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ON THE NATURAL OPERATORS
OF BIANCHI TYPE
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Abstract. In this paper we determine all natural operators J'Y — VY ® A 3T*X for a fibred
manifold ¥ — X. We prove that the only operator of this type is the zero operator. This gives
another proof of the Bianchi identity for generalized connections.
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In this paper we determine all natural operators J'Y —» VY ® A 3T*X for
a fibred manifold Y — X. We prove that the only operator of this type is the zero
operator. This gives another proof of the Bianchi identity for generalized con-
nections.

In the paper we use a form of Bianchi identity for generalized connections
described in [1] by I. Kolaf and his method for finding all natural operators of
certain types elaborated in [2], [3].

The author is grateful to Professor I. Kolaf for suggesting the problem, valuable
remarks and useful discussions.

1. Let p: Y- X be a fibred ‘manifold, dim Y =n + m, dimX = n, and let
(x, y?) be a fibre chart on Y. A generalized connection I' on Y is a section
I': Y- J'Y of the first jet prolongation with respect to target jet projection
B :J'Y — Y. Inlocal fibred coordinates (x’, y?, y?) on J! Y, the equations of I are:

(1 I:y?l=Fi(x,y) or dy?=Fx,y)dx’

with arbitrary smooth functions F/(x, y) on Y.
Let I'¢ denotes the horizontal lift of a vector field £ on X. In local coordinates,

if & = ¢(x) % then its horizontal lift is of the form: '
x v

0 ' -
=

@ re = z‘(x)—ag—, + F(%, ) €()
X dy
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The curvature of a connection I'on Yisamap Q- : Y- VY ® A 2T*X determined
by the difference: [I'¢, '] — I'([£, {]) for any vector fields ¢, { onX, [2]. In local
coordinates, the curvature Qr of I' is of the form:

14 P
aFfi + F? 6F’)dx'/\dx’ ®
ox 0y?

3 Qr=95dx'Adxj® 9 =(
day*?

Curvature Qr determines a natural operator
Q:J'Y-> VYQ® A2T*X, r- Qr.

0
ay*? )

Consider the flow prolongation VT'¢ on VY of the horizontal lift I'¢:

@ Vl‘é—é' . + Fl¢! 9
ay°?

p s
+ aFi qul ,
o0y? oyY?
where (x!, y?, YP) are the induced coordinates on VY. The vector field VI'¢ on VY

defines a horizontal lift with respect to a unique connection VI on VY — X of
the form:

G VI:dy? = F¥x, y)dx',  d¥? = ZF Lyt !
y?

We use a construction of the exterior differential of curvature
Qr: Y- VY ® ® A 2T*X with respect to the vertical lift V'T, given in [1] in the
form: ‘

(6) , ' dyrQe: Yo VY ® A3T*X,
oQh oQh  OFf o )

dyrQ2r = L+ Fy
vreer (ax kay, 3y

dx*A dxiAdx/ ®——§—.
ay?
Evaluating (6), we obtain the following'

Proposition 1. [1] (Bianchi 1denmy) It holds: dyrQ¢ = 0.
The rule I' — dy Q2 is a natural operator

) A:JY> VY® AST*X.
The Bianchi identity says that A is the zero operator.

The following Proposition determines all natural operators of Bianchi type:

Proposition 2. The only natural operator J'Y » VY @ A *T*X is the zero
operator.

Proof: I. The second order natural operators A :J'Y > VY ® A 3T*X are
in bijection with the natural transformations A : J3(J'Y) - VY ® A 3T*X o
with G} ,, — equivariant maps of standard fibres

r(8) (J*(=J™ ,fRR") - R™*™ - R™ @ A *R"™,
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where G, , is the group of all 3-jets at origin of the diffeomorphisms of R**™: %' =
= x'(x), 77 = y®(x, y) preserving origin and the fibration p:

Rn+m - R".
Any section ¢ : R*"*™ — JY(R"*™ — R") is of the form:
© o (x, y?)- (5 % o = af(%, y)).

The canonical coordinates on the standard fibre J3J! of the second jet prolonga-
tion JX(J'(R"*™ — R") —» R"*™) are:

(10) yi, yipj’ yipq’ Yf,'k’ yar’ ,}’qu-

The coordinates on G} ,,, which correspond to the values of the partial derivatives
of functions x'(x), y?(x, y) at the origin are:

i i P P P P P p P P
(11) Ajs Qjs jurs Ay s Al A7y Agys Qgys Agris Agyys Agrse

Using standard evaluations we find the following action of G ,, on the standard
fibre J2J!:

(12) y¥ = alya} + afaj,
7

¥

p,ryl~s p,rys>l prl~s
arylsaiaq + ars.Vlaqai + alsaiaq’

p,,r ~ivm r~ivs p,,r>i
alyima:ay + alynaa; + alyiay +
ryl~s )4

P relvm pl

+ axyiaia; + apyaia; + aja;; +
~I~ ~ ~'

