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A GEOMETRIC APPROACH TO
UNIVERSAL QUASIGROUP IDENTITIES

V. J. HAVEL

ABSTRACT. In the present paper we construct the accompanying identity T ofa
given quasigroup identity 7. After that we deduce the main result: 7 is isotopically
invariant (i.e., for every guasigroup (¥ it holds that if 7 is satisfied in @ then 7T is
satisfied in every quasigroup isotopic to Q) if and only if it is equivalent to 7 (i.e.,
for every quasigroup ( it holds that in Q either 7, 7 are both satisfied or both not).

§1 COORDINATIZING LOOPS OF A GIVEN 3-WEB

Let W= (P, L, L1,L2,L3) be a given 3-web as a quintupel of the point set £,
line set £ and line pencils £1, L4, L3 (in this order); here lines are taken as point
sets. The order of W is the common cardinality of pencils.

Choose a set ) with the cardinality equal to the order of W. Further choose
bijections A; : £; — @, i € {1,2,3}. Now there is just one ternary relation 7 C ) X
Qx @ such that (z1, 22, 23) € 7 :2 AT (%1), A3 (22), A3 ' (x3) are concurrent lines.
This ternary relation 7 can be written out as a set of six quasigroup operations

(z@) ($ia$j) = Tp = (l‘l,l‘z,l‘B) €T

where (1 ]2 ;’) are all permutations of the set {1,2,3}. Binary operations - := (132),
\ = (123), / = (312) will be denoted as main operations of the 6-tupel (of mu-

tually parastrophic operations (k)) We shall speak about coordinatizing objects

ij
Q, A1, Ao, A3, T, (5)’ (@Q,).

The coordinatizing quasigroup (@, ) gets a loop, with neutral element e, if and
only if there exists a point 0 (called the origin) such that the points 01 M A2(2),
02MA1(2) liein the line As(x) for all # € Q. Here P; denotes the line of £; containing
the point P,i € {1,2,3}, and £M ¢ denotes the intersection point of lines £, ¢ from
different pencils. In this case the knowledge of one of bijections A1, Az, A3 suffices
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98 V. J. HAVEL

for the determination of both remaining ones. If we investigate simultaneously two
triplets of coordinatizing bijections (A1, Aa, Az), (A, Ay, A5) with the same starting
set () = Q' then the corresponding ternary relations 7, 7" are bound by the isotopy
equivalence

(21,2, 23) € T & (MAT (1), MoAT H(w2), ABAS H(w3)) € 7/

for all x1,z2, 23 € Q.

We will describe the transformation of coordinates, i.e. the mutual relation
between two coordinatizing loops of the same 3-web W. Let us choose coordi-
natizing bijections (A1, Az, Az), (A}, A4, AL) leading to coordinatizing loops. The
corresponding origins will be denoted by 0, respectively 0’, and we have the same
starting set Q = ' and the common bijection A3 = A;. We know that 021 AT*(¢),
01 A7 (€) € A7 1(€) and analogously 02/ M A;™1(€), 01/ M A,~1(€) € Ay~ (€) for all
€ € Q. Assume that 0/ = AT (a) M A7 Y(B) for uniquely determined “coordinates”
«, 3 of the point 0/ with respect to the first coordinatization.

A7)
A7)
ATe)
0 . A7 HB)
ATHE)
0 Ale) AT
A7 (e) i
Fig. 1

Now we ask which relation occurs between coordinates &, and &', 5’ of the
same point ATH(€) MAS () = ATHE) AT ().

For the sake of simplicity let us put @ = L3, A3 = A; =idg. Then & -5 = &/,
a-n =1, sothat & = Rg(&), v = La(n), n = REl(f’), n = L.(%"). From
the definition of coordinatizing operations - and -/ it follows & - p = & /¢y, i.e.
&-n = Rg(&) ' La(n), respectively &' -/ o = REl(g’) LY for all €, n € Q,
respectively for all £, o' € Q. We see that the coordinatizing loop (@, ') is the
" under the main isotopy (Rgl, L7Yidg). If
the first loop has the neutral element e then the second one has the neutral element
e =a-b

image of the coordinatizing loop @, -
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§n=¢""7

€. 8) &
e, 3) !
(e, 8) —

(6’6) (O"e) (gae)
Fig. 2

If 0 is fixed and 0’ runs over all the set P then the loop (@, ") runs over the set
of all the loops isotopic to (@, ') up to isomorphisms. This important circumstance
will be used later in §3.

