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TRANSFORMATIONS OP LINEAR HAMILTONIAN 
SYSTEMS PRESERVING OSCILLATORY BEHAVIOUR 

ONDREJ DOSLY 

(Received September 14, 1990) 

ABSTRACT. The transformations of linear Hamiltonian systems which preserve os­
cillatory properties of these systems are investigated. The main result of the paper 
(Theorem 1) generalizes the well-known duality in oscillatory behaviour of mutually 
reciprocal Hamiltonian systems. 

1. INTRODUCTION 

The principal concern of this paper is to study relations between oscillatory 
behaviour of the linear Hamiltonian system 

(1) Jx' = A(t)xy 

where ^ 4 : 7 = [o,oo) —• R2nx2n is a symmetric matrix, J = ( r ^ ] , - Jn is 

the identity nx n matrix, and the linear Hamiltonian system 

(2) Jw' = B(t)w, 

which is related to (1) via the transformation 

(3) x = n(t)wy 

where R(t) £ Cl(I) is a In x 2n /-unitary matrix, i.e., 

(4) nT(t)jn(t)~J or, equivalents n(t)JnT(t)-J. 

It is known, see e.g. [2], that if n(t) is J-unitary then (2) is also a linear 
Hamiltonian system, i.e., BF(t) = B(t) (*Tw denotes the transpose of £ he matrix 
indicated). In more details, let 
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then (4) implies 

(5) HTK = KTHy MTN = NTM, HTN - KTM = Jn, 

HMT = MHT, KNT = NKT
f HNT - MKT = In, 

systems (1), (2) can be written in the form 

(6) u' =A(t)u + B(t)v, j / = A(t)y + B(t)zy 

v'=- C(t)u - AT(t)vy z' = -C(t)y - AT(t)zy 

and 

(7) A =NT(-H' + AH + BK) + MT(K' + CH + ATK), 

B =NT(-M' + AM + BN) + MT(N' + CM + ATN), 

C =HT(K' + CH + ATK) + KT(-H' + AH + BK), 

Recall that two points t\,t2 € I are said to be conjugate relative to (1) if there 
exists a solution (u, v) of (1) such that ti(ti) = 0 = u(<2) and u(t) is not identically 
zero between t\ and t2. Equation (1) is said to be oscillatory if for every b G [a, oo) 
the interval [6, oo) contains at least one pair of distinct points which are conjugate 
relative to (1). In the opposite case (1) is said to be nonoscillatory. 

The simpliest case of the transformation which preserves oscillation behaviour 
of the transformed linear Hamiltonian systems is the case when M(t) = 0 in H(t)f 

this trivial case will not be taken into consideration here. Another known result 
is the fact that if the matrices B(t)y C(t) are nonnegative definite on 7, then the 
"reciprocal" system - -

(O'-C^ 30«• 
which is the result of transformation (3) with Tl(t) = J applied to (1), is nonoscil­
latory if and only if (1) is nonoscillatory, see [1, 3, 6, 9, 10]. 

In this paper we shall show that under an additional assumption (which cor­
responds to the assumption of nonnegativity of B,C) systems (1) and (2) have 
the same oscilatory behaviour whenever the matrix M(t) in H(t) is nonsingular 
on I. In the last section this results is applied to the self-adjoint, second order, 
differential system 

(RWY + PWU^O, 

where P, R: I —• i2n x n are of the class C1 and symmetric, R(t) is positive definite. 
Particularly, we shall find the explicit form of the second order system whose 
solution is the linear combination Gx(t)R(t)U' + G2(t)U, Gu G2i I -+Rnxn. 
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2. PRELIMINARIES 

Consider the matrix linear Hamiltonian system 

X' = A(t)Xf 

where the 2n x 2n matrix X(t) consists of n x n matrices t/i, Vi, (72, V2% 

v m _ l f l i ( 0 u2(t)\ 
* W _ U ( 0 v2(t))-

Since (XT(t)JX(t))' = 0, the matrix X(t) is J-unitary on I whenever it is J-
unitary at some c € J. If this is the case, then 

(9) y?(t)Vt(t)-V?(t)Ui(t) = 0, . = 1,2, 

(io) uT(W(t) - v1
T(t)u2(t) = /„ 

and also 

(11) Ul(t)U^(t)-U2(t)U
r[(i)^ 

Vi(t)V?(t)-V2(t)V?(t)^f 

Ui(t)V2
T(t)-U2(t)Vl

T(t)^In. 

Any 2n x n solution (U, V") of (1) satisfying (9) is said to be self-conjugate (another 
terminology is isotropic [4], self-conjoined [11] and prepared [8]). 

