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TRANSLATION OF NATURAL OPERATORS
ON MANIFOLDS WITH AHS—STRUCTURES

ANDREAS CAP
To Ivan Kold¥, on the occasion of his 60th birthday.

ABSTRACT. We introduce an explicit procedure to generate natural operators on
manifolds with almost Hermitian symmetric structures and work out several exam-
ples of this procedure in the case of almost Grassmannian structures.

This paper splits into two parts. In the first part, we introduce a procedure
to generate invariant operators on manifolds with almost Hermitian symmetric
(AHS) structures. This procedure is inspired by the Jantzen—Zuckermann trans-
lation principle in representation theory and by curved versions of this princi-
ple. A curved translation principle was first applied in [Eastwood—Rice] to four—
dimensional conformal geometry, versions for conformal manifolds of arbitrary
dimensions and for other structures can be found in [Eastwood] and in [Bailey—
Fastwood—Gover].

It should be remarked that there is another approach which leads to powerful
curved versions of the translation principle in the conformal case (see [Baston] and
[Eastwood—Slovak]) which probably are better suited to prove general existence
results than the procedure presented here. The advantage of the latter i1s the
bigger generality, that it immediately leads to explicit formulae for the operators
in question, and that it also leads to starting points for translations.

In the second part of the paper, we apply the translation procedure in several
simple instances in the case of almost Grassmannian structures, arriving at several
examples of invariant operators of low order in this case. Thanks to the notion of
jet prolongations of representations developed in [CSS1], these are mainly purely
algebraic computations. The final results of these computations can then easily
be translated into the language of differential operators.

Our reference for the general theory of AHS—structures is [CSS1]. For the theory
of almost Grassmannian structures we refer to [Bailey-Eastwood].

I would like to thank M. Eastwood, H. Schichl, J. Slovak, and V. Soué¢ek for
very helpful discussions on the subject.

1991 Mathematics Subject Classification: 17B10, 22E47, 53C10.
Key words and phrases: invariant operator, AHS structure, paraconformal structure, almost
Grassmannian structure, translation principle.
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1. THE TRANSLATION PROCEDURE

1.1. The basic ingredients for an AHS-structure are a so called |1|-graded Lie
algebra, i.e. a semisimple Lie algebra g which admits a grading of the form g =
g-1 go @ g1, and a connected Lie group GG with Lie algebra g. By p we denote
the parabolic subalgebra go & g1 of g and by P the corresponding subgroup of G.

Then a manifold with an AHS—structure corresponding to GG is a manifold whose
dimension equals the dimension of g_;, together with a principal P-bundle and
a Cartan connection on this bundle, i.e. a g—valued one—form which reproduces
fundamental vector fields, is P—equivariant and restricts to a linear isomorphism
on each tangent space. The construction of this bundle and the canonical Cartan
connection from underlying data is the subject of the paper [CSS2].

1.2. For any representation of the group P on a vector space W one can form the
associated bundle to the principal P—bundle over a manifold with the correspond-
ing AHS—structure, thus arriving at a natural vector bundle on these manifolds.
Particularly, one is interested in representations in which the subgroup P, of P
which corresponds to the (abelian) Lie subalgebra gy of p acts trivial, since these
representations correspond to classical geometric objects like tensors or differential
forms.

One of the main achievements of [CSS1] is the construction of semi holonomic
jet prolongations of representations. Since we will heavily need these, we quickly
recall the construction from [CSS1, 5.3-5.6]. For a representation W of P we
describe the (semi holonomic) jet prolongations J*(W) as representations of the
Lie algebra p = go & g1: As a go-module, the first jet prolongation J(W) is
defined as W & (g*; ® W), where we identify g*; @ W with the space of linear
maps from g_; to W. An element 7 € g; acts on a pair (w,¢) by mapping it to
(Zw, X — (Z-¢p(X)+[7Z, X]w)), where X € g_; and the dot denotes the action
of the bracket [Z, X] € go on w € W. Note that in the case of trivial g;—action
on W (which we will mainly deal with) this formula simplifies considerably. Tt is
shown in [CSS1, 5.3] that this actually defines a p—action which integrates to a
P—action.

