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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 249 { 266TRANSLATION OF NATURAL OPERATORSON MANIFOLDS WITH AHS{{STRUCTURESAndreas �CapTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. We introduce an explicit procedure to generate natural operators onmanifolds with almost Hermitian symmetric structures and work out several exam-ples of this procedure in the case of almost Grassmannian structures.This paper splits into two parts. In the �rst part, we introduce a procedureto generate invariant operators on manifolds with almost Hermitian symmetric(AHS) structures. This procedure is inspired by the Jantzen{Zuckermann trans-lation principle in representation theory and by curved versions of this princi-ple. A curved translation principle was �rst applied in [Eastwood{Rice] to four{dimensional conformal geometry, versions for conformal manifolds of arbitrarydimensions and for other structures can be found in [Eastwood] and in [Bailey{Eastwood{Gover].It should be remarked that there is another approach which leads to powerfulcurved versions of the translation principle in the conformal case (see [Baston] and[Eastwood{Slov�ak]) which probably are better suited to prove general existenceresults than the procedure presented here. The advantage of the latter is thebigger generality, that it immediately leads to explicit formulae for the operatorsin question, and that it also leads to starting points for translations.In the second part of the paper, we apply the translation procedure in severalsimple instances in the case of almost Grassmannian structures, arriving at severalexamples of invariant operators of low order in this case. Thanks to the notion ofjet prolongations of representations developed in [CSS1], these are mainly purelyalgebraic computations. The �nal results of these computations can then easilybe translated into the language of di�erential operators.Our reference for the general theory of AHS{structures is [CSS1]. For the theoryof almost Grassmannian structures we refer to [Bailey{Eastwood].I would like to thank M. Eastwood, H. Schichl, J. Slov�ak, and V. Sou�cek forvery helpful discussions on the subject.1991 Mathematics Subject Classi�cation : 17B10, 22E47, 53C10.Key words and phrases: invariant operator, AHS structure, paraconformal structure, almostGrassmannian structure, translation principle.



250 ANDREAS �CAP1. The translation procedure1.1. The basic ingredients for an AHS{structure are a so called j1j{graded Liealgebra, i.e. a semisimple Lie algebra g which admits a grading of the form g =g�1 � g0 � g1, and a connected Lie group G with Lie algebra g. By p we denotethe parabolic subalgebra g0 � g1 of g and by P the corresponding subgroup of G.Then a manifoldwith an AHS{structure corresponding to G is a manifoldwhosedimension equals the dimension of g�1, together with a principal P{bundle anda Cartan connection on this bundle, i.e. a g{valued one{form which reproducesfundamental vector �elds, is P{equivariant and restricts to a linear isomorphismon each tangent space. The construction of this bundle and the canonical Cartanconnection from underlying data is the subject of the paper [CSS2].1.2. For any representation of the group P on a vector space W one can form theassociated bundle to the principal P{bundle over a manifold with the correspond-ing AHS{structure, thus arriving at a natural vector bundle on these manifolds.Particularly, one is interested in representations in which the subgroup P1 of Pwhich corresponds to the (abelian) Lie subalgebra g1 of p acts trivial, since theserepresentations correspond to classical geometric objects like tensors or di�erentialforms.One of the main achievements of [CSS1] is the construction of semi holonomicjet prolongations of representations. Since we will heavily need these, we quicklyrecall the construction from [CSS1, 5.3{5.6]. For a representation W of P wedescribe the (semi holonomic) jet prolongations J k(W ) as representations of theLie algebra p = g0 � g1: As a g0{module, the �rst jet prolongation J 1(W ) isde�ned as W � (g��1 
W ), where we identify g��1 
W with the space of linearmaps from g�1 to W . An element Z 2 g1 acts on a pair (w;') by mapping it to(Z�w;X 7! (Z�'(X) + [Z;X]�w)), where X 2 g�1 and the dot denotes the actionof the bracket [Z;X] 2 g0 on w 2 W . Note that in the case of trivial g1{actionon W (which we will mainly deal with) this formula simpli�es considerably. It isshown in [CSS1, 5.3] that this actually de�nes a p{action which integrates to aP{action.Next, one makes J 1( ) into a functor on the category of P{representations andconstructs a natural transformation to the identity (which is just given by pro-jecting out the �rst component), see [CSS1, 5.4]. From this, one then has twonatural homomorphisms J 1(J 1(W )) ! J 1(W ), namely the natural transforma-tion just described and the �rst jet prolongation of the canonical homomorphismJ 1(W )!W , and one de�nes J 2(W ) as the submodule of J 1(J 1(W )) on whichthese two homomorphisms coincide.Similarly as in the classical construction of semi holonomic jets (see e.g. [Ehres-mann]), this can then be iterated to de�ne higher jet prolongations J k(W ), see[CSS1, 5.5]. For us, the main point is that as a g0{module J k(W ) is isomorphicto W � (g��1 
W )� � � � � (
kg��1 
W );while the g1 action can be computed inductively by viewing J k(W ) as a submoduleof J 1(J k�1(W )).



