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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 201 { 204A COMMUTATIVITY THEOREM FOR ASSOCIATIVE RINGSMOHAMMAD ASHRAFAbstract. Let m > 1; s � 1 be �xed positive integers, and let R be aring with unity 1 in which for every x in R there exist integers p = p(x) �0; q = q(x) � 0; n = n(x) � 0; r = r(x) � 0 such that either xp[xn; y]xq =xr [x; ym]ys or xp[xn; y]xq = ys[x; ym]xr for all y 2 R. In the present paperit is shown that R is commutative if it satis�es the property Q(m) (i.e. forall x; y 2 R;m[x; y] = 0 implies [x; y] = 0).1. IntroductionThroughout the present paper R will denote an associative ring with unity1; Z(R) the center of R;N (R) the set of nilpotent elements of R, and C(R) thecommutator ideal of R . For any x; y 2 R, set [x; y] = xy � yx. As usual ZZ[X] isthe totality of polynomials in X with coe�cients in ZZ , the ring of integers. For�xed non-negative integers m > 1; s � 1; consider the following ring properties:(�): For each x in R there exist integers p = p(x) � 0; q = q(x) � 0; n =n(x) � 0; r = r(x) � 0 such that xp[xn; y]xq = xr[x; ym]ys for ally 2 R.(�)0 : For each x in R there exist integers p = p(x) � 0; q = q(x) � 0; n =n(x) � 0; r = r(x) � 0 such that xp[xn; y]xq = ys[x; ym]xr for ally 2 R.Q(d): For all x; y 2 R; d[x; y] = 0 implies that [x; y] = 0, where d is somepositive integers.It is easy to see that every d-torsion free ring has the property Q(d) and everyring has the property Q(1).Recently several authors (cf.[1], [2], [4], [5], [7], [11], [13] and [16] etc.)havestudied commutativity of rings satisfying various special cases of the property (�)and (�)0. Particularly, in most of the cases, the exponents in the above conditionshave been considered \global". Till now a very few attempts (cf.[3], [10] etc.)have been made to establish commutativity of rings, when the exponents in theunderlying conditions are \local" i.e. they are depending on ring's elements for1991 Mathematics Subject Classi�cation. 16U80.Key words and phrases. polynomial identity, nilpotent element, commutator ideal, associativering, torsion free ring, center, commutativity.Received December 1, 1994



202 MOHAMMAD ASHRAFtheir values. In the present paper, our objective is to investigate commutativityof rings satisfying either of the properties (�) or (�)0.2. Main ResultTheorem. Let m > 1; s � 1 be �xed positive integers for which R satis�es eitherof the properties (�) or (�)0. Then R is commutative.In order to develop the proof of the above theorem we begin with the followinglemmas, which are essentially proved in [8,p.221], [9,Theorem] and [6,Theorem 1]respectively. Although Lemma 2.4 is proved in [14] for a �xed exponent n, butwith a slight modi�cation in the proof, it can be established for variable exponentn.Lemma 2.1. Let x; y be elements in a ring R (may be without unity 1). If[x; [x; y]] = 0, then [xk; y] = kxk�1[x; y] for all integers k � 1.Lemma 2.2. Let f be a polynomial in n non-commuting indeterminates x1; x2; � � � ;� � � ; xn with relatively prime integer coe�cients. Then the following are equiva-lent:(i) For every ring satisfying f = 0; C(R) is a nil ideal.