Next, one makes J'(_) into a functor on the category of P-representations and
constructs a natural transformation to the identity (which is just given by pro-
jecting out the first component), see [CSS1, 5.4]. From this, one then has two
natural homomorphisms JHJY(W)) — JY(W), namely the natural transforma-
tion just described and the first jet prolongation of the canonical homomorphism
JHW) — W, and one defines J?(W) as the submodule of J7*(J!(W)) on which
these two homomorphisms coincide.

Similarly as in the classical construction of semi holonomic jets (see e.g. [Ehres-
mann)), this can then be iterated to define higher jet prolongations J* (W), see
[CSS1, 5.5]. For us, the main point is that as a go—module J*(W) is isomorphic
to

Wao@, oW e o @, 0W),

while the g; action can be computed inductively by viewing J*(W) as a submodule

of THTFH(W).
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1.3. Using the absolutely invariant derivative introduced in [CSS1, 2.3-2.5], any
homomorphism D : T*(W) — W' of P-modules gives rise to a natural operator
of order k defined on all manifolds with an AHS—structure corresponding to (G, see
[CSS1, 5.7].

It can be shown, however, that not all invariant operators are of this form. An
example 1s the square of the Laplacian on conformal manifolds of dimension 4.
In fact, one can compute explicitly the corresponding space of module homomor-
phisms which turns out to be of dimension three, but all these homomorphisms
give rise to the zero operator.

The operators which are induced by module homomorphisms as above will be
called strongly invariant in the sequel. Our aim in this section is to construct a
procedure of translating such module homomorphisms, and thus the corresponding
strongly invariant operators.

The basic idea of these translations in the form we will construct them is the
following: suppose that D : J*(W) — W' is a homomorphism of P-modules
and that V' is a representation of P which is induced by a representation of the
whole group (. The first step i1s to construct from D a homomorphism Dy :
Tk (W®V)— W @V, which coincides with D ®idy in the highest order. The
corresponding operator will be called the twisted operator corresponding to D and
V.

The second part of the construction is to construct for certain representations V'
and subrepresentations W of W @V canonical homomorphisms jk(W) - WeV.
We will only do this in the following special situation: Consider the subgroup F
of P corresponding to the Lie subalgebra gg of p, which is always reductive, see
[Ochiai, 5.1]. Over this subgroup, we may split V as Vo @V @+ - -®V; in such a way
that the action of g4+, mapseach V; to V11, and we will restrict to the special case,
where this splitting has in fact length two, i.e. V = V5 & V1. In this situation, we
will construct for each Py—irreducible component WcCcwe Vo (which we view as
a representation of P with trivial Pj—action) a homomorphism jl(W) —WeV,
which generically is a splitting by a differential operator of the projection of natural
vector bundles corresponding to the projection WaV — (WaV)/(Wa Vi) — W.
A similar construction gives rise to homomorphisms J' (W’ @ V) — W' for certain
representations W' with trivial P; action.

Having constructed all these homomorphisms one can then simply compose the
corresponding strongly invariant operators to obtain a new operator between the
bundles corresponding to W and W',

1.4. Twisted operators. Suppose that W and W’ are P—representations which
are induced from irreducible Py—representations, i.e. have trivial Pj—action, and
suppose that D : JE(W) — W' is a P-homomorphism. Recall that as a P,—module
TFW)Y=Wa(gh,oW)d- @ (@%g", @W). It was observed in [CSS1, 5.8] that
D depends in fact only on one of the components @'g" ;@ W, and we assume that
it depends only on the top component. Thus, D is in fact a Py—~homomorphism
@*g* , @W — W', which vanishes on the image of ®*~1g* , @ W under the action
of P1 .
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We will show that there is a canonical extension of D@idy : oFgr  oWeV —
W' ® V to a homomorphism jk(W ®V)— W' @V of P-modules.

