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TWO SORTS OF BOUNDARY-VALUE PROBLEMS OF
NONLINEAR THIRD ORDER DIFFERENTIAL EQUATIONS

MricHAL GREGUS

ABSTRACT. Two sorts of nonlinear third order boundary-value problems are solved
and the existence of eigenvalues and eigenfunctions is proved.

1. The aim of this paper 1s to study two sorts of boundary-value problems of
the third order.
At the first we will study the boundary-value problem

(a) u” 4+ q(t, M + p(t, \)h(u) =0,
(1) u(—a,A) = v'(—=a,A) =0, wu(a,A)=0,a>0,
(2) u(—a,A) = u”’(—=a,A) =0, wu(a,A)=0

under certain suppositions on the functions ¢, p, h.

The problem (a), (1), or(a),(2) is a generalization of the boundary-value prob-
lem for linear third order differential equation [2], where in par. 4, the so called
generalized Sturm theory for linear third order boundary-value problems is devel-
oped.

At the second we will investigate the boundary-value problem of the form

(b) u” + [ f () + Ag()]u’ + Ap()h(u) = 0,
(3) u(—a, A, p) = u(a, A, u) =0,a >0,
) Al A+ (R p)

—g/(T)U(T,/\,/,L)}dT]dtI H r(t,p)[f(t)u(t,/\,p)

3
/
- f(T)U (T’Aaﬂ)dT]dta
—a
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where A, u are parameters and f, ¢, p, h, r are suitable functions of their arguments.
The boundary condition (4) is in the integral form. For the first time such a
condition was formulated in [3] for a special linear third order boundary-value
problem arising in physics. The problem was generalized for the linear third order
differential equation in [1].

It will be shown that under certain conditions on the coefficients of (b) and on
the function r and parameter p the problem (b),(3),(4) can be solved by means
of the problem (b), (2).

2. In this section we will investigate the nonlinear differential equation

(a1) u” + q(t)u’ + p(t)h(u) = 0,

where ¢, p are continuous functions of ¢t € [—a,00),a > 0, and & is a continuous
function of u € (—o0, 00).

Under a solution of (a;) we will understand a function « with continuous third
derivative, defined on [tg, b), —a < tg < b, that fulfils equation (ay) on this interval.
The solution « defined on [tg, b), nontrivial in a neigbourhood of b will be called
oscillatory on [tg, b) if it has infinite number of zeros on this interval with the limit
point at b. Otherwise the solution is called nonoscillatory. In this paper we will
interested in the solutions defined on [tg, o0), g > —a.

Lemma 1.  Let |h(u)| < K, K > 0 for all u € (—o0, >0).
Then every solution u of (a1) defined on [tg,b), ty > —a, b > tg, Is extendable
to the interval [tg, 00).

Proof. Let y1, y2, y3 be a fundamental system of solutions of the linear differential
equation
y/// + q(t)y/ — 0
and let their wronskian W(t) = 1 for t € [—a, >0).
Let u be a solution of (ay1) defined on [y, b),b < .
Let u(to) = wuo, ' (to) = uf, v’ (to) = uy and let at least one of the numbers
uo, up, ug be different from zero.

Equation (a1) can be writen in the form
u” + q(t)u’ = —p(t)h(u),

where u = u(t) for t € [tg,b).
Then from the method of variation of constants there follows
t

u(t) = y(t) — t p(T)h[u(T)]W (L, 7)dT,
W(t) =y'(t) - t p(T)h[u(r)]Wi(t, 7)dr,
() =y'(t) = p(r)h[u(T)W/(t, T)dr
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where y(to) = uo, ¥ (to) = up, vy’ (t0) = uy and

yi(t), w(t), ws(t)
W(t, )= yu(r), w2(r), ws(7)
Vi), (1), ys(7)
From the boundedness of h[u(t)] there follows that for b < oo the functions u, v, u”

have at the point b the finite limits and therefore solution u is extendable to the

right of b. d

Lemma 2. Let p,q' be continuous functions of t € [—a,c0) and let p(t) >
0,¢'(t) <0 for all t € [—a, ).
Let the differential equation