Recall some known results concerning oscillatory properties and transformations 
of linear Hamiltonian systems which we shall use later. 

Theorem A [6]. There exists J-unitary matrix H(t) € Cl(I) with M(t) s 0 
which transforms (1) into the so-called trigonometric systemf i.e., the system (2), 
where A = 0, B(t) = -C(t) .=: Q(t). Particularly, any 2n x 2n J-unitary solution 
X(t) of (1) can he expressed in the form 

(Ux(t) K(t)\ _ . ( C(t) S(t)\ 

U(o v-(o; ww(o cwv 
where (S(t)fC(t)) is the 2n x 2n solution of the system 

(12) S* = Q{t)Cr C' = -Q(t)S* 

Moreoverf if the matrix B(t) is nonnegative definite then Q(t) is also nonnegative 
definite. 
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Theorem B [10]. Let the symmetric matrix Q(t) £ C(I) be nonnegative def­
inite on I. Then the trigonometric system (12) is nonoscillatory if and only if 

f TrQ(t) dt < oo, where Tr( ) denotes the trace of the matrix indicated. 

Theorem C [7]. Consider two trigonometric systems 

(13),. S'i = Qi(t)d, C\ = -Qi(t)Su i = 1,2, 

wJbere Qi(t) 6 C(I) sere nonnegative definite n x n matrices. Let the solutions 
(Si, d) satisfy 

(14),. Sff(t)Si(t) + CT(t)Ci(t) = Iny Sff(t)d(t) = C?(t)Si(t). 

If the matrix Ci(t)$$(t)-C2(t)£[(t) isnonsingular on I then f Tr Qx(t)dt < oo 
oo 

if and only if f Tr Q2(t)dt < oo, i.e., (14)i and (14)2 have the same oscillatory 
behaviour. 

Observe that solutions (S,*,C,') of (13),- satisfying (14),- always exist. Indeed, 

the 2n x 2n matrix Wi = ( ^ * J is a solution of JW{ = ( ~ ^ _ Q . ) ^ ' 

hence Wi is J-unitary on I whenever it has this property at least at one point and 
it follows that (S,*, C,) also satisfy identities 

(15),. 5,(<)5f (t) + d(t)Cj(t) = 7n, Si(t)CT(t) = Ci(t)S/f{t) . 

3. TRANSFORMATIONS PRESERVING OSCILLATORY BEHAVIOUR 

In this section we extend the result concerning duality between oscillatory be­
haviour of (1) and its reciprocal system (8), mentioned in Section 1. 

. Let the 2n x 2n J-unitary matrix H(t) = f „; : Ĵ J, with 

M(t) nonsingular on If transform (1) into (2). If the matrices B(t) and B(t) are 
nonnegative definite on I then (1) is nonoscillatory if and only if (2) is nonoscilla­
tory. 

Proof. Let X(t), W(t) be 2n x 2n J-unitary solutions of (1) and (2), respectively. 
By Theorem A there exist nonnegative definite nxn matrices Qi(t) and 2n x2n J-

unitary matrices 7li(t) 6 Cl(t) of the form Hi = f ~J / j?-- ) suck *kat ^e 

transformations X = K\(t)Wu W = Tl2(t)W2 transform (1) and (2) into the 
trigonometric systems with the matrices Q\(t), Q2(t)> respectively. Particularly, 

- * ^ w S ) • • * - ( * * ) • * -
(16) Ui = HiCi, u^msu 

Theorem 1 
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(17) Y\ = H2C2i Y2 = H2S2l 

where (5f,Ct) are 2n x n matrix solutions of (13),-, satisfying (14),- aiid (15),-. 
Since U(t) transforms (1) into (2) we have U\ = HY\ + MZ\y U2 = HY2 + 
MZ2. Substituting these equalities into (16) we get HY\ + MZ\ = H\C\, HY2 + 
MZ2 = H\S\. Multiplication of these equalities from the right by —Y2 and Y\ \ 
respectively, their addition and substitution of (17) into right hand-sides gives 

H(Y\Y? - Y2YX
T) + M(Z2Y? - Z\Y?) = H\(C2^ - C\^)H^. 

As the solution W(t) is 7-unitary, using (11) we have Y\Y2 = Y2Y?', Z2Y? -
Z\Y2 = In. Hence, the matrix (C2£>\ - C i S j ) = H^MH^""1 is nonsingular on J 
and by Theorem C (13)i, (13)2 are simultaneously oscillatory or nonoscillatory. As 
the transformations converting (1) into (13)i and (2) into (13)2 preserve oscillatory 
behaviour (Afj(t) = 0, see the note in Sec. 1), the same statement holds for systems 
(l)and(2). • 

Using the duality in oscillation behaviour between (1) and its reciprocal system, 
one can prove the following modification of Theorem 1. 