The geometrical reason for the existence of the twisted operators is the following:
The representation W gives rise to a homogeneous vector bundle on the flat model
G/ P of our AHS—structure. Its k—th semi holonomic jet prolongation (in the sense
of differential geometry) is again a homogeneous vector bundle, so the standard
fiber has a canonical P—action, which can be shown to coincide with the action on
jk(W) introduced above. Now if V' is a representation of P which comes from a
representation of the whole group G, then one can show that the corresponding
bundle over (/P is actually trivial. Using this, it is clear that J*(W @ V') must
be isomorphic to J*(W) @ V, and composing this isomorphism with D @ idy we
get the twisted operator. A purely algebraic proof of this fact can be given as
follows:

1.5. Lemma. Let V be a representation of P which is the restriction of a rep-
resentation of the whole group (G. Then there is a natural isomorphism between
the functors J*(-@ V) and J'(_) ® V, which are defined on the category of all
P-representations. For any P-representation W the corresponding isomorphism
T WeV)— JY W)@V is in fact an isomorphism of extensions of W @V with

kernel g* { @ W @ V, that is we have a commutative diagram

0 —— g, oWeV) — JWeV) —— WoV —— 0

H l H

0 —— (g, oW)@V —— J W)V —— WV —— 0

Proof. Let W be any P-representation. To define a linear map J1(W @ V) —
JHW) @V it suffices to define it on elements of the form (wg @ vo, Z1 @ wy @ v1)
for 71 € g1, w; € W and v; € V. We map this element to

(wo,0) @ vo + (0, Z1 @ w1) @ vy + Y (0,7 @ wo) ® &p-vo,
4

where {&,} is a basis of g_; and {n,} is the dual basis of g;. This is obviously a
go—homomorphism which is independent of the chosen basis and bijective. Then
one computes directly, that it also commutes with the action of g;, and thus it is
a p—homomorphism and hence also a P-~homomorphism. From the definition it is
obvious that this i1s in fact an isomorphism of extensions.

If ¢ : W — W' is a homomorphism of p—modules, then the induced homomor-
phism J (¢ @idy ) maps the element (wo ® v, Z1 @ w1 @ v1) to (¢(wo) @ vo, Z1 @
¢(w1) ® v1) and from this it is clear that the isomorphism constructed above is
natural. d

1.6. Proposition. For each n € N there is a natural isomorphism U™ between
the functors J"(-@ V) and J" () ®V such that for each W we get a commutative
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diagram

@g,oWeV —— J'WeV) —— Ji{(WaeV)

lid qunw qunw—l
QgL eWeV —— J"W)oV —— J" 1 (W)e V.

Proof. Suppose inductively that ¥” has been constructed for all n < k. For
any W the module jk‘H(W) 1s defined as the submodule of jl(jk(W)), where
the footpoint projection 7 7y : THT*(W)) — T*¥(W) coincides with the first
jet prolongation J*(II¥_,) of the natural projection I¥_, : J*(W) — J*F=Y(W).
(Recall that by definition jk(W) 1s a submodule of jl(jk_l(W)).)

Consider the 1somorphism

1@k 1
THTrw e vy LI g1 gk wy o v) S S g ) o v
which we denote by \i!l%}"l As a composition of two natural isomorphisms this is
a natural isomorphism, too.

The first mapping by definition induces the mapping W%, on the footpoints,
while the second one gives the identity, since \Ij.lﬂ(W) is an isomorphism of exten-
sions. Thus (Tjk(w) ®idy) o\fla}"l =Wk oT se(wgv)- By Induction, we can write
the right hand side of this equation as \I!‘l7k_1(w) o jl(\Iﬂév—l) OTIHWRV)-

On the other hand, applying the functor J! to the diagram

k

TWev) —2 . ghw)eV

lni—l lni—l(@id‘/
q,k—l
I wWeVv) —— J(w)eV,
which is commutative by induction, and using the naturality of ¥l we see that
THIE_y) @ idy oWt = Why s gy 0 T (Wi ) 0 T, ).

