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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 169 { 176A REMARK ON SECOND ORDERFUNCTIONAL DIFFERENTIAL SYSTEMSValter �Seda, �Stefan BelohorecAbstract. It is proved that under some conditions the set of solutions to initialvalue problem for second order functionaldi�erential system on an unbounded inter-val is a compactR�-set and hence nonvoid, compact and connected set in a Fr�echetspace. The proof is based on a Kub�a�cek's theorem.In the paper the initial value problem for second order functional di�erentialsystem on an unbounded interval is studied. By means of the Kub�a�cek's theorem in[2] which guarantees that the set of all �xed points of a compact map in a Fr�echetspace is a compact R�-set it is shown that under some restrictions on the growthof the right-hand side of that system the set of the solutions to that initial valueproblem is a compact R�-set in a properly chosen Fr�echet space of C1-functions.The result extend a similar theorem for �rst order functional di�erential systemswhich is proved in [2]. 1. IntroductionThroughout the whole paper we shall use the following denotations and as-sumptions:Let h > 0, b 2 R, � 2 N and let j � j be a norm in R� . Further let H =C1([�h; 0]; R�) be provided with the norm kxk = maxfjx(s)j+ jx0(s)j : �h 5 s 50g for each x 2 H and let H0 = C([�h; 0]; R�).Let X = C1([b;1); R� be equipped with the topology of locally uniform con-vergence of the functions and of their derivatives on [b;1). The topology on theFr�echet space X is given by the metricsd(x; y) = 1Xm=1 12m pm(x� y)1 + pm(x� y) ;1991 Mathematics Subject Classi�cation : 34K05, 34K25.Key words and phrases: initial value problem, functional di�erential system, R�-set, Kub�a-�cek's theorem, Fr�echet space.Received September 15, 1992.



170 VALTER �SEDA, �STEFAN BELOHORECwhere pm(x) = supfjx(t)j+ jx0(t)j : b 5 t 5 b+mg, x, y 2 X, m = 1.Let X� = C1([b�h;1); R�) be the Fr�echet space provided with the seminormsp�m(x) = supfjx(t)j+ x0(t)j : b� h 5 t 5 b+mg, x 2 X�, m = 1.For x 2 C([b� h;1); R�) we denote by xt 2 H0 the function xt(s) = x(t + s),s 2 [�h; 0], t = b. Clearly (xt)0(s) = (x0)t(s), s 2 [�h; 0] and x 2 X�, t = b.Let f 2 C([b;1)�H �H0; R�),  2 H. We shall consider the following initialvalue problem(1) x00(t) = f(t; xt; x0t), b 5 t <1(2) xb =  , x0b =  0.A solution x of (1), (2) is a function x 2 X� \C2([b;1); R�) which satis�es (2)and the functional di�erential system (1) at each point t = b.Now we shall state the Kub�a�cek theorem in [2] as Lemma 1. In that lemma acompact R�-set in a metric space (E; %) means a nonempty subset F of E whichis homeomorphic to the intersection of a decreasing sequence of compact absoluteretracts. By [1], p. 92, a metric space G is called an absolute retract when for eachmetric space H and each closed K � H, each continuous map f : K ! G hasa continuous extension g : H ! G. E.g. a nonempty convex subset of a Fr�echetspace is an absolute retract.Lemma 1. LetM be a nonempty closed set in a Fr�echet space (E; %), T :M ! Ea compact map (i.e. T is continuous and T (M ) is a relatively compact set). Denoteby S the map I � T , where I is the identity map on E. Let there exist a sequencefUng of closed convex sets in E ful�lling(i) 0 2 Un for each n 2 N ;(ii) limn!1 diam Un = 0and a sequence fTng of maps Tn :M ! E ful�lling(iii) T (x) � Tn(x) 2 Un for each x 2M and each n 2 N ;(iv) the map Sn = I � Tn is a homeomorphism of the set S�1n (Un) onto Un.Then the set F of all �xed points of the map T is a compact R�-set.In a special case, when E = X, % = d, Lemma 1 implies the following lemma.Lemma 2. Let (X; d) be the Fr�echet space given above, let ', 'n 2 C([b;1),(0;1)), n 2 N and let the following condition be satis�ed:(v) For each t 2 [b;1) the sequence f'n(t)g is nonincreasing and limn!1'n(t) =0.Let r, s 2 R� and letM = fx 2 X : jx(t)� rj+ jx0(t)� sj 5 '(t); t = b; x(b) = r; x0(b) = sg :Suppose that T : M ! X is a compact map with the property T (x)(b) = r,(T (x))0(b) = s for each x 2M and there exists a sequence fTng of compact mapsTn :M ! X such that Tn(x)(b) = r, (Tn(x))0(b) = s for each x 2M and(vi) jTn(x)(t)� T (x)(t)j+ j(Tn(x))0(t)� T (x)0(t)j 5 'n(t); x 2M; t = b;