1
v+ Zq(t)v =0

be oscillatory on [—a, c0). Let further h be continuous for every u € (—o0, o) and
let

(1) h(u)u >0 for u#0

and

(i) h%hW):&0§9<m.
U— U

If uy is a nontrivial solution of (a1) defined on [ty, o0),tq > —a, with the
property

) (i) (t0) — 2 (t0) 4 Salto)ud(to) <0,

then wy Is oscillatory on [tg, 00).

Proof. Let u; be a solution of (a;) defined on [tg, 00) with property (5). uy fulfils
at the same time the linear differential equation

(6) u” + q(t)u' + p(t)Hur(t)]u =0,
where Bua ()]
ut! f ) #£0
Hw@)= w0 or wdF
6 for w1(2)=0

Equation (6) can be writen in the normal form [2]

1

u” + q(t)u’ + [1 ") + p(t)Hu1(t)] — §q/(t)]u =0,

5‘]
where p(t)H[u1(t)] — %q’(t) < 0 for all ¢ € [tg,00). (Tt is so called Laguerre’s
invariant [2]). Equation (6) fulfils the supposition of Theorem 2 .4 [2] and therefore
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every its solution u with property (5) is oscillatory on [tg, 00) and u; is a solution

of (6). |

3. In this section we will deal with the differential equation (a) where p, ¢, ¢’ =
% are continuous functions of ¢t € [—a,o0) and A € (A1, A3) and h is a function
of u € (—oo,00) with continuous first derivative A’ on this interval. The aim of
the section is the solution of the boundary-value problem (a), (1), or(a), (2). From
the general theorem on differential systems of the first order with the right saids
continuously depending on parameter A € (A1, As) [4], it follows for every solution
u of equation (@) defined on [tg,00), that u,u’, u’ are continuous functions of ¢
and A in every closed twodimensional interval for ¢ and A which is a subset of the

interval [tg, 00) x (A1, Asg).

Lemma 3. Let the above suppositions on p, ¢, h be fulfilled and let ¢’(t, A) < 0 for
allt € [—a,00) and A € (A1, A2) and moreover let (i), (4i) hold. If uy is a nontrivial
solution of (a) defined on [ty,00),ty > —a with the property ui(tg, A) = 0 for all
A € (A1, As) then the zeros of uy on (tg,00) (if exist) are continuous functions of
the parameter A € (A1, A2).

Proof. Solution u; fulfils at the same time the linear differential equation
(7) u” + q(t, N + p(t, ) H ui(t, \)]u=10.

Equation (7) fulfils the supposition of Lemma 4.2 [2] and the assertion of Lemma
3 follows from this Lemma 4.2. a

Corollary 1. Let the suppositions of Lemma 3 be fulfiled and let the differential
equation

1
v+ Zq(t,A)v =0

be oscillatory on [—a, 00) for every A € [A, A1), A1 < A < As.

If u; is a nontrivial solution of (a) with the property ui(to, ) = 0, € [A, As)
then wy is oscillatory on [tg,00) and its zeros are continuous functions of A €

[A, As).
The proof follows from Lemma 2 and Lemma 3.
Lemma 4. (Oscillation Lemma) Let the suppositions of Lemma 3 on p, ¢, h be

satisfied and let further

)\11>HA12 q(t’ /\) = oo

uniformly for all
t€[—a,00).

Let —a <ty < T < oo and let uy be a nontrivial solution of (a) defined on [tg, o)
with the property uyi(to,A) = 0 for every A € (A1, As). With increasing A — As
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the number of zeros of u; in [to,T] increases to infinity and at the same time the
distance between any two neighbouring zeros of uy converges to zero.