Thus we see that \I!lél}"l restricts to an isomorphism \I!lél}"l : jk‘H(W ®V)—
jk‘H(W) ® V. The commutativity of the diagram in the proposition for n = k+1
follows immediately from the fact that \I!lél}"l induces W%, on the footpoints and
induction. d

1.7. Using Proposition 1.6 it is now obvious how to construct the twisted op-
erators. Suppose that W and W’ are P-representations, D : TEW) — W' is
a P-homomorphism and V' is a representation of (G. Then (D ® idy) o \I!]Iiv :
T*WaV)— JEW)eV — W' @V is again a P-homomorphism, which we
denote by Dy, and the highest order component of this homomorphism is just the
highest order component of D tensorized with the identity on V.

The explicit expressions for the isomorphisms ¥, become quickly fairly com-
plicated, but in the simple situation where V splits as V @& Vi over gg, such that
the action of g4 maps each V; to V;+1, we can compute the formulae for twisted
operators explicitly:
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Proposition. Let W and W’ be irreducible representations of P, and let V' be
a representation of G such that X1-(Xqw) = 0 for all X1, X € g_; and v € V.
Moreover, let D : T*(W) — W' be a P-homomorphism which does not factor over
jk_l(W). Then the corresponding homomorphism Dy : jk(W V) —=WoV
maps a jet in J¥(W @ V) with top component 7, @ - -+ ® Z; @ wi @ v; and second
highest component Y1 ® -+ - @ Y31 ® wi_1 @ vp_1 to

DZ1® - ® 7, @ wy) @ v+

k-1
+ZZD(Y1®"'®Yz’®772®yi+1®"'®Yk—1®wk—1)®&'vk—la
i=0 £

where the &, form a basis of g_1 and the 1, the dual basis of g;.

Proof. To proof the result amounts to computing the top component of the value
of W%, on the given jet. Obviously, the formulaholds for k = 1, so let us inductively
assume that 1t holds for \I!lév_l. To compute the action of \I!]Iiv on the given jet, we
first have to interpret it as a one jet with values in (k — 1)—jets. This one jet has
then as foot point a jet with top component Y1 ® - ® Yr_1 ® wp_1 ® vi_1, while
the jet part coincides in the two highest components with

Y1©(0,...,0,Y20 - ®@Yi_1 @ wr—1 @ vp_1,0)+
+21®(0,...,0, 720 - @ 7, @ wp @ vg).

Next we have to apply jl(\PIIﬁfl) to this, which means that we have to act with
\I!lév_l on the footpoint and on the value of the jet part. By the induction hypoth-
esis the foot point of the result coincides in the top component with the sum of
(0,...,0,Y1® - ® Y1 ® wp—1) ® vp—1 with something whose top component
vanishes under the action of g_;.

On the other hand, the top degree of the jet part of the value coincides with

7120,...,0, 750 - @ Z, @ wp) @ v+

YD VI@(0,..,0,Y2@0 @YV @@ Y @ @Yo ©wko1) © Eve—1.

