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TRANSFORMATIONS OF LINEAR HAMILTONIAN
SYSTEMS PRESERVING OSCILLATORY BEHAVIOUR

ONDREJ DoSLY

(Received September 14, 1990)

ABSTRACT. The transformations of linear Hamiltonian systems which preserve os-
cillatory properties of these systems are investigated. The main result of the paper
(Theorem 1) generalizes the well-known duality in oscillatory behaviour of mutually
reciprocal Hamiltonian systems.

1. INTRODUCTION

The principal concern of this paper is to study relations between oscillatory
behaviour of the linear Hamiltonian system

(1) Jz' = A(t)z,

where A : I = [a,00) = R?"*?" is a symmetric matrix, J = ( OI I(;'), I, is
—in

the identity n x n matrix, and the linear Hamiltonian system

(2) Juw' = B(t)w,

which is related to (1) via the transformation

) z = R(t)w,

where R(t) € C'(I) is a 2n x 2n J-unitary matrix, i.e.,

4) RT(t)J ’R(t) J or, equivalently R(t)JRT(t) = J.

It is known, see e.g. [2], that if R(t) is J-unitary then (2) is also a lmear
Hamiltonian system, i.e., BT (t) = B(t) (“T” denotes the ttanspose of il'he matrlx
indicated). In more detalls let :

C(w\ . (¥\ 4_[(-C -AT\ o _(H M\ ,_, -.-C*' _AT
e=(0)w= () 4= %) m=(k ¥)5=( %)
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then (4) implies

(5) HT'K = KTH, MTN = NTM, HIN-KTM =1,,
HMT = MHT, KNT = NKT, HNT - MKT =1,

systems (1), (2) can be written in the form

(6) u' =A(t)u + B(t)v, Y = A(t)y+ B(t)z,
v == C(t)u—AT(t)v, 2 =-C(t)y-AT(t)z,

and

NT(-H' + AH + BK) + MT(K' + CH + ATK),
NT(-M'+ AM + BN) + MT(N' + CM + ATN),
_HT(K'+CH+ATK)+KT( H' + AH + BK).

(7)

Recall that two points t1,%2 € I are said to be conjugate relative to (1) if there
exists a solution (u, v) of (1) such that u(t;) = 0 = u(t2) and u(t) is not identically
zero between t; and t2. Equation (1) is said to be oscillatory if for every b € [a, 00)
the interval [b, 00) contains at least one pair of distinct points which are conjugate
relative to (1). In the opposite case (1) is said to be nonoscillatory.

The simpliest case of the transformation which preserves oscillation behaviour
of the transformed linear Hamiltonian systems is the case when M (¢) = 0 in R(t),
this trivial case will not be taken into consideration here. Another known result
is the fact that if the matrices B(t), C(t) are nonnegatlve definite on I, then the

“reciprocal” system -

o (W)

. ‘ ' z) T\ =-B@®) A@l))\z)’

which is the result of transformation (3) with R(t) = J applied to (1), is nonoscil-
latory if and only if (1) is nonoscillatory, see [1, 3, 6, 9, 10].

In this paper we shall show that under an additional assumption (which cor-
responds to the assumption of nonnegativity of B,C) systems (1) and (2) have
the same oscilatory behaviour whenever the matrix M(t) in R(t) is nonsingular
on I. In the last section this results is applied to the self-adjoint, second order,
differential system

(R®)U') + P(t)U =0,

where P, R: I — R™*" are of the class C! and symmetric, R(t) is positive definite.
Particularly, we shall find the explicit form of the second order system whose
solution is the linear combination G1(t)R(t)U’ + G2(t)U, G1, G2 : I — R™*".
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2. PRELIMINARIES

Consider the matrix linear Hamiltonian system
= A@t)X,

where the 2n x 2n matrix X (t) consists of n x n matrices Uy, V;, Us, V3,

Ui(t) Ualt
xo= (4o i)

Since (XT(t)JX(t)) = 0, the matrix X(t) is J-unitary on I whenever it is J-
unitary at some ¢ € I. If this is the case, then

9 Ur Vi) - VT @Uit) =0, i=1,2,
(10) Ul @)va(t) — VT @)Ua(t) = I,

and also

(11) Ur(8)UF (t) - U2(t)UT (t) =0,

i(OVF (t) = Va(t)V{T (¢) =0,
Uy ()VT (t) = U2()V{T () =I,.