TRANSLATION OF NATURAL OPERATORS 2511.3. Using the absolutely invariant derivative introduced in [CSS1, 2.3{2.5], anyhomomorphism ~D : J k(W ) ! W 0 of P{modules gives rise to a natural operatorof order k de�ned on all manifolds with an AHS{structure corresponding to G, see[CSS1, 5.7].It can be shown, however, that not all invariant operators are of this form. Anexample is the square of the Laplacian on conformal manifolds of dimension 4.In fact, one can compute explicitly the corresponding space of module homomor-phisms which turns out to be of dimension three, but all these homomorphismsgive rise to the zero operator.The operators which are induced by module homomorphisms as above will becalled strongly invariant in the sequel. Our aim in this section is to construct aprocedure of translating such module homomorphisms, and thus the correspondingstrongly invariant operators.The basic idea of these translations in the form we will construct them is thefollowing: suppose that ~D : J k(W ) ! W 0 is a homomorphism of P{modulesand that V is a representation of P which is induced by a representation of thewhole group G. The �rst step is to construct from ~D a homomorphism ~DV :J k(W 
 V ) ! W 0 
 V , which coincides with ~D 
 idV in the highest order. Thecorresponding operator will be called the twisted operator corresponding to D andV .The second part of the construction is to construct for certain representations Vand subrepresentations ~W ofW 
V canonical homomorphisms J k( ~W )!W 
V .We will only do this in the following special situation: Consider the subgroup P0of P corresponding to the Lie subalgebra g0 of p, which is always reductive, see[Ochiai, 5.1]. Over this subgroup, we may split V as V0�V1�� � ��V` in such a waythat the action of g�1 maps each Vi to Vi�1, and we will restrict to the special case,where this splitting has in fact length two, i.e. V = V0 � V1. In this situation, wewill construct for each P0{irreducible component ~W � W 
 V0 (which we view asa representation of P with trivial P1{action) a homomorphismJ 1( ~W )!W 
V ,which generically is a splitting by a di�erential operator of the projection of naturalvector bundles corresponding to the projectionW
V ! (W
V )=(W
V1)! ~W .A similar construction gives rise to homomorphisms J1(W 0
V )! ~W 0 for certainrepresentations ~W 0 with trivial P1 action.Having constructed all these homomorphisms one can then simply compose thecorresponding strongly invariant operators to obtain a new operator between thebundles corresponding to ~W and ~W 0.1.4. Twisted operators. Suppose that W and W 0 are P{representations whichare induced from irreducible P0{representations, i.e. have trivial P1{action, andsuppose that ~D : Jk(W )!W 0 is a P{homomorphism. Recall that as a P0{moduleJ k(W ) �= W � (g��1
W )�� � �� (
kg��1
W ). It was observed in [CSS1, 5.8] that~D depends in fact only on one of the components 
ig��1
W , and we assume thatit depends only on the top component. Thus, ~D is in fact a P0{homomorphism
kg��1
W !W 0, which vanishes on the image of 
k�1g��1
W under the actionof P1.



252 ANDREAS �CAPWe will show that there is a canonical extension of ~D
 idV : 
kg��1
W 
V !W 0 
 V to a homomorphism J k(W 
 V )!W 0 
 V of P{modules.The geometrical reason for the existence of the twisted operators is the following:The representation W gives rise to a homogeneous vector bundle on the 
at modelG=P of our AHS{structure. Its k{th semi holonomic jet prolongation (in the senseof di�erential geometry) is again a homogeneous vector bundle, so the standard�ber has a canonical P{action, which can be shown to coincide with the action onJ k(W ) introduced above. Now if V is a representation of P which comes from arepresentation of the whole group G, then one can show that the correspondingbundle over G=P is actually trivial. Using this, it is clear that J k(W 
 V ) mustbe isomorphic to J k(W ) 
 V , and composing this isomorphism with ~D 
 idV weget the twisted operator. A purely algebraic proof of this fact can be given asfollows:1.5. Lemma. Let V be a representation of P which is the restriction of a rep-resentation of the whole group G. Then there is a natural isomorphism betweenthe functors J 1( 
 V ) and J 1( ) 
 V , which are de�ned on the category of allP{representations. For any P{representation W the corresponding isomorphismJ 1(W 
V )! J 1(W )
V is in fact an isomorphism of extensions of W 
V withkernel g��1 
W 
 V , that is we have a commutative diagram0 ����! g��1 
 (W 
 V ) ����! J 1(W 
 V ) ����! W 
 V ����! 0


 ??y 


0 ����! (g��1 
W ) 
 V ����! J 1(W )
 V ����! W 
 V ����! 0Proof. Let W be any P{representation. To de�ne a linear map J 1(W 
 V ) !J 1(W )
 V it su�ces to de�ne it on elements of the form (w0
 v0; Z1 
w1
 v1)for Z1 2 g1, wi 2W and vi 2 V . We map this element to(w0; 0)
 v0 + (0; Z1 
w1) 
 v1 + X̀(0; �` 
w0)
 �`�v0;where f�`g is a basis of g�1 and f�`g is the dual basis of g1. This is obviously ag0{homomorphism which is independent of the chosen basis and bijective. Thenone computes directly, that it also commutes with the action of g1, and thus it isa p{homomorphism and hence also a P{homomorphism. From the de�nition it isobvious that this is in fact an isomorphism of extensions.If ' :W ! W 0 is a homomorphism of p{modules, then the induced homomor-phism J 1('
 idV ) maps the element (w0
 v0; Z1
w1
 v1) to (�(w0)
 v0; Z1
�(w1) 
 v1) and from this it is clear that the isomorphism constructed above isnatural. �1.6. Proposition. For each n 2 N there is a natural isomorphism 	n betweenthe functors J n( 
V ) and J n( )
V such that for each W we get a commutative



TRANSLATION OF NATURAL OPERATORS 253diagram 
ng��1 
W 
 V ����! J n(W 
 V ) ����! J n�1(W 
 V )??yid ??y	nW ??y	n�1W
ng��1 
W 
 V ����! J n(W ) 
 V ����! J n�1(W )
 V:Proof. Suppose inductively that 	n has been constructed for all n � k. Forany W the module J k+1(W ) is de�ned as the submodule of J 1(J k(W )), wherethe footpoint projection �J k(W ) : J 1(J k(W )) ! J k(W ) coincides with the �rstjet prolongation J 1(�kk�1) of the natural projection �kk�1 : J k(W )! J k�1(W ).(Recall that by de�nition J k(W ) is a submodule of J 1(J k�1(W )).)Consider the isomorphismJ 1(J k(W 
 V )) J 1(	kW )�����! J 1(J k(W ) 
 V ) 	1Jk(W )�����! J 1(J k(W )) 
 V;which we denote by ~	k+1W . As a composition of two natural isomorphisms this isa natural isomorphism, too.The �rst mapping by de�nition induces the mapping 	kW on the footpoints,while the second one gives the identity, since 	1J k(W ) is an isomorphism of exten-sions. Thus (�J k(W )
 idV )� ~	k+1W = 	kW ��J k(W
V ). By induction, we can writethe right hand side of this equation as 	1J k�1(W ) � J 1(	k�1W ) � �J k(W
V ).On the other hand, applying the functor J 1 to the diagramJ k(W 
 V ) 	kW����! J k(W )
 V??y�kk�1 ??y�kk�1
idVJ k�1(W 
 V ) 	k�1W����! J k�1(W )
 V;which is commutative by induction, and using the naturality of 	1, we see thatJ 1(�kk�1)
 idV �~	k+1W = 	1J k�1(W ) � J 1(	k�1W ) � J 1(�kk+1).Thus we see that ~	k+1W restricts to an isomorphism 	k+1W : J k+1(W 
 V ) !J k+1(W )
V . The commutativity of the diagram in the proposition for n = k+1follows immediately from the fact that 	k+1W induces 	kW on the footpoints andinduction. �1.7. Using Proposition 1.6 it is now obvious how to construct the twisted op-erators. Suppose that W and W 0 are P{representations, ~D : J k(W ) ! W 0 isa P{homomorphism and V is a representation of G. Then ( ~D 
 idV ) � 	kW :J k(W 
 V ) ! J k(W ) 
 V ! W 0 
 V is again a P{homomorphism, which wedenote by ~DV , and the highest order component of this homomorphism is just thehighest order component of ~D tensorized with the identity on V .The explicit expressions for the isomorphisms 	kW become quickly fairly com-plicated, but in the simple situation where V splits as V0 � V1 over g0, such thatthe action of g�1 maps each Vi to Vi�1, we can compute the formulae for twistedoperators explicitly:



254 ANDREAS �CAPProposition. Let W and W 0 be irreducible representations of P , and let V bea representation of G such that X1�(X2�v) = 0 for all X1; X2 2 g�1 and v 2 V .Moreover, let ~D : J k(W )!W 0 be a P{homomorphismwhich does not factor overJ k�1(W ). Then the corresponding homomorphism ~DV : J k(W 
 V ) ! W 0 
 Vmaps a jet in J k(W 
V ) with top component Z1
� � �
Zk 
wk
vk and secondhighest component Y1 
 � � � 
 Yk�1 
 wk�1 
 vk�1 to~D(Z1 
 � � � 
 Zk 
 wk)
 vk++ k�1Xi=0 X̀ ~D(Y1 
 � � � 
 Yi 
 �` 
 Yi+1 
 � � � 
 Yk�1 
wk�1)
 �`�vk�1;where the �` form a basis of g�1 and the �` the dual basis of g1.Proof. To proof the result amounts to computing the top component of the valueof 	kW on the given jet. Obviously, the formula holds for k = 1, so let us inductivelyassume that it holds for 	k�1W . To compute the action of 	kW on the given jet, we�rst have to interpret it as a one jet with values in (k � 1){jets. This one jet hasthen as foot point a jet with top component Y1 
 � � �
 Yk�1
wk�1
 vk�1, whilethe jet part coincides in the two highest components withY1 
 (0; : : : ; 0; Y2
 � � � 
 Yk�1 
 wk�1 
 vk�1; 0)++ Z1 
 (0; : : : ; 0; Z2 
 � � � 
 Zk 
 wk 
 vk):Next we have to apply J 1(	k�1W ) to this, which means that we have to act with	k�1W on the footpoint and on the value of the jet part. By the induction hypoth-esis the foot point of the result coincides in the top component with the sum of(0; : : : ; 0; Y1 
 � � � 
 Yk�1 
 wk�1) 
 vk�1 with something whose top componentvanishes under the action of g�1.On the other hand, the top degree of the jet part of the value coincides withZ1 
 (0; : : : ; 0; Z2 
 � � � 
 Zk 
 wk)
 vk++ k�1Xi=1 X̀Y1
 (0; : : : ; 0; Y2
 � � �
Yi
 �`
Yi+1
 � � �
Yk�1
wk�1)
 �`�vk�1:But applying 	1J k�1(W ), we get in the top degree the sum of this and the termX̀ �` 
 (0; : : : ; 0; Y1 
 � � � 
 Yk�1 
wk�1)
 �`�vk�1:�1.8 The translation operators. We now start the construction of the secondingredient of the translation procedure, the translation operators. Fix a represen-tation V of G which splits as V0 � V1 over g0, such that the action of g�1 mapseach Vi to Vi�1, and an irreducible representation W of P . Then W 
 V splits



TRANSLATION OF NATURAL OPERATORS 255as (W 
 V0) � (W 
 V1) over g0 and W 
 V1 is a P{submodule, and thus we canform the quotient (W 
 V )=(W 
 V1), which we denote (with a slight abuse ofnotation) by W 
 V0. This again is a representation with trivial P1{action. Thuswe can read o� two simple types of translation operators (which are actually oforder zero) immediately: If ~W � W 
V1 is an irreducible subrepresentation, thenwe have a canonical P{homomorphism ~W ,! W 
 V , and if ~W 0 is a quotient ofW 0 
 V0, then there is a natural homomorphismW 0 
 V ! ~W 0.1.9. Next, let ~W � W 
 V0 be an irreducible subrepresentation. Consider theg0{module g��1
 ~W . Since g��1 �= g1 the action of g1 de�nes a g0{homomorphism@� : g��1
 ~W !W 
 V1. (The notation @� for the action comes from the relationto Spencer cohomology, see [CSS2, 1.3]). We denote the image of this map, whichis a g0{submodule of W 
 V1 by g1� ~W .Now let f�`g and f�`g be dual bases of g�1 and g1 as before. Then Z 
 e 7!P` �` 
 [Z; �`]�e is a well de�ned g0{endomorphism of g��1 
 ~W . Suppose we cansplit g��1 
 ~W = E � F into a direct sum of g0{submodules, which are invariantunder the above endomorphism and such that F lies in the kernel of the action @�.(Such a splitting always exists, taking F = 0.) Then let � be the endomorphismof g��1 
 ~W which coincides with the above one on E and is the identity on F .If one has any �nite dimensional module over a reductive Lie group or Liealgebra, then one may �x a decomposition into irreducibles, i.e. a way of writ-ing the identity map as a sum of projections onto irreducible subrepresentations.Then any endomorphism f of the module can be represented by a block diago-nal matrix (with block sizes corresponding to the multiplicities of the irreduciblesubrepresentations). We can then form the determinant and the classical adjointof this matrix, which gives again rise to a module endomorphism. In [Cap] it isshown, that this endomorphism and the determinant are actually independent ofthe choice of the decomposition into irreducibles, so we denote them by �(f) andCf , respectively, and call them the determinant and the classical adjoint of f . Inparticular, if the given module is simply reducible, i.e. all irreducible componentsare di�erent, then f must act by a scalar on each of these, and �(f) is just theproduct of these scalars, while Cf acts on each component with the product of allthese scalars except the eigenvalue of f on this component.Now consider the mapping J 1( ~W ) ! W 
 V which maps (e0; Z1 
 e1) to�(�)e0 + @�(C�(Z1 
 e1)). Obviously, this is a g0{homomorphism. But for anelement Z0 2 g1 we have by de�nition Z0�(e0; Z1 
 e1) = (0;P` �` 
 [Z0; �`]�e0).By construction of �, we see that this element is mapped to @�(C�(�(Z0 
 e0)))which equals �(�)Z0�e0. But this shows that the above mapping is also g1{equivariant and hence a p{ and a P{homomorphism. But this means that wehave a corresponding strongly invariant �rst order operator between the bundlescorresponding to ~W and to W 
 V as required.1.10. The operators constructed above can be used in two ways: First, if �(�) isnonzero, then we may divide by this number, thus obtaining a di�erential operatorwhich splits the projection of natural vector bundles induced by the canonical