A REMARK ON SECOND ORDER FUNCTIONAL DIFFERENTIAL SYSTEMS 171(vii) for every n 2 N there exists a function '�n 2 C([b;1), (0;1)) such that'�n + 'n 5 ' on [b;1)andjTn(x)(t) � rj+ j(Tn(x))0(t)� sj 5 '�n(t); x 2M; t = b;(viii) the map Sn = I � Tn is injective on M where I is the identity on X.Then the set F of all �xed points of the map T is a compact R�.Proof. The setUn = fx 2 X : jx(t)j+ jx0(t)j 5 'n(t); t = b; x(b) = 0; x0(b) = 0gis convex and closed in X for each n 2 N . We shall show that the sequencefUng satis�es all conditions of Kub�a�cek's theorem when E = X, % = d. Then thestatement of Lemma 2 follows from Lemma 1.Clearly the condition (i) is ful�lled. Further for a given " > 0 there exists anm0 2 N such that 1Pm=m0+1(1=2m) < "=2. (v) and the Dini theorem imply that thesequence f'ng converges on [b;1) locally uniformly to 0, therefore for " > 0 andm0 2 N there exists an n0 2 N such that qm('n) = supfj'n(t)j : b 5 t 5 b+mg 5"=4m0 for n = n0 and m = 1; 2; : : : ;m0. Thus for n = n0 and x; y 2 Un we haved(x; y) = 1Xm=1 12m pm(x � y)1 + pm(x� y) 5 m0Xm=1 pm(x� y) + 1Xm=m0+1 12m= m0Xm=1 2 qm('n) + 1Xm=m0+1 12m 5 2m0 "4m0 + "2 = " :This implies that the condition (ii) is satis�ed. The assumption (iii) follows from(vi) and from the de�nition of T , Tn, n 2 N . To show that (iv) is ful�lled it su�cesto prove the inclusion Un � Sn(M ). (viii) then implies that Sn is a bijectionof S�1n (Un) onto Un and the continuity of S�1n ��Un is then a consequence of thecompactness of Tn.Thus we have to prove that for each y 2 Un there is an xy 2 M such thatxy � Tn(xy) = y. This means that for every y 2 Un the map Pn(x) = y + Tn(x)has a �xed point. (vii) implies thatjy(t) + Tn(x)(t)� rj+ jy0(t) + (Tn(x))0(t)� sj 5jy(t)j+ jy0(t)j+ jTn(x)(t) � rj+ j(Tn(x))0(t)� sj 5'n(t) + '�n(t) 5 '(t); t = b ;and Pn(x)(b) = r, (Pn(x))0(b) = s for each x 2M . Therefore Pn(M ) � M . As Mis a closed, convex bounded set and Pn is a compact map, by the Tichonov �xedpoint theorem, Pn has a �xed point. This completes the proof of the lemma. �In what follows the function ' in Lemma 2 will be given as a solution of anintegral equation. The existence of a solution to that equation will be discussed inthe following two lemmas.



