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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 29 { 36OSCILLATORY PROPERTIES OF SOLUTIONS OF SECONDORDER NONLINEAR NEUTRALDIFFERENTIAL INEQUALITIESWITH OSCILLATING COEFFICIENTSM. K. Grammatikopoulos, P. Maru�siakAbstract. This paper deals with the second order nonlinear neutral di�erentialinequalities (A� ): (�1)�x(t)f z00(t) + (�1)�q(t)f(x(h(t)))g � 0; t � t0 � 0; where� = 0 or � = 1; z(t) = x(t) + p(t)x(t��); 0 < � = const, p; q; h : [t0;1)! Rf : R ! R are continuous functions. There are proved su�cient conditions underwhich every bounded solution of (A� ) is either oscillatory or liminft!1 jx(t)j = 0:1. IntroductionConsider the second order nonlinear neutral di�erential inequalities(A�) (�1)�x(t) f z00(t) + (�1)�q(t) f(x(h(t)))g � 0; t � t
0

� 0;where � = 0 or � = 1; z(t) = x(t) + p(t)x(t � � ); 0 < � = const,p; q; h : [t
0

;1) ! R are continuous functions, limt!1h(t) = 1 , q(t) it allowedto oscillate on [t
0

;1) and p; q 6� 0 on any subinterval of half line [t
0

;1);f : R! R is continuous, u f(u) > 0 for u 6= 0:Recently several authors have been studying the oscillatory properties of solu-tions of neutral delay di�erential equations of the �rst and higher order. Amongnumerous of interesting results of this type can be found in the papers [1�8] andto the references obtained therein.On the end of the paper [5] it is written: When q is allowed to oscillate theproblem is far more di�cult, and any results, even for linear equations, would beof interest.In this paper we give some new aspects in the study of the oscillatory propertiesof solutions of the inequalities (A�) with the oscillatory coe�cient q .Let T
0

> t
0

be such that T = min f inft�T0 h(t); T
0

� � g � t
0

: Afunction x : [T;1) ! R is a solution of (A�) on [T
0

;1) if x(t) is1991 Mathematics Subject Classi�cation : 34K40, 34K25.Key words and phrases: neutral di�erential equations, oscillatory (nonoscillatory) solutions.Received December 17, 1993.



30 M. K. GRAMMATIKOPOULOS, P. MARU�SIAKcontinuous on [T;1); the function z(t) is two times continuously di�erentiableon [T
0

;1) and x(t) satis�es (A�) on [T
0

;1) .We consider solutions of (A�) only such that sup f jx(t)j : t 2 [tx;1) g > 0for any tx � T
0

: Such a solution is called nonoscillatory if it is eventually ofconstant sign. Otherwise it is called oscillatory.2. Main resultsIn addition we suppose that:(C
1

) There exits a sequence of intervals f(an; bn)g1n=1

such that1Sn=1

(an; bn) � [t
0

;1); limn!1an =1;and for any n 2 N : bn � an > �; bn < an+1

; an+1

� an � M <1:(C
2

) q(t) > 0 for all t 2 1Sn=1

(an; bn) and lim inft!1 q(t) = 0:Denote Jn = (an; bn); Ak = 1Sn= k Jn for any k 2 N:Let there exist constants p
1

; p
2

such that the following holds:(C
3

) p
1

� p(t) � p
2

; t 2 [t
0

;1):Lemma 1. Let x(t) be a bounded solution of (A�) on [T
0

;1) and let (C
3

)hold. Then the function z(t) = x(t) + p(t)x(t� � ) is bounded.Proof. The proof of Lemma is evident. �Theorem 1. Let (C
1

), (C
2

), (C
3

) hold. If(C
4

) limn!1 Z bnan q(s) ds =1;then every bounded solution of (A
0

) is either oscillatory or lim inft!1 jx(t)j = 0:Proof. Let x(t) be a nonoscillatory bounded solution of (A
0

) on [T
0

;1);Without loss of generality we suppose that x(t � � ) > 0 and x(h(t)) > 0 on[ t
1