Any 2n x n solution (U, V) of (1) satisfying (9) is said to be self-conjugate (another
terminology is isotropic [4], self-conjoined [11] and prepared [8]).

Recall some known results concerning oscillatory properties and transformatxons
of linear Hamiltonian systems which we shall use later.

Theorem A [6]. There exists J-unitary matrix R(t) € C‘(I) with M(t) =0 -
which transforms (1) into the so-caIIed trigonometric system, i.e., the system (2),
where A = 0, B(t) = -C(t) =: Q(t). Particularly, any 2n x 2n J- umtary solutxon
X(t) of (1) can be expressed in the form -

i) Ua(t) _ ci) S\
(% @)==0(50 &)

where (S(t), C(t)) is the 2n x 2n solution of the system - -
(12) §'=Q()C, C'=-QQ)S. .

Moreover, if the matrix B(t) is nonnegat:ve definite then Q(t) is a.lso nonnegatxvev
definite. :
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Theorem B [10]. Let the symmetric matrix Q(t) € C(I) be nonnegative def-
"me on I. Then the trigonometric system (12) is nonoscillatory if and only if
f TrQ(t)dt < oo, where T'r( ) denotes the trace of the matrix indicated.

Theorem C [7]. Consider two trigonometric systems
(13); Si = Qi(t)Ci, Ci = -Qi(1)Si, i=1,2,

where Qi(t) € C(I) are nonnegative definite n x n matrices. Let the solutions
(Ss, Ci) satisfy

(14); ST®Si) +CTWCi(t) = I,  ST@)Ci(t) = CT1)Si(2).

If the matrix 6'1 )ST (t) - Ca(t)ST (t) is nonsingular on I then }oTr Qi1(t)dt < o0

if and only if f Tr Qa(t)dt < o, i.e., (14); and ( 14)2 have the same oscillatory
behaviour.

Observe that solutions (S;, C;) of (13); satisfying (14); always exist. Indeed,
the 2n x 2n matrix W; = i Si is a solution of JW! = -Q 0 W;,
-S.' C.' ' 0 "Q:’
hence W; is J-unitary on I whenever it has this property at least at one point and
it follows that (S;, C;) also satisfy identities

(15); SiOST O +C)CT () =1,  Si()CT (t) = Cit)ST (1) -
3. TR.ANSFOR.MATIONS PRESERViNG OSCILLATORY BEHAVIOUR
In this section we extend the result concerning duality between oscillatory be-
haviour of (1) and its reciprocal system (8), mentioned in Section 1.
. , _(H@®) M) .
Theorem 1. Let the 2n x 2n J-unitary matrix R(t) = (K(t) NG )’ with

M (t) nonsingular on I, transform ( 1) into (2). If the matrices B(t) and B(t) are
nonnegative definite on I then (1) is nonosczllatory if and only if (2) is nonoscilla-
tory.

~ Proof. Let X(t), W(t) be 2n x n J-unitary solutions of (1) and (2), respectively.
By Theorem A there exist nonnegative definite n x n matrices Q.(t) and 2n x2n J-
unitary matrices R;(t) € C(t) of the form R; = (I}? HT' ) such that the
transformations X = Ri(t)W;, W = R,(t)W2 transform (1) and (2) into the
trigonometric systems with the matrices Q1(t), Q2(t), respectively. Particularly,

u U2\ _(Nh Y.
exm (5 0, we (3 ) gen

(16) : - U= HCy, Uz = H1 5,



TRANSFORMATIONS OF LHS 215
(17) Y1 = HaCy, Yz = HaSs,

where (S;,C;) are 2n x n matrix solutions of (13);, satisfying (14); and (15);.
Since R(t) transforms (1) into (2) we have Uy = HY; + M2, U; = HY, +
M Z;. Substituting these equalities into (16) we get HY; + MZ, = H,Cy, HY; +
MZ; = H,S;. Multiplication of these equalities from the right by —-Y,T and YIT,
respectively, their addition and substitution of (17) into right hand-sides gives

HWYT = YoYT) + M(2,Y] - 2,Y]) = Hi(C.ST - C1ST)HT .