172 VALTER �SEDA, �STEFAN BELOHORECLemma 3. Let  2 H, ! 2 C([b;1); [0;1)), g 2 C([0;1); [0;1)) be a nonde-creasing function. Further denote(3) U (x)(t) = j 0(0)j(t� b) + Z tb (t � s + 1)!(s)g(k k + x(s)) ds; b 5 t <1 ;for each x 2 C([b;1); [0;1)). Then the following statements are true:1. A solution ' 2 C([b;1); [0;1)) of the integral equation(4) '(t) = U (')(t); b 5 t <1 ;exists i� there exists a function � 2 C([b;1); [0;1)) such that(5) �(t) = U (�)(t); b 5 t <1 :2. The solution ' of (4) (whenever it exists) is nondecreasing in [b;1).Proof. 1. Necessary condition is clear. Su�cient condition. We shall proceed bythe method of steps. Hence we prove by mathematical induction that for eachm = 1; 2; : : : ; :a) There exists a solution ym 2 C([b; b+m]; [0;1)) of (4) on [b; b+m] satisfyingthe inequalities 0 5 ym(t) 5 �(t), b 5 t 5 b+m andb) ym+1(t) = ym(t), b 5 t 5 b+m.Consider the partially ordered Banach space X1 = C([b; b + 1); R) with thesup-norm where z1 5 z2 if and only if z1(t) 5 z2(t) for each t 2 [b; b+ 1] and eachpair z1; z2 from that space. Then, by de�nition, the interval hz1; z2i = fy 2 X1 :z1(t) 5 y(t) 5 z2(t); b 5 t 5 b + 1g. The operator U : X1 ! X1 de�ned by (3)on [b; b+ 1] is completely continuous, nondecreasing and in view of (5), it mapsthe interval h0; ���[b;b+1]i into itself. Hence, by the Schauder �xed point theorem,there exists a �xed point y1 of U which satis�es (4) in [b; b+ 1].Suppose, now, that there exists a solution ym of (4) on [b; b+m]. Then we con-sider the space Xm+1 = C([b; b+m+1]; R) with the sup-norm and the natural par-tial ordering. Xm+1 is a partially ordered Banach space. The operator U given by(3) on [b, b+m+1] mapsXm+1 into itself, it is completely continuous, nondecreas-ing and similarly as before, it maps the interval h0; ���[b;b+m+1]i = fy 2 Xm+1 : 0 5y(t) 5 �(t); b 5 t 5 b+m+1g into itself. Moreover, U maps the closed and con-vex set Ym+1 = fx 2 Xm+1 : x(t) = ym(t); b 5 t 5 b+mg \ h0; ���[b;b+m+1]i intoitself. Hence there exists a �xed point ym+1 of U in Ym+1 and this is the searchedfunction ym+1 with the properties (a), and (b). Then the function '(t) = ym(t)for b 5 t 5 b +m and m = 1; 2; : : : ; is a solution of (4) in [b;1) and it satis�esthe inequalities 0 5 '(t) 5 �(t); b 5 t <1 :2. The statement follows from (3), (4). �



A REMARK ON SECOND ORDER FUNCTIONAL DIFFERENTIAL SYSTEMS 173Lemma 4. Let  2 H and let g 2 C([0;1); (0;1)) be a nondecreasing function.Then to each function % 2 C([b;1); [0;1)) there exists a unique pair of functions' 2 C([b;1); [0;1)), ! 2 C([b;1)); [0;1)) such that(6) !(t) = %(t)g(k k+ '(t)) ; t = band ' is a solution of the equation (4).Proof. De�ne(7) '(t) = j 0(0)j(t� b) + Z tb (t � s + 1) %(s) ds; b 5 t <1 :If ' is a solution of (4) and ! satis�es (6), then necessarily ' has the form (7).Hence there exists at most one pair of functions ', ! satisfying (4), and (6) simul-taneously. On the other hand, if ' is determined by (7) and ! satis�es (6), then' is a solution of (4). The statement of the lemma is proved. �Example 1. If %(t) = et; b 5 t <1, then by the last lemma the function'(t) = (j 0(0)j � eb)(t� b) + 2(et � eb); b 5 t <1is increasing in [b;1) and if g(u) = ku+ q, u = 0, where k = 0, q > 0, then ' is asolution of (4) with !(t) = etk(k k + '(t)) + q ; t = b :2. Main TheoremNow we shall state and prove the main theorem.Theorem 1. Let  2 H, f 2 C([b;1)�H�H0; R�). Let, further, ! 2 C([b;1);[0;1)), g 2 C([0;1); [0;1)) be a nondecreasing function and let(ix) jf(t;Xt;X 0t)j 5 !(t) g(kXtk) for each (t;X ) 2 [b;1)�M�where M� = fx 2 X� : jx(t)�  (0)j+ jx0(t) �  0(0)j 5 '(t) for t = band xb =  ; x0b =  0g ;' is a solution of the equation (4) in [b;1).Then the problem (1), (2) has a solution x satisfying the inequalityjx(t)�  (0)j+ jx0(t)�  0(0) 5 '(t); t = b