256 ANDREAS �CAPprojection W 
 V !W 
 V0 ! E.On the other hand, if �(�) = 0 but C� 6= 0, then we immediately get ahomomorphism J 1(E) ! W 
 V1 between two representations with trivial P1action, and thus a natural operator.Finally, one should note that the algebra g0 always has a one dimensionalcenter, whose action can be changed independently of the action of the rest (thiscorresponds to changing the conformal weight in the case of conformal structures).It is easy to see, that this changes � by adding a multiple of the identity, so onecan reach each of the two cases described above by appropriately choosing theaction of the center, and the �rst case is the generic one.1.11. The remaining translation operators are constructed in a very similar way:Let ~W 0 be an irreducible component of W 0 
 V1 and let � be the projectiononto ~W 0. As in 1.9 we have the action @� : g��1 
W 0 
 V0 ! W 0 
 V1, and asabove we construct a homomorphism�0, but this time corresponding to a splittingg��1 
W 0 
 V0 = E � F such that F is contained in the kernel of � � @�.Now J 1(W 0 
 V ) splits into the four parts W 0 
 V0, W 0 
 V1, g��1 
W 0 
 V0,and g��1
W 0
V1. We de�ne a mapping J 1(W 0
V )! ~W 0, which depends onlyon the middle two components, and maps a jet such that these are w01 
 v1 andZ0 
 w00 
 v0 to ���(�0)w01 
 v1 � @�(C�0(Z0 
 w00 
 v0))�.Clearly, this is a g0{homomorphism. Acting on such a jet with another elementZ 2 g1, the two middle components of the result depend only on the �rst compo-nent of the jet, and if this is w00
v0, then the middle components of the result arew00
Z�v0 andP` �`
 [Z; �`]�(w00
 v0), respectively. Using the construction of �0one immediately veri�es that this element lies in the kernel of the homomorphismde�ned above, so we have actually constructed a p{homomorphism (and thus aP{homomorphism) J 1(W 0 
 V ) ! ~W 0. Consequently, we also get a stronglyinvariant operator of order one between the corresponding bundles.As in 1.10, it is easy to see that for �(�0) 6= 0 one gets a di�erential split-ting of the inclusion of natural vector bundles corresponding to the inclusion~W 0 ,! W 0 
 V1 ,! W 0 
 V . In the case where �(�0) = 0 but C�0 6= 0 weagain get a homomorphism between bundles with trivial P1{action and thus anatural operator. As before, one can switch between these two cases by adjustingthe action of the center of g0 appropriately.1.12. Remark. With the constructions carried out in this section, we have fourdi�erent types of translations at hand. We may go into W 
V from a componentof W 
 V1 with a zero order operator or from a component of W 
 V0 with a �rstorder operator. On the other hand, we can go out of W 0 
 V to a component ofW 0 
 V0 with a zero order operator, or to a component of W 0 
 V1 with a �rstorder operator.It can be easily shown in general, that the simplest of these translations (the onewith two operators of order zero) always decreases the order by one (i.e. translatinga k{th order operator in this way one ends up with an operator of order k � 1),while the two \medium" translations (using one operator of �rst order and one of



TRANSLATION OF NATURAL OPERATORS 257order zero) preserves the order, and the most complicated translation (with two�rst order operators) increases the order by one.It is an interesting problem in representation theory to discuss in general (inde-pendently of the structure in question), the properties of the maps � and �0 withrespect to their determinants and classical adjoints. Results in this direction willbe proved elsewhere.2. Almost Grassmannian structuresIn this section we discuss generalities about almost Grassmannian structuresand �x the notations for the computations in the next section. From now on, wewill only deal with Lie algebra representations, leaving to the reader the trivialmodi�cations in the group case.2.1. The j1j{graded Lie algebra sl(p+ q;K). Let K be R or C , let p; q � 2 beintegers and put g := sl(p+ q;K). Then g admits a j1j{grading g = g�1 � g0 � g1with g�1 �= Kp� �Kq , g0 �= sl(p;K)�sl(q;K)�K and g1 �= Kp �Kq� . This gradingis obvious from a block form with blocks of sizes p and q, respectively:g�1 = � 0 0� 0� ; g0 = � � 00 �� ; g1 = �0 �0 0� :We denote by p the parabolic subalgebra g0 � g1 of g.We will often compute in a basis of g using the following conventions: Indicesnamed a; b; c; : : : run from 1 to q, while indices named i; j; k; : : : run from 1 to p.For the basis elements lower indices indicate elements of Kp or Kq , while upperindices indicate elements of Kp� or Kq� . Moreover, we will use the Einstein sumconvention, so if an upper index equals a lower index then one automatically hasto sum over these. We will denote by e the basis of g consisting of elementarymatrices. Thus basis elements of the form eia belong to g�1, those of the forms eaband eij belong to g0, and those of the form eai are in g1.In this language, one now easily computes the basic brackets, c.f. [CSS1, 3.3]:[ ; ] : g0 � g�1 ! g�1; [(eij ; eab ); ekc ] = �ac ekb � �kj eic[ ; ] : g0 � g1 ! g1; [(eij ; eab ); eck] = �ikecj � �cbeak[ ; ] : g1 � g�1 ! g0; [ebj; eia] = �baeij � �ijebaIt is well known that g�1 and g1 are dual with respect to the Cartan Killing formon g. Using the well known relation between the trace form and the Killing formon g, or by a direct computation one immediately sees, that the bases feai g of g1and feiag of g�1 are dual with respect to the Killing form up to a factor 12(p+q) . Inparticular, we may write the identity map as an element of g1
g�1 as 12(p+q) eai 
eia(using Einstein sum convention).Next, we need a distinguished generator Iof the center of g0. This generatorcan be �xed by requiring that it acts as the identity on g1 and as minus the identityon g�1. A direct computation immediately shows that I= qp+q eii � pp+q eaa.