Proof. Solution u; of (@) is at the same time the solution of (7). The coefficients
of (7) fulfil the suppositions of Theorem 4.5. b) in [2] (Oscillation Theorem) and
therefore the assertion of Lemma 4 follows from this Theorem 4.5 b). O

Theorem 1. Let p,q,h satisfy the suppositions of Lemma 4 on [—a,00) and
A € (A1, A2). Let u be one of the nontrivial solutions of (a) with the property

(8) u(—a,A) = u'(—a,A) =0

defined on [—a,c0). Then there exists a natural number y, or ¥ = 0 and a se-
quence of values of parameter A, {Ay4p };ozo with a corresponding sequence of
functions (eigenfunctions) {uy4p};2, such that uyy, = u(t, Ay4p) is a solution of
(a) satisfying the boundary conditions (1) and uyi, has exactly v + p zeros in
(—a,a).

Proof. Let u be a solution of (a) with property (8) defined on [—a,o0). In vitue
of Lemma 3 and Corollary 1 there exists such a A = A, that the solution u is

oscillatory on [—a, o0) for every A € [A, 00) and its zeros are continuous functions
of A € [A, As). Denote by ¢,(A),n = 1,2, ..., the zeros of u(t, A) to the right of —a.
Let u(t, A) have exactly v zeros on (—a, a). Then there is t,(A) < a < ty11(A).
According to Lemma 4 there exists A > A such that t7+1(;\) < a and according to
Lemma 3 there exists such a Ay, A < A, < A that £,41(\y) = a and u(t, Ay) = u,
satisfies conditions (1) and has exactly y zeros in (—a, a). Proceeding in this way

we prove the existence of sequences {A,1,}7%, O

Remark 1. The boundary-value problem (a), (2) can be solved by the same ar-
guments as the problem (a), (1), but it is necessary to take the condition

u(—a,A) = v’ (—a,A) =0
instead of condition (8).

4. Consider in this section the differential equation (b) and the boundary condi-
tions (3), (4) and suppose that the functions f’, ¢’ and p are continuous functions
of t € (—o0,0). Then the following lemma is true.

Lemma 5. Let u* be one of the eigenvalues and r*(t, u*) be the corresponding
eigenfunction of the second order eigenvalue problem

(9) 4+ uf(t)r =0,7(—a,pu) = r(a,pu) =0.

If w = u(t, A, i*) is a solution of (b), which fulfils the boundary conditions for
po=pr

(10) u(—a, A, p*) = u//(_aa A pt) =u(a, A p") =0,
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then u is a solution of the boundary value problem (b), (3), (4), where yp = yi* and
r=7r*(t, "), too.

Proof. Integrating the differential equation (b), where p = p*, writen in the form

u H{{F () + Ag(O)]u} + {[—p (1) = Ag' (O]ult, A, p7) + Ap()h[u(t, A, p7]} = 0
term by term from —a to ¢, ¢t < a, and considering (10) we get
t

u S (Ou A+ Agtu+ {[=p () = A (T)u(m, A )

—a

+ Ap(m)hfu(r, A, )] }dr = 0.

Now multiply the last equality by »*(¢, #*) and integrate it from —a to a. We come
to the equality

a

(1) = A ) (N e =
NP O+ R A ) — g (Pt A
PO A e

The right-hand side of (11) contains the expression which stands in the boundary
condition (4). Therefore it is necessary to prove that the integral on the left-hand
side of (11) is equal to zero. Calculate this integral and suppose (9) and (10). We
obtain

a

[ (8, A, ™) A p S (Out, A, )™ (&, po))dt = w!(a, A, @ )r™(a, p7) =

—a
a

W(=a Ay (—a p )+ [ ) Fr (¢ p)d = 0 O

—a

Corollary 2. Let in equation (b) be f(t) = 1,p(t) = 1,¢(t) > 0 and ¢'(¢) <0 for
t €[—a,o0).
Then every solution u of the boundary-value problem