§2 TRANSFORMATIONS OF LINE LABELS

Let @ = (Q,-) be a non-trivial quasigroup, i.e., of order at least 2. Then the
3-web Wq over @ is defined as a 3-web (P, L, Ly, L4, L£3) such that P = Q x @,

o= {(,,y)|ly € R}, 4= {(z, )|z € Q), 43 = {(e,y)|w-y=1} forall e € Q
and £; 1= {EEL) L€ Q) foralli e {1,2,1}, £ := L1 U Ly U L3. We proclaim the
lines of £y as wvertical, the lines of Lo as horizontal &}nd the lines of L3 as skew.
The index ¢ € Q will be called the label of the line £, i € {1,2,3}. If the label ¢

belongs to the line 125“ then we say that it has the position 1.
Now we fix an i € {1,2,3}, choose some elements «, 3 € @) and transform the

label + € @ of the line 125“ as Tollows: For 7 = 1 let the transformation of ¢ into

position 2 be a\(i - ) and into position 3 i - 3, respectively. For i = 2 let
the transformation of ¢ into position 1 be (o - L)/ﬁ and into position 3  « -,
respectively. Finally, for ¢ = 3 let the transformation of ¢+ into position 1 be L/ﬁ

and into position 2 a\L, respectively. In this way the labeling of lines become a
geometrical meaning: one can go over from one position to the other.

The coordinatizing quasigroup determined by the origin E(al) M Egz) is a loop,
with neutral element «. In the sequel we shall apply the above transformations
also onto variables of quasigroup identities.

Let there be given a quasigroup identity Z with a finite set A’ of variables by

main quasigroup operations ~,\,/. Each variable * € X enters in Z in some
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subterms (Zlf]ll)(x, ), (25]22)(,1‘), r = (/;;’3)((, -)) (under the restriction onto the
cases (i1, 1), (i2,J2), (i3,73) € {(1,2), (1,3), (3,2)}) and as such it has positions
11, j2 and ks, respectively. Remark that the last case occurs if the left or right
side of 7 consists only of x. For every x € X we choose one of its positions,
for example i, and call it the starting position of x. All remaining positions of z
will be called subordinate. Let us take constants «, 8 and replace every variable
z € X in a subordinate position by its corresponding transformations. Further
let us replace every consecutive term (Zz)(, -) of the successive building of 7 (with
position k) by its corresponding transformation. Finally we obtain an equality Z, g
(a “specialized identity”), with variables from A and with two constants «, 5. If
we replace the constants o, § by new variables £, n we obtain an identity Z¢ , called
the accompanying identity of Z. The identity 7 = Z¢ n has the following Position
Property: For every subterm ¢ of Z, occurring in subterms (.lﬁ )(t, ), ( k2 )(~,t),

- 211 122
t= (/;;3)(., Y of Z, it holds iy = jo = ks.
If we put £ = in Z, we obtain the identity Z¢ ¢, the secondary accompanying
identity of 7, with the set X U {£} of variables. Whilst the variables from X' have
always a unique position in Z, the variable ¢ occurs either in position 1 or in
position 2.
Before analyzing the connection between the given identity and its accompany-

ing identities we give three illustrating examples.

1% example. Let T be the quasigroup identity « - £ = z of idempotency. Let the
starting position of z be equal to 2. We replace the variable z in position 2 and 3
(the position of  on the right side is taken to be 3 as is induced by the left side)
by its transformations and obtain the equality 7, g and the identity Z¢ ,

((oz~a:)/6)~x:oz~x, ((5.93)/77).9@:5.9;.

Z¢ p 1s equivalent with £ - x/n =¢- x/x and this identity 1s equivalent with n = .
Thus the only quasigroups, in which the accompanying identity holds, are trivial
quasigroups.

2" example. Let 7 be the identity (z - ) -2 = x - (x - x) of monoassociativity.
The starting position of x will be 2 again. Using convenient transformation of the
variable x and consecutive subterms of 7 we obtain the equalities 7, g and Z¢ ,,

() /B)-2) [B) 2= ((a-2)[B) - (@\((a-2) [9) - 2)),
(€ o) [my ) [m) e = (€ o) fn) - €\ (€ 2) /) - ).

The accompanying identities Z¢ ,, Z¢ ¢ are not equivalent.