;1) , t
1

� T
0

+ �: Let fJng1n=1

be a sequence of intervals de�ned by (C
1

).Since q(t) > 0 for any t 2 A
1

\ [t
1

;1) , then from (A
0

) we get that z0(t) isdecreasing and z(t) is monotone on A
1

\ [t
1

;1):In view of that x(t) (> 0) is bounded on [t
1

;1) , there exist a constant Kand T
1

� t
1

such that jf(x(h(t)))j � K for all t � T
1

. With regard to (C
2

)for any � > 0 there exists a T
2

� T
1

such that(1) q(t) � ��=KM for t � T
2

:If x(t) > 0 for t 2 [t
1

;1); then from (A�) we get( �A�) (�1)�fz00(t) + (�1)� q(t) f(x(h(t)))g � 0; t � t
1



OSCILLATORY SOLUTIONS OF NONLINEAR NDE 31Then from ( �A
0

) with regard to (1) we have z00(t) � �=M for t � T
2

.Integrating the last inequality from bn to an+1

(bn � T
2

; n 2 N ) we have(2) z0(an+1

) � z0(bn) + �; bn � T
2

; n 2 N:I) Let there exists a n
0

� 1 such that z0(t) < 0 for all t 2 An0 \ [T
2

;1):Integrating ( �A
0

) from an to bn, n � n
0

and using that z0(t) < 0 we obtain(3) Z bnan q(t) f(x(h(t))) dt � z0(an)� z0(bn) � �z0(bn):a) Let infn�n0fz0(bn)g > �1 , then from (3) we have(4) Z bnan q(t) f(x(h(t))) dt <1; an0 � T
2

; n � n
0

:The last inequality with regard to (C
4

) and the property of the function f andh implies lim inft!1 x(t) = 0:b) Let infn�n0fz0(bn)g = �1: Then in view of (2) and that z0(t) (< 0)is decreasing on An0 \ [T
2

;1) , we get that z(t) is unbounded below. Thenthis, in view of (C
3

) and of Lemma 1 we get that x(t) is unbounded, which is acontradition to the assumption that x(t) is bounded on [T
0

;1).II) Let there exists a sequence fmkg1k =1

; mk 2 N such that z0(t) > 0 andz0(t) is decreasing for all t 2 Am1 � [t
0

;1). Then integrating ( �A
0

) from amkto bmk , k � 1 , we have(5) Z bmkamk q(t) f(x(h(t))) dt � z0(amk )� z0(bmk) � z0(amk):Because x(t) (> 0) is bounded on [T
0

;1), by Lemma 1 we get that z(t)is bounded on [T
0

;1) . Therefore with regard to (2) and the monotonicity ofz(t); z0(t) we have supmk�m1fz0(amk )g < 1: Thus from (5) we get (4), whichimplies as in the case Ia) that lim inft!1 x(t) = 0:The proof of Theorem 1 is complete. �Theorem 2. Let (C
1

), (C
2

), (C
3

) and (C
4

) hold. Then every bounded solutionof (A
1

) is either oscillatory or lim inft!1 jx(t)j = 0:Proof. Let x(t) be a nonoscillatory bounded solution of (A
1

) on [T
0

;1);Withoutloss of generality we suppose that x(t � � ) > 0 and x(h(t)) > 0 on [t
1

;1), t
1

�T
0

+ �: Let fJng1n=1

be a sequence of intervals de�ned by (C
1

). If q(t) > 0 forany t 2 A
1

\ [t
1

;1), then from (A
1

) we get that z0(t) is increasing and z(t) ismonotone on A
1

\ [t
1

;1).



32 M. K. GRAMMATIKOPOULOS, P. MARU�SIAKAnalogously as in the proof of Theorem 1 we have (1). Then from ( �A
1

) in viewof (1) we have z00(t) � ��=M for t � T . Integrating the last inequality from bn toan+1

; bn � T; n 2 N; we obtain(6) z0(an+1

) � z0(bn) + �; t 2 A
1

\ [T;1):I) Let there exist a n
0

� 1 such that z0(t) > 0 for all t 2 An0 ; an0 � T:Integrating ( �A
1

) from an to bn, for any n � n
0

we obtain(7) Z bnan q(t) f(x(h(t))) dt � z0(bn)� z0(an) � +z0(bn):a) Let supn�n0fz0(bn)g <1, then from (7) in view of (C
4

) and the property ofthe functions f and h, we have lim inft!1 x(t) = 0:b) Let supn�n0fz0(bn)g = 1; then in view of (6) and the fact that z0(t) (> 0)is increasing for all t 2 An0 , we have that z(t) is unbounded above. Then in viewof (C
3