2

(by) u” + ];—13 +Ag(t) ' + Ah(u) =0
(12) u(—a,A) = v’ (—a,A) = u(a,\) =0

is also a solution of (by) which fulfils the boundary conditions

u(—a,A) = ula,A) =0
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and
a 1

(13) sin ];—H(a +)[g()ult, ) + {h(u(r, X)) — ¢'()u(r,A) }dr]dt = 0

—a a —a
Proof. It follows from Lemma 5, applied on the equation
(14) u” 4+ [p+ Ag)] v’ + Ah(u) = 0
The second order eigenvalue problem (9) for f(¢) = 1 has the form
v+ pr =0, r(—a, ) = r(a,p) =0

. 2 . . .
Its eigenvalues are pj = % ,k=1,2,... and the corresponding eigenfunctions
are

ETT
* —sin — ), k=1,2,....
7y = sin 5 (a+1), 2,

Tt is necessary to prove that the boundary condition (4) has the form (13) in this
case. It will be proved if the right-hand side of (4) is equal to zero. But it follows
from the supposition f(¢) = 1 and from the condition (3). O

At the end it is necessary to formulate the conditions on f, ¢, A for the solution

of the problem (b), (10) and at the same time of the problem (b), (3), (4).

Theorem 2. Let f(t) > k > 0,¢9(t) > k > 0,p(t) > 0 fort € [—a,o0) and let
F(t) €0,¢'(t) 0. Let further h have the properties (i), (ii) and h’ be continuous
on (—o0, 0).

Let p be one of the positive eigenvalues of (9) and r(t, jt) its corresponding eigen-
function. Then there exists a natural number y or vy = 0 and a sequence {Ay1p},2¢
of the parameter A and a corresponding sequence of functions {u4p };2 such that
Uygp = u(t, Aypp, i) Is a solution of (b) which fulfils the conditions (10) for p* = u
and uft, Ay4p, ) has in (—a, a) exactly v + p zeros.

Proof. At the first it is easy to see, that the coefficients of (b) fulfil the supposi-
tions of Lemma 4 and Corollary 1, because equation (b) is of the form (a), where
q(t, A) = pf(t)+Ag(t) > 0 for g > 0,A > 0 and p is one of the positive eigenvalues
of (9).

The equation

V() 4+ (0] v = 0

is oscillatory in [—a, c0) for A > A > 0 and therefore it follows from Lemma 2, that
every solution u(t, A, 1) of (b) with the property u(—a, A, pt) = v”’(—a, A, u) = 0, is
oscillatory in [—a, o0) for A > A. Denote by u one of them and let ¢, A ,n=1,2..,
be the zeros to the right of —a of u(t, A, u). Let for n = v be t,(A) < a and

ty+1(A) > a. According to Lemma 3, t,41(A) is a continuous function of A and
hence in virtue of Lemma 4 there is A > A such that ¢,41(\) < a and from the
continuity of ¢,41(A) there is A > A, < A such that ¢,41(\y) = @ and u(t, Ay, p)
satisfies the condition (10) and has exactly 7 zeros in (—a, a). Proceeding in this
way we prove the existence of the sequences {A,1,};%, and {uy4p}p2, Thus the

theorem is proved. a



292 MICHAL GREGUS

Example. Have the boundary value problem

(15) " 4 (k* 4+ M’ + A arctg u =0
11 11
(16) u(—;,/\):u(g,/\)zo
Z Il ¢
(17) sin k 3 +t [u(t, )+ aretg  u(r, A)dr]dt =0
_n _n

From Theorem 2 there follows, that every solution u of equation (15) which
fulfils the boundary conditions

is the solution of (15), (16), (17), because it is easy to see, that the function
r(t, p) = sin k(% +t) is the eigenfunction of the problem " + yur = 0, r(—%, W) =
r(%, i) = 0 with the eigenvalue p = k%, where k is a natural number.
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