As the solution W (t) is J-unitary, using (11) we have ;Y = Y,YT, Z,YT -
Z,YT = I,,. Hence, the matrix (C.ST —C,57) = fIi’lMHg"l is nonsingular on I
and by Theorem C (13);, (13) are simultaneously oscillatory or nonoscillatory. As
the transformations converting (1) into (13); and (2) into (13)3 preserve oscillatory

behaviour (M;(t) = 0, see the note in Sec. 1), the same statement holds for systems
(1)and (2). O :

Using the duality in oscillation behaviour between (1) and its reciprocal system,
one can prove the following modification of Theorem 1.

Theorem 2. Let the 2n x 2n J-unitary ‘matrix R(t) € C'(I) of the form
R= (g 1\;) transform (1) into (2). Suppose that the matrices B, C, B, C in
(1) and (2) are nonnegative definite on I and the matrix K(t) in R(t) is nonsin-

gular. Then (1) is nonoscillatory if and only if (2) is nonoscillatory.

Proof. The idea of the proof is the same as in Theorem 1. Suppose that (1)
is nonoscillatory. Since B, C are nonnegative definite, system (8) — the re-
ciprocal system to (1) — is also nonoscillatory. Now, apply to (8) and (2) the
transformation which converts these system into trigonometric system, but in the
form which preserves zeros of the second component z of a solution (y, 2), i.e.,

R = (H‘ i 1 ) Then by the same argument as in the above proof, nonsin-

gularity of the matrix K(t) (which now plays the same role as M(t) above) and
the statement of Theorem C imply that the system reciprocal to (1) has the same
oscillation behaviour as (8) (and hence as (1)). Since the matrices B, C are non-
negative definite, the same statement holds for the system reciprocal to the system
reciprocal to (2), i.e., for system (2). O -

4. SECOND ORDER SYSTEMS
Consider the second order system
(18) (R@)U'Y + P(t)U =0, o

where R, P : I — R"*™ are symmetric, of the class C!(I) and R(t) is pgsitive'
definite. We shall look for a second order system, whose solution is the, flinear
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combination” G1(t)R(t)U’ + Ga(t)U, where Gy, Gz : I — R™*™ are of the class
C?(I). The results of this section generalize the results of [12], where a similar
problem was studied in the scalar case, i.e., n = 1.

Since (18) can be written in the form of the linear Hamiltonian system with
U=U, V = RU', we can use the results of the preceding section with G,(t) =
M(t), Ga(t) = H(t). Hence , in order to obtain a second order system which is

also self-adjoint and has the same oscillatory behaviour, the following assumptions
are needed

(19) G1(1)G7 (t) = Ga(t)GT (1),

(200 G1(t) is nonsingular on I.

The main difficulty is to find the matrices K, N, which, together with H =
G2, M = G, form the J-unitary matrix, in such a way that the resulting lin-
ear Hamiltonian system will be equivalent to a second order system. To overcome
this difficulty, we proceed as follows. Let Y;, Y, : I — R"*" be the solutions of
the second order system (which may be generally nonself-adjoint)

(21) Y" + Py(t)Y' + Po(t)Y =0,

where Py, Py : I — R"*™. It follows that_

Y: Y, ‘_ 0 I Y1 Y,
Y Yi) " \-P -Pi)\Y{ ¥

and if Y}, Ys form the basis of the solution space of (21) then

(5 5)=GE )G %)
- -P)\Y Y )\Y Y]
Hence, to compute the matrices Py, P; if the solutions Y;,Y> are known, we need
to compute the inverse matrix to the Wronski matrix of the solutions Y3, Ys.

Let U,V, be two self-conjugate solutions of (18) (i. e., UT'RU = UTRU',
VT'RV = VT RV") for which UT (t)R(t)V'(t)~UT (t)R(t)V (t) = I,. This identity,
together with self-conjugacy of U and V imply

(22) vvT =vuT, uvT = yviuT,
vvT —yuT = g1,
Dernote
Yi=GRU' + GU, Y= G1RV' + G,V.

. We have V1Y - Y2YT = (G, RU’ +GoU . r
(U RGT + UTGT) = Gy rpyr © oW RGT +VTGT) ~ (GLRV! +GyV)

V'UTYRGT + G,R(U'VT — VIUTYGT +
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G2(UVT — VUT')RGT + Gy(UVT - VUT)G] = -G1G] +G»GT = 0.