But applying \P;k_l(w), we get in the top degree the sum of this and the term

ZW ®0,...,0,V1® - @Y1 @wip—1) @ Ervp—1.0
¢

1.8 The translation operators. We now start the construction of the second
ingredient of the translation procedure, the translation operators. Fix a represen-
tation V of G which splits as V5 @& Vi over gg, such that the action of g4 maps
each V; to V;11, and an irreducible representation W of P. Then W @ V splits
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as (We V) & (W ® V) over go and W @ V; is a P-submodule, and thus we can
form the quotient (W @ V)/(W @ V1), which we denote (with a slight abuse of
notation) by W @ V4. This again is a representation with trivial P;—action. Thus
we can read off two simple types of translation operators (which are actually of
order zero) immediately: If W C W @V, is an irreducible subrepresentation, then
we have a canonical P~homomorphism W <« W @ V, and if W’ is a quotient of
W' @ Vj, then there is a natural homomorphism W' @ V — W',

1.9. Next, let W C W @ Vi be an irreducible subrepresentation. Consider the
go—module g* ; ® V. Since g%, = g1 the action of gy defines a gg—homomorphism
& 1g*, @ W — W @ Vi. (The notation &* for the action comes from the relation
to Spencer cohomology, see [CSS2, 1.3]). We denote the image of this map, which
is a go-submodule of W @ Vi by g1-W.

Now let {&} and {n,} be dual bases of g_; and gy as before. Then Z @ ¢ —
YoM @ [Z,&] e is a well defined go—endomorphism of g* ;, ® W. Suppose we can
split g*1 ® W = E & F into a direct sum of go—submodules, which are invariant
under the above endomorphism and such that F' lies in the kernel of the action 9*.
(Such a splitting always exists, taking 7' = 0.) Then let ® be the endomorphism
of g | ® W which coincides with the above one on E and is the identity on F.

If one has any finite dimensional module over a reductive Lie group or Lie
algebra, then one may fix a decomposition into irreducibles, i.e. a way of writ-
ing the identity map as a sum of projections onto irreducible subrepresentations.
Then any endomorphism f of the module can be represented by a block diago-
nal matrix (with block sizes corresponding to the multiplicities of the irreducible
subrepresentations). We can then form the determinant and the classical adjoint
of this matrix, which gives again rise to a module endomorphism. In [Cap] it is
shown, that this endomorphism and the determinant are actually independent of
the choice of the decomposition into irreducibles, so we denote them by A(f) and
Cy, respectively, and call them the determinant and the classical adjoint of f. In
particular, if the given module is simply reducible, i.e. all irreducible components
are different, then f must act by a scalar on each of these, and A(f) is just the
product of these scalars, while C; acts on each component with the product of all
these scalars except the eigenvalue of f on this component.

Now consider the mapping jl(W) — W ® V which maps (eg, Z1 ® 1) to
A(P)eg + 0*(Ca(Z1 ® e1)). Obviously, this is a gp—homomorphism. But for an
element Zy € g1 we have by definition Zy-(eo, Z1 @ e1) = (0,3, 10 @ [Zo, Ee)-€0).
By construction of @, we see that this element is mapped to §*(Ca(P(Zo ® eq)))
which equals A(®)Zy-eg. But this shows that the above mapping is also gi1—
equivariant and hence a p— and a P-homomorphism. But this means that we
have a corresponding strongly invariant first order operator between the bundles
corresponding to W and to W @ V as required.

1.10. The operators constructed above can be used in two ways: First, if A(®) is
nonzero, then we may divide by this number, thus obtaining a differential operator
which splits the projection of natural vector bundles induced by the canonical
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projection W@V — W Vy — E.

On the other hand, if A(®) = 0 but Cs # 0, then we immediately get a
homomorphism J!(E) — W @ V; between two representations with trivial P
action, and thus a natural operator.

Finally, one should note that the algebra gy always has a one dimensional
center, whose action can be changed independently of the action of the rest (this
corresponds to changing the conformal weight in the case of conformal structures).
It is easy to see, that this changes ® by adding a multiple of the identity, so one
can reach each of the two cases described above by appropriately choosing the
action of the center, and the first case is the generic one.

1.11. The remaining translation operators are constructed in a very similar way:
Let W' be an irreducible component of W’ @ Vi and let « be the projection
onto W’. As in 1.9 we have the action * : g, oW eV, — W ® Vi, and as
above we construct a homomorphism ®’, but this time corresponding to a splitting
g, @ W' ®Vy = Ed F such that F is contained in the kernel of = o 9*.