174 VALTER �SEDA, �STEFAN BELOHORECand the set F � of all such solutions is a compact R�-set in the space X�.Proof. Consider the setM = fx 2 X : jx(t)�  (0)j + jx0(t)�  0(0)j 5 '(t) for t = band x(b) =  (0); x0(b) =  0(0)g:Evidently the map P : X� ! X determined by P (x) = x��[b;1) is a homeomor-phism of M� onto M . Let the map T :M ! X be de�ned byT (x)(t) =  (0) +  0(0)(t � b) + Z tb (t� s)f [s; (P�1x)s; (P�1x)0s] ds ;(8) x 2M; t = b :Then F � = P�1(F ) where F is the set of all �xed points of the map T . As ahomeomorphic image of a compact R�-set is again a compact R�-set, it su�cesto prove that F is a compact R�-set in the space X. This will be done by usingLemma 2 where we put r =  (0), s =  0(0). The maps Tn :M ! X de�ned byTn(x)(t) =(  (0) +  0(0)(t� b) if b 5 t 5 b+ 1n (0) +  0(0)(t� b) + R t� 1nb (t� 1n � s)(9) f [s; (P�1x)s; (P�1x)0s] ds if t = b+ 1n; n 2 Nas well as T are compact due to (ix) and, again by that assumption,jTn(x)(t) � T (x)(t)j+ j(Tn(x))0(t) � (T (x))0(t)j 5= ( R tb (t � s + 1)!(s)g(k(P�1x)sk) ds; b 5 t 5 b+ 1nR tb (t � s + 1)!(s)g(k(P�1x)sk) ds� R t� 1nb (t � 1n � s+ 1)!(s)g(k(P�1x)sk) ds;b+ 1n 5 t <1 :As ' is nondecreasing in [b;1), k(P�1x)sk 5 k k+ '(s) and thus,jTn(x)(t) � T (x)(t)j+ j(Tn(x))0(t) � (T (x))0(t)j 5 'n(t);x 2M; t = bwhere'n(t) = ( R tb (t� s + 1)!(s)g(k k + '(s)) ds; b 5 t 5 b+ 1nR tb (t� s + 1)!(s)g(k k + '(s)) ds � R t� 1nb (t� 1n � s+ 1)!(s) :g(k k + '(s)) ds; b+ 1n 5 t <1; n 2 N :



A REMARK ON SECOND ORDER FUNCTIONAL DIFFERENTIAL SYSTEMS 175Clearly that 'n(t) 2 C([b;1); [0;1)), and limn!1'n(t) = 0, 'n+1(t) 5 'n(t) foreach t = b can be proved. Hence these functions satisfy the assumptions (v), (vi)of Lemma 2.Further jTn(x)(t)�  (0)j+ jTn(x)0(t)�  0(0)j 5 '�n(t)t = b; x 2Mwhere'�n(t) = ( j 0(0)j(t� b); b 5 t 5 b+ 1nj 0(0)j(t� b) + R t� 1nb (t� 1n � s + 1)!(s)g(k k + '(s)) dsb+ 1n 5 t <1; n 2 N ;are nonnegative continuous functions on [b;1) and with respect to the meaningof ' we have that 'n(t) + '�n(t) = '(t), t = b, n 2 N . Thus (vii) in Lemma 2is satis�ed, too. So it remains to show that the assumption (viii) in that lemmaholds.If x; y 2 M , x 6= y, then there is a t0 2 [b;1) such that x(t0) 6= y(t0). Ifb 5 t0 5 b + 1n , then x(t0) � Tn(x)(t0) = x(t0) �  (0) �  0(0)(t0 � b) 6= y(t0) � (0)� 0(0)(t0� b) = y(t0)�Tn(y)(t0). In the other case there exists a t1 = b+ 1nsuch that t1 = supf� > b : x(t) = y(t) for b 5 t < �g. Then there exists at0 2 (t1; t1 + 1n) such that x(t0) 6= y(t0). This gives thatTn(x)(t0) =  (0) +  0(0)(t0 � b) + Z t0� 1nb (t0 � 1n � s)f [s; (P�1x)s ; (P�1x)0s ds=  (0) +  0(0)(t0 � b) + Z t0� 1nb (t0 � 1n � s)f [s; (P�1y)s ; (P�1y)0s] ds= Tn(y)(t0)and hence, x(t0) � Tn(x)(t0) 6= y(t0)� Tn(y)(t0), n 2 N . Thus all assumptions ofLemma 2 are ful�lled and the statement of Theorem 1 follows from that lemma.�



176 VALTER �SEDA, �STEFAN BELOHORECReferences[1] Dugundji, J., Granas, A., Fixed point theory, PWN, Warszawa, 1982.[2] Kub�a�cek, Z., Remarks on the paper of K. Czarnowski and T. Pruszko \On the structure of�xed point sets : : : ", Preprint.Valter �SedaDepartment of Mathematical AnalysisMFF UK, Mlynsk�a dolina842 15 Bratislava, SLOVAKIA�Stefan BelohorecDepartment of Mathematics and Descriptive GeometryFaculty of Civil EngineeringRadlinsk�eho 11813 68 Bratislava, SLOVAKIA


		webmaster@dml.cz
	2012-05-10T10:51:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