Similarly YlYT YgYT = G,PGT - GlGT + GQGT + GzR‘lGT If 1,
form the basis of the solution space of (21), the last matrix is nonsingular, see
[11], denote it R7!. Observe that in view of (19) this matrix is symmetric. Further
denote Q =Y,YT', L = Y'YT”—Y YT Then YT -YoYT" = (R +Q-QT
and (QT -Q) = Y{’YT -YIYT +Y! sz” —Y/YJ" = —LT + L, hence the matrix
Q' — LT is symmetric. Now,

i\ 2N/ YT -YI\_( R 0
YU Yy)\-y" vT ) \Q"-Q R{')’

G 3" CF ) (e £)
Y! V3) T\-YT YT J\R(Q-QT)Ry R}’
1t follows
(o I,,) (Y, Y;)(Y-}" —Y,T)( R, 0)_
-P, -P, Y Yy )\-yT yr Ri(Q-QT)Ri Ry~
(% ey Sir-a) (o, £)
T\ -7 (RIY+QT-Q/ \Ri(Q-QT)R: R,

and thus the equation we look for is of the form Y —[(R7 ') Ry +(QT —Q)Ry]Y' -
[-LT + (RTYYR1(QT - Q) + (QT — Q)R1(Q — QT)]R,1Y = 0. Multiplying this
equation from the left by R,, after some computation we get

hence

(29)
[R1Y’' + RiIQRY)-R1QTRY' + Ry[LT — Q' - QRIR;' - RT'RIQT-
- (@ - QRI(Q-QNIRY =0.
This equation is self-adjoint since both R, and (LT — Q' —QR{R;' - R;'R{QT -
(QT — Q)R1(Q — QT)) are symmetric. If Y;,Y; are given by (23), a routine com-
putation gives
(25) '
' Q" - Q = G{PGT - G\G,™ - G\PR™'G] +G,R"'G}
L=G\P'GT -G\R'G}" + G{PR'G} - G\PGT" + G,PR-‘PGT
-2G1PR™'G] + G\PR™'R'R™'G] + G\G]" - G2R™'PGT + 26} R"‘G’T—
—-G4R'R'R'G} 4+ G,R1P'GT - G:R-lcﬂ‘"+
+2G1 PGT' + 2GR~ ‘PGT o

The following theorem summarizes the preceding compqtatlons. SR
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Theorem 3. Let Gy, G2 : I — R™*" satisfy (19), {20) and suppose that the
(symmetric) matrix R;* = (G1PGT — G1GT' + G3GT + G2R~1G,T) is positive
definite on I. If U is a solution of (18) then the matrix Y = G1RU' 4+ GU is a
solution of the self-adjoint equation (24), where the matrices Q, L are given by
(25). Moreover, this equation is nonoscillatory if and only if (18) is nonoscillatory.

Remark 1. If we set Z = RiY' + RiQR,Y , equation (24) can be written in
the form of a linear Hamiltonian system. Substituting for Y’ and Y in the last
equation, we get Z = (R1G} + RiGR;' + R1QR,G1)RU’ + (R\G% — R1G,P)U,
hence the transformation

Y\ _ G G v
Z) - RlGé - R,G,P RlG'l + R1G2R;1 4+ R1QR:1Gy RU'

transforms the linear Hamiltonian system corresponding to (18) into the linear
Hamiltonian system corresponding to (24). By a direct computation one can verify
that the transformation matrix is J-unitary. :

Remark 2. In the special case G1(t) = In, G2(t) = G, G being a constant sym-
metric n X n matrix, the results of this section has applications in the theory of
singular quadratic functionals [5]. In this simple case the matrices Q and L are of
the form Q = PR™'G, L = PR"'P+ PR 'R'R-'G+GR-'P'+GGR'PR-'G
and equation (24) takes the form

[(P+GR™G)™'Y' + (P +GR™'G)"'PR™!'G(P + GR™'G)"'Y]' -
—(P+GR™G)"'GR™'P(P+GR™'G)"'Y' + (P + GR™'G) [PR™G-
-G(R™'YP+ P(R"Y)G+GR™'PR™1G + PR™'G(P'+
+G(R™YYG)(P+GR™'G)™ + (P + GR™'G)"(P'+
+G(R"YYG)GR™'P - (GR™'P - PR™'G)(P+
+GR™!G)"}(PR"'G—-GR™P)] (P+GR™'G)"'Y = 0.
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