Now JY(W' @ V) splits into the four parts W’ @ Vo, W/ @ V1, g* | @ W' @ Vo,
and g* ; @ W' @ V;. We define a mapping 7* (W' @ V) — W', which depends only
on the middle two components, and maps a jet such that these are w] ® v; and
7y @ wh ® vg to W(A(q)’)w’l ® vy — 0" (Cap (Zo @ wy @ vo))).

Clearly, this is a ggp—homomorphism. Acting on such a jet with another element
Z € g1, the two middle components of the result depend only on the first compo-
nent of the jet, and if this is w) ® vy, then the middle components of the result are
wy @ Zvg and Y, e @ [Z, €] (w) @ vp), respectively. Using the construction of ¢’
one immediately verifies that this element lies in the kernel of the homomorphism
defined above, so we have actually constructed a p—homomorphism (and thus a
P-homomorphism) JY{(W' @ V) — W’. Consequently, we also get a strongly
invariant operator of order one between the corresponding bundles.

As in 1.10, it is easy to see that for A(®') # 0 one gets a differential split-
ting of the inclusion of natural vector bundles corresponding to the inclusion
W — W @V, — W' ®V. In the case where A(®') = 0 but Cy # 0 we
again get a homomorphism between bundles with trivial Pj—action and thus a
natural operator. As before, one can switch between these two cases by adjusting
the action of the center of gy appropriately.

1.12. Remark. With the constructions carried out in this section, we have four
different types of translations at hand. We may go into W ® V' from a component
of W ® V; with a zero order operator or from a component of W & V with a first
order operator. On the other hand, we can go out of W’ ® V' to a component of
W' @ V,y with a zero order operator, or to a component of W’ @ V} with a first
order operator.

It can be easily shown in general, that the simplest of these translations (the one
with two operators of order zero) always decreases the order by one (i.e. translating
a k—th order operator in this way one ends up with an operator of order k& — 1),
while the two “medium” translations (using one operator of first order and one of
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order zero) preserves the order, and the most complicated translation (with two
first order operators) increases the order by one.

It is an interesting problem in representation theory to discuss in general (inde-
pendently of the structure in question), the properties of the maps ® and &' with
respect to their determinants and classical adjoints. Results in this direction will
be proved elsewhere.

2. ALMOST (GRASSMANNIAN STRUCTURES

In this section we discuss generalities about almost Grassmannian structures
and fix the notations for the computations in the next section. From now on, we
will only deal with Lie algebra representations, leaving to the reader the trivial
modifications in the group case.

2.1. The |l|-graded Lie algebra sl(p + ¢,K). Let K be R or C, let p,q > 2 be
integers and put g :=sl(p+ ¢,K). Then g admits a |1|-gradingg =g_1 P go D o1
with g_y 2 KP* KK?, go = sl(p, K)®sl(¢, K)BK and g; = KP KK?*. This grading
1s obvious from a block form with blocks of sizes p and ¢, respectively:

(0 0 (% 0 [0 %
9—1—*0,90—0*,91—00~

We denote by p the parabolic subalgebra gy & g1 of g.

We will often compute in a basis of g using the following conventions: Indices
named a, b, c,... run from 1 to ¢, while indices named ¢, j, k, ... run from 1 to p.
For the basis elements lower indices indicate elements of K? or K¢, while upper
indices indicate elements of KP* or [K?*. Moreover, we will use the Einstein sum
convention, so if an upper index equals a lower index then one automatically has
to sum over these. We will denote by e the basis of g consisting of elementary
matrices. Thus basis elements of the form ei belong to g_1, those of the forms e¢
and e§ belong to go, and those of the form ef are in g;.