258 ANDREAS �CAP2.2. Representations. We will be concerned with two types of (�nite dimen-sional) representations of the algebra p. On one hand, we will need representationswhich are obtained by extending representations of g0 trivially to representationsof p. In particular, all irreducible representations of p are of this form. Speci�cally,the one dimensional representations are characterized by the action of the centralelement Ifrom above. To avoid ugly numerical factors in our formulae and follow-ing the convention introduced in [Bailey{Eastwood, 2.3] we denote by K[1] the onedimensional representation �pKp �= �qKq� . Consequently, for � 2 K we denote byK[�] the one dimensional representation in which the action of the center is �xedby requiring that I�x = �(p+q)pq x for all x 2 K[�]. For any representation W of g0,we will denote by W [�] the tensor product of W with K[�]. This corresponds tothe change of conformal weight in the case of conformal structures. Now it is wellknown what the irreducible representations of g0 look like. They can all be writtenas (W1�W2)[�] where W1 is an irreducible representation of sl(p;K) and W2 is anirreducible representation of sl(q;K). For all tensor representations we will use acoordinate notation similar to the one introduced in 2.1 above. Note that on thesetensor representations we always take the natural action of the center. Thus thenotation (W1 �W2)[�] does not mean that Iacts by multiplication with �(p+q)pq .The second type of representations that we will need is representations of pwhich are restrictions of representations of the whole algebra g. Speci�cally, wewill need the de�ning representation V of g and its dual V �. Over g0 we havesplittings V = V0 � V1 = Kq � Kp and V � = (V �)0 � (V �)1 = Kp� � Kq� , andg�1�Vi � Vi�1 and similarly for V �. The geometric objects corresponding to theserepresentations are analogs of the tractors in conformal geometry, which wereintroduced in [Bailey{Eastwood{Gover].Finally, we shall also need tensor products of these two types of representations.As above, we can split these (over g0) asW
V = (W
V0)�(W
V1) and similarlywith V �. We will often write elements in such representations as column vectorswith two lines, the lower line corresponding toW
V0 and the upper one toW
V1.2.3. Jet prolongations and invariant di�erential operators. As we havenoticed in 1.3, for any representations W and W 0 of p a homomorphism ~D :J k(W ) ! W 0 of p{modules gives rise to an invariant di�erential operator onmanifolds with AHS{structures via the absolutely invariant derivative, see [CSS1,5.7]. (In fact, one has to restrict to representations which actually integrate torepresentations of an appropriate group, but this requires only trivial modi�ca-tions.) Once one has such an operator expressed in these terms, one can computeits formula in terms of usual covariant derivatives with respect to appropriateconnections using the methods developed in section 4 of [CSS1] and the explicitformulae for the deformation tensors from [CSS2, 3.7]. Since this procedure isnot related to the translations at all, we will not carry it out, but compute onlythe expressions of the operators in terms of absolutely invariant derivatives. Inparticular, the symbol r will always denote an invariant derivative with respectto the canonical Cartan connection.To write down expressions for such invariant operators, we will use an abstract



TRANSLATION OF NATURAL OPERATORS 259index notation similar to the one developed in [Bailey{Eastwood]. Here we useupper primed indices to indicate Kp{factors, lower primed indices to indicate Kp�{factors, upper unprimed indices to indicate Kq {factors, and lower unprimed indicesto indicate Kq�{factors. Moreover, round brackets indicate symmetrizations andsquare brackets indicate antisymmetrizations. Finally, lower zeros mean a tracefree part. Thus, for example '(A0B0)AB0 denotes a section of the natural bundleassociated to the representation S2Kp � (Kq 
Kq�)0, the exterior tensor productof the symmetric square of Kp with the trace free part of L(Kq ;Kq ), which isjust the adjoint representation of sl(q;K). The main purpose of this notation isto indicate appropriate traces by using the same letter in an upper and a lowerindex. The di�erence between the notation used here and the one used in [Bailey{Eastwood] is that we identify the tangent bundle with Kp� � Kq and not withKp � Kq . So in our setting an invariant derivative has the form rA0A , and so on.3. Examples of translations3.1. We start with the simplest example, where W = K[�] and V is the standardrepresentation. In this case the zero component of W 
 V equals Kq [�], andthe one component is just Kp [�], so they are both irreducible. The crucial stepin the construction of the translation operators is to analyze the endomorphismg1
W 
V0 which maps Z 
w toP�`
 [Z; �`]�w. Computing in coordinates, wesee that ebj 
 ec is mapped to12(p+q)eai 
 [ebj; eia]�ec = 12(p+q) eai 
 (�baeij � �ijeba)�ec = 12(p+q) (�ebj 
 ec � �bceaj 
 ea):Over g0, the module g1 
W 
 V0 �= Kp � (Kq 
 Kq� ) splits into two irreduciblecomponents corresponding to the splitting of Kq
Kq� into trace part and trace freepart, and the whole trace free part lies in the kernel of the action @� : g1
W
V0 !W 
 V1. On the trace part, the map from above obviously acts by multiplicationwith ��q2(p+q) . Thus as the map�, which occurs in the construction of the translationoperators in 1.9, we take the map which is the identity on the trace free partand acts by this scalar on the trace part. Its determinant �(�) (c.f. 1.9) thusequals ��q2(p+q) , while its classical adjoint is just the identity. Thus we get thehomomorphism J 1(Kq [�])! V [�], respectively an operator on the correspondingbundles given by:(ea; ebi 
 ec) 7! � �bcei��q2(p+q)ea � 'A 7! � rA0A 'A��q2(p+q)'A� :In particular, if we choose � = q, then the lower component vanishes, and we geta homomorphism J 1(Kq [q]) ! Kp [q], and thus an invariant �rst order operatorbetween the corresponding bundles de�ned by 'A 7! rA0A 'A.3.2. If we replace the standard representation V in 3.1 by its dual, then thecomputations are very similar. In this case we get a homomorphismJ 1(Kp� [�])!



