[y''(t_k^3) \right]^2 (t_k^3 - t_k^0),
\]
(17) \[\sum_{k=1}^{\infty} A_{k1} < \infty. \]

As

(18) \[M \leq \left| y''(t_k^2) \right| = \int_{t_k^3} y''(t) \, dt \leq \left| y''(t_k^3) \right| A_{k3} \leq \left| y''(t_k^2) \right| A_{k1}, \]

then according to (17)

(19) \[\lim_{k \to \infty} \left| y''(t_k^2) \right| = \infty. \]

Thus, by use of (14)

\[
\left| y''(t_k^2) \right| \frac{A_k^2}{2} = \int_{t_k^3} \left| y''(t_k^2) \right| (t_k^2 - t) \, dt \leq \int_{t_k^3} \left| y''(t) \right| \, dt =
\]

(20) \[| y'(t_k^2) | + | y'(t_k) | \to 0, \]

\[\lim A_k = 0. \] From this and from (17) \[M = \frac{2}{\pi} \max_{k \in N} (t_{k+1}^0 - t_k^0) < \infty. \] By use of Levin's lemma [6, Lemma 4.7] and (3) we have

\[
\int y'(t)^2 \, dt \leq \sum_{k=1}^{\infty} \int_{t_k^0}^{t_{k+1}^0} y'(t)^2 \, dt \leq \sum_{k=1}^{\infty} M_k^2 \int y''(t)^2 \, dt \leq
\]

(21) \[\leq M^2 \int_0^\infty y''(t)^2 \, dt < \infty. \]

As the function \(z \) is nondecreasing, it is clear that \(z(\infty) < \infty \) and (see (13) and (2))

\[\int_0^\infty t^2 y''(t)^2 \, dt = 2 \int_0^\infty \int_0^\infty \int y''(t)^2 \, dt \, dt \, dt \leq 2 \int_0^\infty \int y''(t) \, dt \, dt \, dt < \infty. \]

If we use this result and Carlson's inequality [5], we get

\[\| y'(t) \| \leq \pi \left[\int_0^\infty y''(t)^2 \, dt \right]^{1/4} < \infty. \]

Thus, by virtue of (18) and (20)

(22) \[\infty \geq \sum_{k=1}^{\infty} \int_{t_k} y''(t) \, dt \geq \frac{M}{2} \sum_{k=1}^{\infty} A_k^2. \]

Let \(N_1 \subset N \) be the set of indexes \(k \) such that \(A_k \geq A_{k1} \). Then it follows from (22) that \(\sum_{k \in N_1} A_k < \infty. \) If \(A_k < A_{k1} \), by use of (17) we have

\[\sum_{k \in N \setminus N_1} A_k \leq \sum_{k \in N \setminus N_1} A_{k1} < \infty. \]

Thus

\[\sum_{k \in N} A_k < \infty, \quad \sum_{k \in N} A_k + d_{k1} < \infty. \]
which contradicts the fact that \(\lim_{t \to \infty} t^0_k = \infty \). This contradiction proves that
\[
\lim_{t \to \infty} y^\nu(t) = 0.
\]

Now we prove by indirect proof that \(\lim_{t \to \infty} y(t) = 0 \). Thus suppose without loss of generality that \(y(t_k^1) \geq M_1 > 0, k \in \mathbb{N} \). Let \(s \) be an arbitrary number, \(s \leq e, s \leq M_1 \). Define numbers \(\tau_k^1, \tau_k^2 \) in the following way: \(t^0_k < \tau_k^1 < \tau_k^2 < t^1_k \),
\[
|y(\tau_k^1)| = \frac{s}{2}, \quad |y(\tau_k^2)| = s, \quad k \in \mathbb{N}, \quad J_k = [\tau_k^1, \tau_k^2].
\]
Then there exists an index \(k_0 \in \mathbb{N} \) such that (see (13): \(\lim_{t \to \infty} z^\nu(t) = 0 \))
\[
(23) \quad \frac{s}{2} \leq |y(t)| \leq s, \quad |y^{(i)}(t)| \leq s, \quad i = 1, 2, 3, \quad t \in J_k, \quad k \geq k_0
\]
holds. Moreover, \(\tau_k^2 - \tau_k^1 \geq 1/2 \) because
\[
s/2 = |y(\tau_k^2)| - |y(\tau_k^1)| = \int_{J_k} |y'(t)| \, dt \leq s(\tau_k^2 - \tau_k^1).
\]
From this and from (23), (13) we have
\[
\infty > \int_0^\infty \sum_{k=0}^{\infty} \int_{J_k} g(|y(t)|) \, |y(t)| \, dt \geq \frac{cs}{2} \sum_{k=0}^{\infty} (\tau_k^2 - \tau_k^1) = \infty, \quad c = \min_{s/2 \leq x \leq s} g(x).
\]
This contradiction proves the theorem.