) and of Lemma 1 we get that x(t) is unbounded, which is a contradition.II) Let there exists a sequence fmkg1k =1

; mk 2 N such that z0(t) < 0 and z0(t)is increasing for all t 2 Am1 � [T
0

;1). Then integrating ( �A
1

) from amk to bmk ,k � 1, we obtain(8) Z bmkamk q(t) f(x(h(t))) dt � z0(bmk )� z0(amk ) � �z0(amk ):In view of Lemma 1 and that x(t) (> 0) is bounded on [T
0

;1), we have that z(t)is bounded on [T
0

;1). Then with regard to (6) and the monotonicity of z(t); z0(t)we get that supmk�m1f�z0(amk )g <1: Therefore from (8) we getZ bmkamk q(t) f(x(h(t))) dt <1:The last relation in view of (C
4

) and the property of the function f and h we getthat lim inft!1 x(t) = 0:The proof of Theorem 2 is complete. �Now denote(9) q
+

(t) = maxf0; q(t)g; q�(t) = maxf0;�q(t)g; t 2 [t
0

;1):Then q(t) = q
+

(t)� q�(t):Lemma 2. [6, Lemma 1.5.2] Let f; g; p 2 C([t
0

;1); R) and c 2 R be such thatf(t) = g(t) + p(t) g(t � c); t � t
0

+ maxf0; cg: Assume that there exist numbersp
1

; p
2

; p
3

; p
4

2 R such that p(t) is one of the following ranges:i) p
1

� p(t) � 0;ii) 0 � p(t) � p
2

< 1;iii) 1 < p
3

� p(t) � p
4

:Suppose that g(t) > 0 for t � t
0

, lim inft!1 g(t) = 0 and that limt!1 f(t) = L 2 Rexists. Then L = 0.



OSCILLATORY SOLUTIONS OF NONLINEAR NDE 33Lemma 3. Let f; g; p 2 C([t
0

;1); R) and c 2 (0;1) be such that f(t) =g(t)+p(t) g(t�c) for t � t
0

+c: Assume that 0 < g(t) � g
0

<1; limt!1 f(t) = 0:In addition we suppose that there exists constant p
1

; p
2

such that either(10) �1 < p
1

� p(t) � 0; or 0 � p(t) � jp
1

j < 1;or(11) p(t) � p
2

< �1:Then limt!1 g(t) = 0:Proof. i) Let (10) hold. Theng(t) = f(t) � p(t) g(t � c) � f(t) + jp
1

j g(t� c); t � t
0

+ c:By iteration for su�ciently large t we haveg(t) � f(t)+jp
1

j f(t�c)+jp
1

j2 f(t�2 c)+� � �+jp
1

jn�1 f(t�(n�1) c)+jp
1

jn g(t�n c):The last relation we can writte in the form0 < g(t+ n c) � f(t + n c) + jp
1

j f(t + (n� 1) c) + jp
1

j2 f(t + (n� 2) c) + � � �++jp
1

jn�1 f(t + c) + jp
1

jn g(t);for su�ciently large t. In view of limt!1 f(t) = 0; for any "
1

> 0 there existssu�ciently large T such that jf(t)j < "
1

for t � T: Then(12) jg(t+ n c)j < "
1

11� jp
1

j + jp
1

jn g
0

; t � T:Therefore for any " > 0 there exist "
1

and n = n
0

such that"
11 + p

1

+ jp
1

jn0 g
0

< ":Then from (12) in view of the last relation we have limt!1 g(t) = 0:ii) Let (11) hold. Then from p(t) g(t� c) = f(t) � g(t) with regard to (11)we get g(t) � 1p
2

(f(t + c)� g(t+ c)); t � t
0

+ 2 c:By iteration for su�ciently large t we haveg(t) � 1p
2

f(t+c)� 1p2

2

f(t+2 c)+ � � �+(�1)n�1

1pn
2

f(t+n c)+(�1)n 1pn
2

g(t+n c):In view of limt!1 f(t) = 0; for any "
1

> 0 there exists su�ciently large Tsuch that jf(t)j < "
1

; for t � T: Thenjg(t)j � "
1jp

2

j � 1 + g
0jp

2

jn :Then analogously as in case i) we obtain limt!1 g(t) = 0: �



34 M. K. GRAMMATIKOPOULOS, P. MARU�SIAKLemma 4. [9, Lemma 2] Let w 2 C([t
0

;1)); v 2 C 1 ([t
0

;1)) and there existslimt!1[w(t) v0(t) + v(t)] in the extended real line R# : Then limt!1 v(t) existsin R# :Theorem 3. Let (C
3