Theorem 2. Let the 2n x 2n J-unitary matrix %(t) £ CX(I) of the form 

11 = f K T ) transform (1) into (2). Suppose that the matrices 5, C, S, C in 

(1) and (2) are nonnegative definite on I and the matrix K(t) in H(t) is nonsin­
gular. Then (1) is nonoscillatory if and only if (2) is nonoscillatory. 

Proof. The idea of the proof is the same as in Theorem 1. Suppose that (1) 
is nonoscillatory. Since 5, C are nonnegative definite, system (8) — the re­
ciprocal system to (1) — is also nonoscillatory. Now, apply to (8) and (2) the 
transformation which converts these system into trigonometric system, but in the 
form which preserves zeros of the second component z of a solution (y, z), i.e., 

Tl = f ' rrT-i ) • Then by the same argument as in the above proof, nonsin-

gularity of the matrix K(t) (which now plays the same role as M(t) above) and 
the statement of Theorem C imply that the system reciprocal to (1) has the same 
oscillation behaviour as (8) (and hence as (1)). Since the matrices B, C are non-
negative definite, the same statement holds for the system reciprocal to the system 
reciprocal to (2), i.e., for system (2). D 

4. SECOND ORDER SYSTEMS 

Consider the second order system 

(18) (R(i)U'y + P(t)U = Q, 

where R> P : J —• Rnxn are symmetric, of the class -Cl(I) and R,(t) is positive 
definite. We shall look for a second order system, whose solution i& thev l̂inei-* 
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combination" Gx(t)R(t)U' + G2(t)U, where Gu G2 \ I -* Rnxn are of the class 
C*(I). The results of this section generalize the results of [12], where a similar 
problem was studied in the scalar case, i. e., n = 1. 

Since (18) can be written in the form of the linear Hamiltonian system with 
U = 17, V = RU\ we can use the results of the preceding section with G\(t) = 
Af(t), G2(t) = H(t). Hence , in order to obtain a second order system which is 
also self-adjoint and has the same oscillatory behaviour, the following assumptions 
are needed 

(19). G1(t)Gj(t) = G2(t)Gl(t), 

(20) G\(t) is nonsingular on I. 

The main difficulty is to find the matrices K, N, which, together with H = 
G2, M = G\ form the J-unitary matrix, in such a way that the resulting lin­
ear Hamiltonian system will be equivalent to a second order system. To overcome 
this difficulty, we proceed as follows. Let Yi, Y2 : I -» Rnxn be the solutions of 
the second order system (which may be generally nonself-adjoint) 

(21) Y" + Pi(<)Y' + P0(t)y = 0, 

where P0, Pi : I - • Rnxn. It follows that. 

(Yi Y 2 \ _ ( o /„ \ / Y i y 2 \ 

\Y{ Yi) - V - P o -Pi)\Y{ ik) 

and if yi,y2 form the basis of the solution space of (21) then 

( 0 In\_(Y{ Yi\(Y, y 2 \ 
\-Po -Px)-\Y{' Yf)\Y{ Yi) 

- 1 

Hence, to compute the matrices Po,Pi if the solutions Yi,y2 are known, we need 
to compute the inverse matrix to the Wronski matrix of the solutions Yi, Y2. 

Let 17, V, be two self-conjugate solutions of (18) (i. e., UrRU = UTRU', 
VrRV = VTRV) for which UT(t)R(t)V'(t)-Ur (t)R(t)V(t) = In. This identity, 
together with self-conjugacy of U and V imply 

(22) UVT = VUT, U'Vr = V'UT\ 

UVr -VUr = R~\ 

Denote 
n = GxRU' + G2v, y2 - GlRV + G2V 

(£T ROi + V G2) - G>R(U>VT _ V,VT>)Rcfr + GlR(U'V^- V'UT)C% + 
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G2(UVT' - VUT')RGj + G2(UVT - VUT)G~ =-GxGl + G2G~ = 0. • 
Similarly YxY2