(ii) For every prime p; (GF (p))2 fails to satisfy f = 0.Lemma 2.3. Let R be a ring (may be without unity 1), and suppose that foreach x; y 2 R, there exists a polynomial f(X) 2 XZZ [X], depending on x and yfor which [x; y] = [x; y]f(x). Then R is commutative.Lemma 2.4. Let f be a polynomial function of two variables on R with theproperty that f(x + 1; y) = f(x; y) for all x; y 2 R. Suppose that for all x; y 2 Rthere exists integer n such that xnf(x; y) = 0 or f(x; y)xn = 0, then necessarilyf(x; y) = 0.Proof. Suppose that xnf(x; y) = 0. Choose a positive integer n1 = n(x+1; y) suchthat (x+ 1)n1f(x; y) = 0. If N = maxfn; n1g then it follows that xNf(x; y) = 0and (x + 1)Nf(x; y) = 0. We have f(x; y) = f(x + 1) � xg2N+1f(x; y). Onexpanding the expression on the right hand side by binomial theorem, we �ndthat f(x; y) = 0. A similar proof is valid in case, if R satis�es f(x; y)xn = 0.Now we shall prove the following:Lemma 2.5. Let R be a ring satisfying either of the properties (�) or (�)0.Moreover, if R has the property Q(m), then N (R) � Z(R).Proof. Suppose that R satis�es the property (�). Let a 2 N (R): Then thereexists a positive integer t such that(2:1) ak 2 Z(R); for all k � t and t minimal.If t = 1, then for each such a, result is obvious. Therefore assume that t > 1. Nowreplace y by at�1 in (�), to get xp[xn; at�1]xq = xr[x; (at�1)m](at�1)s. Thus in



A COMMUTATIVITY THEOREM FOR ASSOCIATIVE RINGS 203view of (2.1) and the fact that (t� 1)m � t for m > 1, we �nd that(2:2) xp[xn; at�1]xq = 0; for all x in R:Further replace y by 1 + at�1 in (�) and use (2.2), to get0 = xp[xn; at�1]xq = xp[xn; 1 + at�1]xq = xr[x; (1 + at�1)m](1 + at�1)sSince, 1 + at�1 is invertible, the last equation implies that xr[x; (1+ at�1)m] = 0.Now application of Lemma 2.4, yields that(2:3) [x; (1+at�1)m] = 0; for all x 2 R:Combine (2.1) and (2.3), to get0 = [x; (1+ at�1)m] = [x; 1+mat�1] = m[x; at�1]:Now using property Q(m), we �nd that at�1 2 Z(R). This contradicts the mini-mality of t in (2.1), and hence t = 1 i.e. a 2 Z(R):Similar arguments may be used to get the required result, if R satis�es the prop-erty (�)0.Lemma 2.6. Let m > 1; s � 1 be �xed positive integers for which R satis�eseither of the properties (�) or (�)0. Then C(R) � N (R):Proof. Let R satisfy (�). Replacement of y by 1+y in (�), yields that xp[xn; y]xq =xr[x; (1 + y)m](1 + y)s. This gives that xrf[x; ym]ys � [x; (1 + y)m](1 + y)sg = 0.Now apply Lemma 2.4, to get [x; ym]ys � [x; (1 + y)m ](1 + y)s = 0. This is apolynomial identity and we see that x = e11 + e12; y = e11 fail to satisfy thisequality in the ring of 2�2 matrices over GF (p); p a prime. Hence by Lemma 2.2,C(R) � N (R).On the other hand if R satis�es (�)0, then by using similar techniques as above,with the choice of x = e11 + e21; y = e11, we get the required result.Proof of the Theorem. We sall prove the theorem for the property (�). Prooffor the property (�)0 follows similarly. In view of Lemmas 2.5 and 2.6, we have(2:4) C(R) � N (R) � Z(R):If n = 0, then we �nd that xr[x; ym]ys = 0:Now application of (2.4) and Lemma2.1, yields that mxr[x; y]ym+s�1 = 0: Now apply Lemma 2.4, to get m[x; y] = 0;and in view of Q(m);this yields the required result. Therefore, assume that n > 0:Now replace y by 1 + y, to get xp[xn; y]xq = xr[x; (1 + y)m ](1 + y)s. This givesthat xrf[x; ym]ys � [x; (1 + y)m ](1 + y)sg = 0, and by Lemma 2.4, we �nd that[x; ym]ys = [x; (1+y)m](1+y)s, for all x; y 2 R. In view of Lemma 2.1 and Q(m),the last equation reduces to [x; y]f(1 + y)m+s�1 � ym+s�1g = 0, for all x; y 2 R.This is a polynomial identity and can be rewritten in the form [x; y] = [x; y]yg(y),for some g(X) 2 ZZ [X]. Hence by Lemma 2.3, R is commutative.
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