Remark. It follows from the proof of the lemma 2 that the sequences of the absolute values of local extremes of \(y' \) and \(y'' - \{ |y'(t_k^2)| \}, \{ |y''(t_k^2)| \}, k \in \mathbb{N} \) are nonincreasing.

By use of Lemma 2 the existence Theorem 2 can be generalized.

Theorem 3. Let \(n = 4, \alpha = 1, \) there exist number \(e > 0 \) and functions \(g : \mathbb{R}^2 \to \mathbb{R}_+ , d : \mathbb{R}_+ \to \mathbb{R}_+ , h : \mathbb{R}_+^3 \to \mathbb{R}_+ \) such that \(g \in \mathcal{C}_0(\mathbb{R}_+^2) \), \(g \) is nondecreasing with respect to the first argument, \(g(x_1, x_2) > 0 \) for \(x_1 > 0 \), \(d \in L_{loc}(\mathbb{R}_+) \), \(h(., x_1, x_2) \in \mathcal{E}_{loc}(\mathbb{R}_+) \) for arbitrary \(x_1, x_2 \in \mathbb{R}_+ \) and \(h \) is nondecreasing with respect to the last two variables. Further, let (10) be valid and
\[
\frac{1}{t+1} \ g(|x_1|, |x_2|) \leq |f(t, x_1, x_2, x_3, x_4)| \quad \text{on} \quad R_+ \times J \times [-e, e]^2,
\]
\[
|f(t, x_1, x_2, x_3, x_4)| \leq h(t, |x_1|, |x_2|) \ (1 + |x_3|^3 + |x_4|) \quad \text{on} \quad R_+ \times J_1 \times R
\]
where \(J = [e, e]^2, J_1 = [-e, e]^3 \). Then there exists an oscillatory proper solution \(y \)
of (1), defined in some neighbourhood of \(\infty \) such that

\[
\lim_{t \to \infty} y^{(i)}(t) = 0, \quad i = 0, 1, 2
\]

holds. If \(J = R^2 \) and \(J_1 = R^3 \), then this solution is defined on \(R_+ \).

Proof. The statement of the theorem can be proved similarly to Theorem 2, where we put \(f(t, x_1, x_2, x_3, x_4) = f(t, \bar{x}_1, \bar{x}_2, x_3, x_4) \), \(g(x_1, x_2) = g(\bar{x}_1, \bar{x}_2) \); \(\bar{x}_i \) are given by (6). Thus \(\frac{1}{t + 1} g(|x_1|, |x_2|) \leq |f(t, x_1, x_2, x_3, x_4)| \) on \(R_+ \times R^3 \times [-\varepsilon, \varepsilon] \). Then the existence of the solution \(y \) of (8), defined on \(R_+ \), is guaranteed. We must consider two facts, only. First, we can see that the assumptions of Lemma 2 are fulfilled and thus (25) is valid if \(y \) is oscillatory proper. The second fact consists in the conclusion that the proper solution \(y \) must be oscillatory. Let us prove this fact. According to Kiguradze’s lemma every nonoscillatory proper solution with the property (3) must fulfill the conditions

\[
y^{(i)}(t) \neq 0 \quad i = 0, 1, 2, 3, \quad |y(t)| \text{ is increasing,}
\]

\[
|y'(t)| \text{ is decreasing in some neighbourhood of } \infty,
\]

\[
\lim_{t \to \infty} y^{(j)}(t) = 0, \quad j = 2, 3.
\]

Suppose, that for \(y \) (26) holds. Then we have for a sufficiently large \(\tau \infty >

\[
\int_{\tau}^{\infty} |y''(t)| \, dt \geq \int_{|y'(t)|}^{\infty} \frac{1}{t + 1} g(|y(t)|, |y'(t)|) \, dt \geq K \int_{\tau}^{\infty} \frac{1}{t + 1} \, dt = \infty, K =
\]

\[
= \min_{0 \leq \varepsilon \leq \varepsilon_1} \frac{\varepsilon_1}{\varepsilon}, \quad \varepsilon_1 = \max_{\tau \leq t < \infty} |y'(t)|. \text{ This contradiction shows that}
\]

every proper solution is oscillatory. The theorem is proved.

REFERENCES

ON OSCILLATORY SOLUTIONS

M. Bartušek
Department of Mathematics
Faculty of Science, J. E. Purkyně University
Janáčkovo nám. 2a
662 95 Brno
Czechoslovakia