3" example. Let 7 be the identity (z -y) -z = = - (y - ) of associativity. The
starting position for the variables x,y, z are chosen to be 1, 2 and 3, respectively.
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It suffices to transform the variable y on the right side into position 1 and the
subterm on the left side into position 1 too. We obtain the equality Z, g and the
identity Z¢ ,

((a(z-9)/8) 2 =2 (a\((a-5) /B -2)),
(€ @y /m) -z =2 €\ v) /n)-2)).
The secondary accompanying identity Z; ¢ is
(- (@) /82 =a-E\(E /9 2)

and is equivalent to Z¢ , (a known property of Reidemeister closure condition in

3-webs).

:(6,y~z) :(x,y~z)
) EEE
'y _____ (6’ y) (l‘, y)
LeoNJwo N :
(@ 9,0)
ifl :l‘
» -
¢ (- )fexz)
_y _____ I(glay) (x,y)

(&1,6) D ((x - y)\&, &)
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where A means (51,51\(((51 “y)/Ea) - z)), B means (x,fl\(((fl “y) /1) - z)), C
means ((fl . z)/ﬁz, z) and D means ((fl . y)/ﬁz, fz)

Theorem 1. A quasigroup identity 7 holds in a loop isotopic to a given quasi-
group Q) = (Q, ) if and only if there are elements «, 3 € () such that the equality
Za,p holds in Q.

Corollary. A quasigroup identity T holds in every loop isotopic to a given quasi-
group Q if and only if the accompanying identity Z¢ , holds in Q.

(Remark that the given quasigroup @ may be taken as a loop and we obtain the
case investigated by V.D.Belousov in [5], Chapter IV, pp. 52-70 and in his further
articles.)

Proof. Let a quasigroup identity Z hold in a non-trivial* loop L. We use the
3-web Wi, and interprete Z as a relation between lines taking variables of 7 as
variable lines of Wy, (we identify lines with their labels). In this way, 7 goes over
onto a conditional identity (closure condition) which depends on coordinate axes
of WL. As every quasigroup Q = (Q, -) isotopic to I arises (up to isomorphisms)
as one of coordinatizing quasigroups of Wy, it follows that the coordinatizing loop
IL of Wy, is determined by a convenient choice of the origin and consequently of
elements o, 8 € () used in transformation expressions leading to Z.z.

If 7, g holds in Q@ = (@, ) then the passage to Z to a loop isotopic to (@ can be
made similarly as in the preceding procedure. a

We say that a quasigroup identity 7 is universal (in other words: invariant
under quasigroup isotopies) if every quasigroup Q satisfies the following hereditary
condition with regard to isotopies: If 7 holds in @ then it holds in every quasigroup
isotopic to Q.

Theorem 2. A quasigroup identity 7 is universal if and only if it is equivalent to
its accompanying identity Z¢ ,.

Proof. Let Z be equivalent to Z¢,. If Z¢ , holds in a quasigroup Q then the
“geometric” form of Z¢ , guarantees that Z¢ , is valid in every quasigroup isotopic
to Q. But Z¢ , is equivalent to 7 so that Z must hold in every quasigroup isotopic
to Q.

Now let 7 be universal. Thus, if Q is an arbitrary quasigroup and 7 is valid
in @, then 7 is valid in every quasigroup isotopic to () and, especially, in every
loop I isotopic to @. Thus assume Z to be valid in a quasigroup Q. Then 7 is
valid in every loop isotopic to Q and, by Corollary to Theorem 1, Z¢ , is valid in
Q. Conversely, if Z¢ ,, is valid in Q then 7 is valid in every loop I isotopic to Q
by Corollary to Theorem 1. From the assumed universality of Z it follows that 7
must hold in all quasigroups isotopic to I, where IL runs over all loops isotopic to
@. Thus Z must hold in all quasigroups i1sotopic to Q. a

*If the given quasigroup (Q is trivial then the assertion of Theorem 1 is obvious.
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There exists a quasigroup identity Z which does not satisfy the Position Prop-
erty but is equivalent to its accompanying identity Z¢ ,. It suffices to take for 7
the identity

(1) ((w- (g [z =2 (@\((u- ) [0) - 2))

with four variables u, z,y, z from our 2”¢ example. Assigning to u the position 1

and going over to the accompanying identity of Z, we get
@) (@) [\ )z = (a\() /€\ () - 2).

Here we can substitute f\(u -1) = v and obtain an equivalent identity

(3) (e (ay)fv) 2= ((u\((u-9) /) 2)

having the Position Property. As (1) and (3) are equivalent (as already pointed
out in 2"¢ example) we have reached an example as claimed.
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