In this language, one now easily computes the basic brackets, c¢.f. [CSS1, 3.3]:

[ )igoxgor — oo, [(ehef).e] = ook — skel
[, ]:g0xg1 — g1, [(eF,ef), ef] = Shes — 65 et
[,]:91 xXg-1 — go, [e?,efl]:éze;—éjeg

It is well known that g_; and g; are dual with respect to the Cartan Killing form
on g. Using the well known relation between the trace form and the Killing form
on g, or by a direct computation one immediately sees, that the bases {ef} of g1
and {el} of g_; are dual with respect to the Killing form up to a factor m. In

1 a 2
2pto) ©eq

particular, we may write the identity map as an element of g1 ®g_1 as
(using Einstein sum convention).

Next, we need a distinguished generator I of the center of gg. This generator
can be fixed by requiring that it acts as the identity on g; and as minus the identity

on g_q. A direct computation immediately shows that I = —L-e% — £_¢9,
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2.2. Representations. We will be concerned with two types of (finite dimen-
sional) representations of the algebra p. On one hand, we will need representations
which are obtained by extending representations of gy trivially to representations
of p. In particular, all irreducible representations of p are of this form. Specifically,
the one dimensional representations are characterized by the action of the central
element Il from above. To avoid ugly numerical factors in our formulae and follow-
ing the convention introduced in [Bailey-Eastwood, 2.3] we denote by K[1] the one
dimensional representation APKP = AYK?* . Consequently, for a € KK we denote by
K[e] the one dimensional representation in which the action of the center is fixed
by requiring that .z = %x for all # € K[]. For any representation W of go,
we will denote by W{a] the tensor product of W with K[a]. This corresponds to
the change of conformal weight in the case of conformal structures. Now it is well
known what the irreducible representations of gg look like. They can all be written
as (W, ®Ws)[a] where W is an irreducible representation of sl(p,K) and W5 is an
irreducible representation of sl(¢,K). For all tensor representations we will use a
coordinate notation similar to the one introduced in 2.1 above. Note that on these
tensor representations we always take the natural action of the center. Thus the
notation (W7 & Ws)[«] does not mean that T acts by multiplication with ﬂ’;qﬁl.

The second type of representations that we will need is representations of p
which are restrictions of representations of the whole algebra g. Specifically, we
will need the defining representation V of g and its dual V*. Over gg we have
splittings V =V Vi = KK and V* = (V*)p b (V") = K* & KI*, and
g+1-V; C Vix1 and similarly for V*. The geometric objects corresponding to these
representations are analogs of the tractors in conformal geometry, which were
introduced in [Bailey-Eastwood—Gover].

Finally, we shall also need tensor products of these two types of representations.
As above, we can split these (over gg) as WoV = (W@ Vy)®(W®V)) and similarly
with V*. We will often write elements in such representations as column vectors
with two lines, the lower line corresponding to W ® V4 and the upper one to W®V;.

2.3. Jet prolongations and invariant differential operators. As we have
noticed in 1.3, for any representations W and W' of p a homomorphism D :
T*(W) — W' of p-modules gives rise to an invariant differential operator on
manifolds with AHS—structures via the absolutely invariant derivative, see [CSS1,
5.7]. (In fact, one has to restrict to representations which actually integrate to
representations of an appropriate group, but this requires only trivial modifica-
tions.) Once one has such an operator expressed in these terms, one can compute
its formula in terms of usual covariant derivatives with respect to appropriate
connections using the methods developed in section 4 of [CSS1] and the explicit
formulae for the deformation tensors from [CSS2, 3.7]. Since this procedure is
not related to the translations at all, we will not carry it out, but compute only
the expressions of the operators in terms of absolutely invariant derivatives. In
particular, the symbol V will always denote an invariant derivative with respect
to the canonical Cartan connection.