260 ANDREAS �CAPV �[�], respectively a �rst order operator between the corresponding bundles givenby: (ei; eaj 
 ek) 7! � �kj eap��2(p+q)ei� 'A0 7! � rA0A 'A0p��2(p+q)'A0 � :In particular, for � = p there is a homomorphism J 1(Kp� [p])! Kq� [p], respec-tively a �rst order invariant operator between the corresponding bundles.3.3. Next, we will discuss translations of the invariant operator D between thebundles corresponding toW : = Kq [q] andW 0 : = Kp [q] constructed in 3.1. Let us�rst translate it with the standard representation V . Let ~D be the homomorphismon one{jets corresponding to the operator. Then by 1.7, the twisted homomor-phism ~DV di�ers from ~D
 idV byP` ~D(�`
w)
 �`�v. Clearly, this depends onlyon the component W 
 V1 of W 
 V , which is isomorphic to Kq �Kp [�] and thusirreducible. This correction maps eb 
 ej to12(p+q) ~D(eai 
 eb) 
 eia�ej = 12(p+q)�ab ei 
 �ijea = 12(p+q)ej 
 eb;which is an element in W 0
V0 �= Kp �Kq [�]. Thus, the twisted operator DV canbe written as � A0A'BC � 7! � rA0A  B0ArC0B 'BC + 12(p+q) C0C � :From this we can immediately read o�, that the simplest translation, which usestwo translation operators of order zero, just gives 12(p+q) times the identity onKp � Kq [q].3.4. To start the construction of the nontrivial translation operators, we have toconsider the mapping Z 
 w 
 v 7! P` �` 
 [Z; �`]�(w 
 v) on g1 
 W 
 V0 �=Kp � (Kq� 
 Kq 
 Kq ). This endomorphism maps ebj 
 ec 
 ed to12(p+q) eai 
 (�baeij � �ijeba)�(ec 
 ed) == 12(p+q) (�ebj 
 ec 
 ed � �bceaj 
 ea 
 ed � �bdeaj 
 ec 
 ea):In this case, the situation is more complicated than before, since W 
 V0 splitsinto the two irreducible representations ~W0 : = S2Kq and ~W1 : = �2Kq . First,we construct a homomorphism J 1( ~W0) ! W 
 V : The module g1 
 ~W0 is theexterior tensor product of Kp with Kq� 
 S2Kq , which splits as a direct sum ofKq (the trace part) and another module (the trace free part). Since W 
 V1 �=Kp �Kq [�], the whole trace free part must be contained in the kernel of the action@� : g1 
W 
 V0 !W 
 V1. To compute the action of the above mapping on thetrace part we have to evaluate it on elements of the form ebj 
 eb
 ec+ ebj
 ec
 eb,and one immediately veri�es, that on such an element it acts by multiplicationwith ��q�12(p+q) .Thus, the appropriate map � in the construction of the translation operatorsacts by this scalar on the trace part and as the identity on the trace free part. So



TRANSLATION OF NATURAL OPERATORS 261its determinant is just the above scalar, while its classical adjoint is the identity.Thus for any � we get a homomorphism J 1(S2Kq [�])! Kq 
 V [�], respectivelyan operator between the corresponding bundles of the form:(ea � eb; ecj 
 (ed � ef )) 7! � �cf ed 
 ej + �cdef 
 ej(��q�12(p+q) )(ea 
 eb + eb 
 ea)�'(AB) 7! � rA0A '(AB)(��q�12(p+q) )'(AB) � :In particular, we get a homomorphism J 1(S2Kq [q + 1]) ! Kp � Kq [q + 1], andthus a �rst order invariant operator between the corresponding bundles.On the other hand, to use this for translation of the operator D from 3.1,we have to put � = q, which reduces the factor in the above formula to �12(p+q) .Composing the operator DV from 3.3 with our operator we get a second orderoperator between the bundles corresponding to S2Kq [q] and Kq 
V [q]. Computingthis composition, one gets '(AB) 7! �rB0B rA0A '(AB)0 �. Thus we see that the �rsttype of \medium" translations gives only the zero operator, but the top componentimmediately gives us a second order operator between the bundles correspondingto S2Kq [q] and Kp 
 Kp [q]. To come to an irreducible target, we have to eithersymmetrize or antisymmetrize. Symmetrizing, we get a true second order operator,given by '(AB) 7! r(B0B rA0)A '(AB). Antisymmetrizing on the other hand, one getsa commutator of absolutely invariant derivatives and thus an operator of orderzero involving the curvature of the canonical Cartan connection (see [CSS1, 2.5]).In fact, the operators obtained here equal the result of the most complicatedtranslation, since the other translation operator equals a scalar multiple of theidentity on elements having a zero in the lower row.3.5. Starting with the component ~W1 = �2Kq [�], everything looks quite similar.As above, the module g1
 ~W1 splits into a trace part and a trace free part, whichlies in the kernel of the action. The eigenvalue on the trace part is easily seento be ��q+12(p+q) . The homomorphism J 1(�2Kq [�]) ! (Kq 
 V )[�] respectively thecorresponding operator is given by(ea ^ eb; ecj 
 (ed ^ ef )) 7! � �cf ed 
 ej � �cdef 
 ej(��q+12(p+q) )(ea 
 eb � eb 
 ea)�'[AB] 7! � rA0A '[BA](��q+12(p+q) )'[AB] � :In particular, we get a homomorphism J 1(�2Kq [q � 1]) ! Kp � Kq [q � 1], andthus a �rst order invariant operator between the corresponding bundles.In the case � = q, which is relevant for translation, the scalar in the formulabecomes 12(p+q) . Composing DV from 3.3 with the resulting operator again giveszero in the lower row and immediately an invariant operator in the top row. This