T' - Y2Y~' = GxPG~ - GxG~' + G2G~ + G2RrxG~. If Yx,Y2 

form the basis of the solution space of (21), the last matrix is nonsingular, see 
[11], denote it RTX. Observe that in view of (19) this matrix is symmetric. Further 
denote Q = Y£Y~', L = Y{Y~"-Ypf. Then Y{Y~"-Y2Y~" = (R^y+Q-Q7 

and (QT-Q)' = YfYf -YfY?'+Y{Y?"-Y{Y?" = -LT + L, hence the matrix 
Q' — LT is symmetric. Now, 

(Yx Y2\(Yf ~Y2
T\_( R;x 0 \ 

\Y{ Yi) \-Y? YT )~\QT-Q RT1)' 

hence 

It follows 

(Yx Y2y
1_(YT' -YT\( Rx 0 \ 

\Y{ Y{) -\-YT' Y? )\Rx(Q-QT)Rx Ri) 

(0 In\_(Y{ Y1\(Y? -Y~\( Ri 0 \ _ 
\-Po -Pi)-\Y{' y 2 " A - n T ' Y~ )\Ri(Q-QT)Ri Ri)~ 

_(QT-Q RTX \( Rx 0 \ 
- \ - L T (RT1)' + QT-Q)\RI(Q-QT)RI RI) 

and thus the equation we look for is of the form Y"-[(R1
x)'R1+(QT-Q)Rx]Y'-

[-LT + (R1
x)'Rx(QT -Q) + (QT - Q)Rx(Q - QT)]RxY = 0. Multiplying this 

equation from the left by Rx, after some computation we get 

(24) 
[RxY' + RxQRxY]'-RxQTRxY' + R^L7 -Q'- QR1^1 - R^R'tf-

-(QT-Q)Ri(Q-QT)]RiY = 0. 

This equation is self-adjoint since both Rx and (LT - Q' - QR'xR'1 - R^RxQ7 -
(QT - Q)Rx(Q — QT)) are symmetric. If Yi,Y2 are given by (23), a routine com­
putation gives 
(25) 

QT-Q = G'1PGT-G'1G2
T'-GxPR-1G~ + G2R-xG~ , 

L = G^P'Gj - G'.R-'G7" + G'.PR-'G7- GxPGj" +GxPR-xPGT-

-2GiPR~xGl' + GiPR^RfR^G7 + G' .of - G2RTXPG~ + 2G'2R~XG~-

-G'2R-XR'R-XG~ + G2R-XP'G~-G2R-XG~"+ 

+2G\PGT' + 2G2R-XPG?. 

The following theorem summarizes the preceding computations. - "ii:~ 
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Theorem 3. Let Gi, G2 : I -> -Rnxn satisfy (19), (20) and suppose that the 
(symmetric) matrix R^1 = (GxPGj - GiG^' + G2(?f + G2R-lG2T) is positive 
definite on L If U is a solution of (18) then the matrix Y = G\RU' + G2U is a 
solution of the self-adjoint equation (24), where the matrices Q, L are given by 
(25). Moreover, this equation is nonoscillatory if and only if (18) is nonoscillatory. 

Remark 1. If we set Z = R\Y' + R\QR\Y , equation (24) can be written in 
the form of a linear Hamiltonian system. Substituting for Y' and Y in the last 
equation, we get Z = (RiG[ + RiGR^1 + RiQRxGi)RU' + (RiG'2 - RiGiP)U, 
hence the transformation 

(Y\_( G2 GX \ ( U \ 
\Z) ~ yRiG'i-RiGtP RtG^ + R&R^ + RiQRiGi) \RU'J 

transforms the linear Hamiltonian system corresponding to (18) into the linear 
Hamiltonian system corresponding to (24). By a direct computation one can verify 
that the transformation matrix is J-unitary. 

Remark 2. In the special case Gi(t) = /„, o2(t) = G, G being a constant sym­
metric n x n matrix, the results of this section has applications in the theory of 
singular quadratic functionals [5]. In this simple case the matrices Q and L are of 
the form Q = PR~lG, L = PR-1P + PR-1R'R-1G+GR-lP' + GGR-1PR-1G 
and equation (24) takes the form 

[(P + GR^G)-^' + (P + o/Z-1o)-1Pi?-1G(P + GRTXG)-XY)'-

- ( P + GR-lG)-lGR~lP{P + GR~xG)-lY' + (P + GR^G) [PR^G-

-G{R~l)'P + PiR-^'G + GRTlPtrlG + PR~1G(P'+ 

+G(R-1}'G)(P + GR^G)-1 + (P + GR-1G)~l(P'+ 

+G(R-1)'G)GR-1P - (GR-XP - PR~1G)(P+ 

+GR-1G)-1(PR~1G - GR~XP)] (P + GR^Gy^Y = 0. 
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