) hold. In addition we suppose that(12) Z 1t0 q
+

(t) dt =1 and(13) Z 1t0 q�(t) dt <1:Then every bounded solutions of (A
0

) is oscillatory, or lim inft!1 jx(t)j = 0:Proof. Let x(t) be a bounded nonoscillatory solution of (A
0

) on [T
0

;1):Without loss of generality we suppose that x(t � � ) > 0; x(h(t))) > 0 on[t
1

;1) ; t
1

� T
0

+�: Analogously as in the proof of Theorem 1 there exist K > 0and t
2

� t
1

such that jf(x(h(t)))j � K for all t � t
2

: Then the inequality( �A
0

) in view of (9) we can writte in the form(14) z00(t) + q
+

(t) f(x(h(t))) �K q�(t) � 0; for t � t
2

:With regard to (13) there exists a L > 0 such that R1t2 q�(t) dt = L: Then(14) via the estimation (9) we have z0(t) � z0(t
2

) +K L; i.e. z0(t) is boundedabove. If R1t0 q
+

(t) f(x(h(t))) dt = 1; then the estimation (14) implies thatlimt!1 z0(t) = �1 and therefore limt!1 z(t) = �1: This in view of Lemma 1 and(C
3

) contradicts the fact that x(t) is bounded on [T
0

;1): Therefore(15) Z 1t0 q
+

(t) f(x(h(t))) dt <1:Then (15) in view of (12) and the properties of functions f and h implies that(16) lim inft!1 x(t) = 0:The proof of Theorem 3 is complete. �Now we consider the equation(E) z00(t) + q(t) f(x(h(t))) = 0; t � t
0

> 0;as a special case of (A
0

).



OSCILLATORY SOLUTIONS OF NONLINEAR NDE 35Theorem 4. Let either (10) or(17) �1 < p
3

� p(t) � p
2

< �1:hold. In addition we suppose that(18) Z 1t0 t q
+

(t) dt =1 and(19) Z 1t0 t q�(t) dt <1:Then every bounded solutions of (E) is either oscillatory, or limt!1x(t) = 0 andlimt!1 z ( k ) (t) = 0; k = 0; 1:Proof. Let x(t) be a bounded and positive solution of (E) on [T
0

;1):Without loss of the generality we suppose that x(t� � ) > 0 and x(h(t)) > 0 on[t
1

;1); t
1

� T
0

+ �: Multiplying (E) by t and then integratimg from t
2

to s, wehave(20) u(s) = Z st2 t z00(t) dt = Z st2 t q�(t) f(x(h(t))) dt � Z st2 t q
+

(t) f(x(h(t))) dt:If R1t2 t q
+

(t) f(x(h(t))) dt =1; then in view of (19) and the boundedness of x(t);from (20) we get lims!1u(s) = �1: By Lemma 4 there exists lims!1 z(s) = z
0

2 R# :Let jz
0

j < 1: Then lims!1u(s) = �1 implies lims!1 s z0(s) = �1: From thisrelations we get that lims!1 z(s) = �1; which contradicts the fact that jz
0

j <1:Therefore lims!1 jz(s)j =1: This in view of Lemma 1 gives a contradiction to thefact that x(t) is bounded. Therefore(21) Z 1t2 t q
+

(t) f(x(h(t))) dt <1:Then (21) in view of (18) and the property of f and h implies that (16) holds.Now, letting s ! 1 in (20), then using the boundedness of x(t); (19),(21)and the property of f; we have(22) lims!1(s z0(s) � z(s)) = L
1

; jL
1

j <1:With regard to Lemma 4 and the fact that z(t) is bounded we obtain thatlimt!1 z(t) = L; jLj <1: Then if we use either (10) or (17), (16) and Lemma 2 weobtain that L = 0: From (22) in view of L = 0 we get that limt!1 z0(t) = 0:We proved that limt!1 z ( k ) (t) = 0; k = 0; 1: Then if we use Lemma 3 we hawelimt!1 x(t) = 0:The proof of Theorem 4 is complete. �
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