262 ANDREAS �CAPtime, we get by antisymmetrizing a true second order operator between the bundlescorresponding to �2Kq [q] and �2Kp [q], which is given by '[AB] 7! r[A0A rB0]B '[AB] ,while symmetrizing gives an operator of order zero which involves curvatures.3.6. We �nish the discussion of translation of the operator from 3.1 with a fewremarks:(1) If one considers in this situation the translation operators as constructed in1.11, one has to deal with homomorphisms J 1(Kp 
 V [�])! Kp 
 Kp [�], and toobtain an irreducible target one has to symmetrize or antisymmetrize in the end,and we only consider the case of symmetrization. Following the general schemedescribed in 1.11, one gets the operator:� A0B0'C0B � 7! ���q+12(p+q) � (A0B0) �r(A0A 'B0)A:In particular, we get a �rst order invariant operator between the bundles corre-sponding to Kp � Kq [q � 1] and S2Kp [q � 1].Concerning translations, the situation is then somehow dual to the one we metin 3.4: Composing this operator with the operator DV from 3.3 one immediatelysees that this depends only on the '{component. Thus, the \medium" translationis once more trivial and we directly get the most complicated translation, whichjust gives the operator from 3.4.(2) Sticking to the symmetric case, the construction of 3.3 and 3.4 can be iterated.Inductively, one gets for each k � 1 a homomorphism J k(SkKq [q]) ! SkKp [q],and thus a k{th order operator between the corresponding bundles. The formulafor the corresponding operator is always '(A:::B) 7! r(A0A : : :rB0)B '(A:::B).In fact, the situation is always as in 3.4, i.e. the \medium" translations areautomatically trivial.(3) It is easy to verify, that the translation carried out in 3.3 and 3.4 can actuallybe reversed. If one computes the simplest translation of the second order operatorfrom 3.4 with the dual V � of the standard representation, then up to a nonzerofactor one gets the �rst order operator from 3.1.(4) If one tries to translate the operator D from 3.1 with the dual of the standardrepresentation, then the result is less nice. The simplest translation gives onlya nonzero multiple of the identity on K[�], which can be viewed as reversingthe translation from 3.1. The two \medium" translations lead to some nonzero�rst order operators, which can easily be obtained directly similar to the one in3.1. The most complicated translation gives a prospective second order operatorbetween Kp� � Kq [�] and Kp 
 Kq� [�], which would be highly interesting sincethese are (up to the central factor) just vector �elds and one{forms, respectively.Unfortunately, the homomorphism one obtains by translation gives an operatorof order zero involving the curvature of the canonical Cartan connection. It canbe veri�ed by a direct computation that there is no second order operator withnonzero symbol between these bundles.3.7. We now turn to an example in which we translate a standard operator toa nonstandard operator. To get the starting point for this translation, we con-



TRANSLATION OF NATURAL OPERATORS 263sider the representation W : = �2Kq� [�]. Tensorizing this with the standardrepresentation V of sl(p + q;K) we get the zero component �2Kq� 
 Kq [�] whichcontains ~W0 : = Kq� [�] as an irreducible component (the trace part). To con-struct the translation operator J 1( ~W0)!W 
V we have to analyze the mappingg1
 ~W0 ! g1
 ~W0 de�ned by Z 
w
 v 7!P` �`
 [Z; �`]�(w
 v). Viewed as anendomorphism of g1 
 
2Kq� 
 Kq this maps ebj 
 ec 
 ed 
 ef to12(p+q) eai 
 (�baeij � �ijeba)�(ec 
 ed 
 ef ) == 12(p+q) ��ebj
ec
ed
ef+ecj
eb
ed
ef+edj
ec
eb
ef��bf eaj
ec
ed
ea�:The submodule g1 
 ~W0 is generated by all elements of the form ebj 
 ec 
 ed 
ed � ebj 
 ed 
 ec 
 ed, and this element is mapped to12(p+q)��ebj 
 ec
 ed
 ed��ebj
 ed
 ec
 ed+ ecj 
 eb
 ed
 ed� ecj 
 ed
 eb
 ed�:Finally, the module g1
 ~W0 is isomorphic to Kp �Kq� 
Kq� , so it splits into twoirreducible components corresponding to the symmetric and antisymmetric partsin the second component. Since W 
 V1 �= Kp � �2Kq� , the symmetric part mustlie in the kernel of the action @� : g1 
 ~W0 !W 
 V1, so we just have to computethe eigenvalue of the above endomorphism on the skew symmetric part. From thelast formula it is easy to see that this eigenvalue is just ��12(p+q) .Putting � = 1 we get a homomorphism J 1(Kq� [1]) ! Kp � �2Kq� [1] and anoperator between the corresponding bundles, which is given by 'A 7! rA0[A'B] .3.8. We want to translate the operator D between the bundles corresponding toW : = Kq� [1] and W 0 : = Kp � �2Kq� [1] obtained in the end of 3.7 with thestandard representation V . First, we compute the twisted operator DV . Similarlyas in 3.3, the di�erence between the corresponding homomorphism ~DV and ~D
idVdepends only on the component W 
 V1 �= Kp � Kq� , and one computes that itmaps eb
ej to 12(p+q) ~D(eai 
eb)
eia�ej = 12(p+q) (ea
eb
ej
ea�eb
ea
ej
ea).Thus, the twisted operator can be written as� A0A'BC � 7!  rA0[A B0B]rC0[C'DE] � 12(p+q) C0[C idDE] ! :Note that the last term in the lower line corresponds just to the inclusion ofKp �Kq� into Kp ��2Kq� 
Kq as the trace part. Thus, from the formula for thetwisted operator one reads o�, that the result of the simplest translation (usingtwo operators of order zero) is the identity map on Kp �Kq� [1] plus the zero mapto the other irreducible component of Kp � �2Kq� 
 Kq .3.9. To start the construction of the more complicated translations we have toanalyze the endomorphism Z 
w
 v 7!P` �`
 [Z; �`]�(w
 v) on g1
W 
 V0 �=Kp � (Kq� 
 Kq� 
 Kq ). This maps ebj 
 ec 
 ed to12(p+q) eai 
 (�baeij � �ijeba)�(ec 
 ed) == 12(p+q) ��ebj 
 ec 
 ed + ecj 
 eb 
 ed � �bdeaj 
 ec 
 ea�:



264 ANDREAS �CAPNow W 
 V0 �= Kq� 
 Kq splits into two components, one isomorphic to K[�](the trace part), the other one isomorphic to the adjoint representation of sl(q;K)(the trace free part). We are interested in the part ~W = K[�]. Thus, we have toevaluate the above mapping on the element ebj 
 ec 
 ec and clearly it acts justby multiplication by �2(p+q) . Hence, similarly as in 3.1, we get a homomorphismJ 1(K[�]) ! Kq� 
V [�], respectively an operator between the corresponding bun-dles given by (1; ebj) 7! � eb 
 ej�2(p+q) ea 
 ea� ' 7! � rA0A '�2(p+q)' idBC � :In particular, this gives an invariant operator for � = 0, which is just the exteriorderivative from functions to one forms.To translate the operator D from 3.7, we have to insert � = 1. Composingour translation operator with the twisted operator from 3.8 we get a second orderoperator between the bundles corresponding to K[1] and Kp��2Kq� 
V [1], whichis given by ' 7! �rA0[ArB0B]'0 �. As before, the \middle" translation is automati-cally trivial, and we immediately get a second order operator between the bundlescorresponding to K[1] and Kp 
 Kp � �2Kq� [1]. To get an irreducible target, wehave to either symmetrize or antisymmetrize in the Kp{factor, and symmetrizingwe get an operator of order zero involving the curvature of the canonical Cartanconnection. The remaining interesting part is a second order operator between thebundles corresponding to K[1] and �2Kp � �2Kq� [1] given by ' 7! r[A0[A rB0]B] '.3.10. Remarks. (1) The relevance of the example given in 3.9 shows up, ifone looks at the classi�cation of invariant operators in the 
at case in terms ofBernstein{Gelfand{Gelfand resolutions (see [Baston{Eastwood, chapter 8]). Inthis classi�cation, the operator constructed in the end of 3.7 occurs as a standardoperator in a pattern corresponding to a singular in�nitesimal character, whilethe operator in 3.9 to which it is translated, occurs as a non{standard operator ina pattern corresponding to a di�erent (but also singular) in�nitesimal character.This shows, that our method allows translations between various in�nitesimalcharacters, and from standard to nonstandard operators.(2) It is well known that almost Grassmannian structures in the case p = q = 2coincide with conformal structures in dimension 4. In this case, �2Kq� �= �2Kp �=K[1], so the operator from 3.7 actually goes between the bundles correspondingto Kq� [1] and Kp [2]. It can be veri�ed, that this is just a Dirac operator. Theoperator from 3.9 goes between the bundles corresponding to K[1] and K[3] andis actually the conformally invariant Laplacian.(3) It should be remarked that in the case q = 2 the translation carried out in3.9 coincides with the one from 3.5.3.11. We �nish with a more complicated example by carrying out the most com-plicated translation of the operator obtained in 3.9 with the standard representa-tion. For simplicity, we will carry out the last step only in the case p = q = 2.



TRANSLATION OF NATURAL OPERATORS 265First, we construct in general the twisted operator corresponding to the oneconstructed in 3.9 and the standard representation. The correction of the corre-sponding homomorphism compared to ~D 
 idV is of �rst order and depends onlyon the component g�1 
 Kp [1] of g�1 
 V [1]. Using the formula from proposition1.7 we see that this correction maps ebj 
 ek to12(p+q) ~D(eai 
 ebj + ebj 
 eai ) 
 eia�ek = 1p+q ea ^ eb 
 ek ^ ej 
 ea:Expressing this in terms of operators, we see that the twisted operator, whichmaps sections of the bundle corresponding to V [1] to sections of the bundle cor-responding to �2Kp � �2Kq 
 V [1], is given by�'A0 A � 7!  r[A0[A rB0]B] 'C0r[D0[C rE0]D]  F + 1p+qr[D0[C 'E0] idED] ! :The zero component Kq [1] of V [1] is irreducible, and we can read o� the corre-sponding translation operator J 1(Kq [1])! V [1] directly from 3.1. Putting � = 1in the last formula of 3.1 we see that the corresponding operator is given by'A 7! � rA0A 'A1�q2(p+q)'A�. Composing this with the twisted operator we get a third or-der operator between the bundles corresponding to Kq [1] and �2Kp ��2Kq 
V [1],which is given by'A 7!  r[A0[A rB0]B] rC0C 'C1�q2(p+q)r[D0[D rE0]E] 'F � 1p+q idF[D r[D0E] rE0]G 'G! :3.12. To �nish the translation, we have to construct the second translation opera-tor. We will only do this in the case p = q = 2, in which �2Kp��2Kq
V [1] �= V [3].Thus, in this case there is only one relevant translation operator, which correspondsto a homomorphism J 1(V [3])! Kp [3]. To construct this operator following theprocedure from 1.11, we need the mapping �0, which we can immediately reado� from 3.1. In the case � = 3 which is relevant here, we see from 3.1 that�(�0) = 12(p+q) , while the classical adjoint of �0 is just the identity. Thus, wesee from 1.11 that the homomorphism J 1(V [3]) ! Kp [3], respectively the corre-sponding translation operator is given by0B@ : : :ebj 
 ecek: : : 1CA 7! 12(p+q)ek � �bcej �'A0 A � 7! 12(p+q)'A0 �rA0A  A:Composing this with the operator obtained in the end of 3.11 we get (in the casep = q = 2) a third order operator between the bundles corresponding to Kq [1] andKp [3], which is given by (omitting a factor 12(p+q) )'A 7! r[A0[A rB0]B] rC0C 'C +rC0C r[A0[A rB0]B] 'C + 2rC0[Ar[A0B] rB0 ]C 'C :
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