+ ajaa; + afaja;,

SP Pyt Nsvuvl p,t s vl
yiqr =4a, ylsuaqarat + a; .YIsaqrai +
Pt ~uvs~l p.trs ~l
+ atuylsaraqal + atsylaqrai +

~yn~ g tvy~s~l o

+ abyidraga; + ab,yaraga; + )
+-alyiagd; + af.a,a5a,,
Pha = alVimdghiay + alyj.didqa; +
+ abyind@idy + ahynajaga; +
+ alyLaiaga; + alynaias, +
+ alyiagay + al,yhasaia; +
+ abyjasay, + alyiasar +
+ ol yiajaLa; + abndgyiagay +
+ afaljas + afali, + afalasa; +
+ ak,araay,
Pl = Oyl + |
where @ = a~' means the inverse element in G,,,. ' A
Any G;, — equivariant map f:J3J' > R™ ® A *R"* is the composition of
a G}, — equivariant map
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g:J2J!' - R™ @ ® *R™ and of the alternation alt: R® @ ® *R"* —» R™ ® A *R™.
G2 ,, acts on the standard fibre R" ® ® 3R"* by:

13) . 2l = alzfalatay.
Let a map g : J3J! - R™ ® ® *R"* have the coordinate expression:

(14) uk gl)k(yi$ yiq’ ylj’ qur’ yuqs yuk)

Consider first equivatiancy of g with respect to the base homoteties: a; = ksj,
= 07 and all others a’s vanishing. This gives a homogeneity condition:

a1’ . kgl = glulkyl, kyly, K2yl kyhs K2 YT, K25
Since gf, are globally defined smooth functions, (15) implies that g7 is a poly-
nomial which can consists of some expressions: linear in yj, bilinear in: (y7, yf),

(y‘p’ yl;jq)9 (yiql yu)a (qua yijq)’ (qun yrj)s (y iqrs y l.l‘l) tr]hnear ln (y: ’ qu, ytqr)
P8 Y5 O ¥E ¥ia)s O Yis YR 08, Yiars Yiar)s Vs Yias ¥iar)s Wls Yiars Yiar)-

Equivariancy with respect to the fibres homoteties: a = dj, a2 = kdé?, and
with all others a’s vanishing, gives:

1
(16) kgljk = gi]k (kyn y!q’ kylj’ qurs yuq’ kyljk)

Combining equivariancy with respect to fibres and base homoteties (16), (15),
we get that g/ is a polynomial consisting some expressions: linear in y%;, bilinear

in (7, ¥%59)> (y,,,,y,,) and trilinear in (y,,y,q,y,q), 7, ¥7, y5,). We shall use the
fact that every G! x G}, — invariant tensor P is & linear combination of the products
Q0 ® T, where Q is G,‘l — invariant tensor and T is G), — invariant tensor, [3].
By symmetry of the following expressions:

(7 VB VIV Vs VEV SV ies VI Ears VIV Ve
their alternations are equal to zero. Thus, the map
f:J2I' - R™ @ A 3R"™* has the form:
(18) SEe = Buyiyiag + B2yiiVing + vivliaVia +
+ V2V i + MYV + Aayiyiyae +
+ UYEY Prar

Considering equivariancy of f with respect to the subgroup: aj = 8, ab = oF
and all others a’s arbitrary, we get a sum including among others the following
independent terms and the sum is equal zero!™

(19) B1aiyjirgs B2(1Y fia> V1Y 6ia@ 61> Y2Vt Sk15
AL YU9JeYhys A2V (18 ]qVi s KYGA ] Visar-
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Hence, we get: ; = B, =9, =79, =4, = 4, = u = 0. In this way we obtain
the zero map f : J2J' = R™ ® A *R"* only.

II. Assume, we have an r-th order natural operator 4 : J'Y » VY ® A 3T*X,
It corresponds to G,%, — equivariant maps between the standard fibres
f:JpJ' - R™ ® A>R"™. Denote by y?,, the partial derivatives of y? with respect
to a multiindex « in x* and a multiindex  in y*. Any map f:JgJ! > R" @ ® *R"*
is of the form:

28 = S iu(Vhp)s o]+ |8l =V
Using base homoteties we obtain a homogeneity condition:
(20) k3 f = fhuk' k).

This implies that f7, is independent on yf; for |a| = 3 and is linear in yj,,
bilinear in (yf;, yf,) and trilinear in yf.
Using fibre homoteties, we get:

(21) Kf T = Sk ~Vykp).

Hence, f} is independet on y/,; for | f| = 1. Both (20), (21) homogeneity condi-
tions implies that ff, is linear in y%,, bilinear in (y7, yi,), (v, ) and trilinear
in (y7, v, y5)» O, 7, yh). Hence the r-th order natural operators are reduced
to the case I for every r > 2. By Slovak theorem [5] every operator of this type
has finite order. This proves Proposition 2.
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