To write down expressions for such invariant operators, we will use an abstract
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index notation similar to the one developed in [Bailey-Eastwood]. Here we use
upper primed indices to indicate KP —factors, lower primed indices to indicate KP*—
factors, upper unprimed indices to indicate K¢ —factors, and lower unprimed indices
to indicate K?* —factors. Moreover, round brackets indicate symmetrizations and
square brackets indicate antisymmetrizations. Finally, lower zeros mean a trace
free part. Thus, for example @SB’?)IBI)A denotes a section of the natural bundle
associated to the representation S?KP & (K¢ @ K?*)g, the exterior tensor product
of the symmetric square of KP with the trace free part of L(K!,K?), which is
just the adjoint representation of sl(¢,K). The main purpose of this notation is
to indicate appropriate traces by using the same letter in an upper and a lower
index. The difference between the notation used here and the one used in [Bailey—
Eastwood] is that we identify the tangent bundle with KF* X K¢ and not with

KP KK?. So in our setting an invariant derivative has the form V4 , and so on.

3. EXAMPLES OF TRANSLATIONS

3.1. We start with the simplest example, where W = KJa] and V is the standard
representation. In this case the zero component of W @ V equals Kf[«a], and
the one component is just K [«], so they are both irreducible. The crucial step
in the construction of the translation operators is to analyze the endomorphism
g1 @ W® Vg which maps Z®@ w to Y 1, ® [7,&]-w. Computing in coordinates, we
see that e;? ® e, 1s mapped to

2(p-|—q)el @ [ € e'le. = 2(p+q)eZ @ (8! e - 6Z M, = 2(p1+q)(oze§ ® e, — 6bea ® eq).

Over gg, the module g; @ W @ Vp Z K K (K? ® K?*) splits into two irreducible
components corresponding to the splitting of K @ K¢ into trace part and trace free
part, and the whole trace free part lies in the kernel of the action 9* : g1 @W @V, —
W® V1 On the trace part, the map from above obviously acts by multiplication
with 2( + ik Thus as the map ®, which occurs in the construction of the translation
operators in 1.9, we take the map which is the identity on the trace free part
and acts by this scalar on the trace part. Its determinant A(®) (c.f. 1.9) thus
equals %, while its classical adjoint is just the identity. Thus we get the
homomorphism J*1(K¢[a]) — V[a], respectively an operator on the corresponding
bundles given by:

8be; 4
<ea,e?®ec>~>( oty ) @AH( Vi )
=€
2(p+q) @ 2(p+q)30

In particular, if we choose a = ¢, then the lower component vanishes, and we get
a homomorphism J1(IK?[q]) — KP[q], and thus an invariant first order operator

between the corresponding bundles defined by ¢4 — VﬁlgoA.

3.2. If we replace the standard representation V in 3.1 by its dual, then the
computations are very similar. In this case we get a homomorphism J ! (KF*[a]) —
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V*[a], respectively a first order operator between the corresponding bundles given

by:
. (Sk@a VAI 1
(62,6;®6k)'_><p20z ei) SDA"—>< p—é)zgpAl).
2(p+q) 2o+ P4
In particular, for « = p there is a homomorphism J!(IKP* [p]) — K*[p], respec-
tively a first order invariant operator between the corresponding bundles.

3.3. Next, we will discuss translations of the invariant operator D between the
bundles corresponding to W: = K [¢q] and W': =K [g] constructed in 3.1. Let us
first translate it with the standard representation V. Let D be the homomorphism
on one—jets corresponding to the operator. Then by 1.7, the twisted homomor-
phism Dy differs from D @idy by >, [)(W @w)@&v. Clearly, this depends only
on the component W @ Vj of W @ V', which is isomorphic to K¢ KK? [«] and thus
irreducible. This correction maps e; @ e; to

D(ef @ep) @eye; = bpei @6 ea:mej(}beb,

1
2(p+9) 2(p+q)

which is an element in W’ @ Vy = KP KK?[«]. Thus, the twisted operator Dy can

be written as
() (o )
BC c’ oBC 1 c'c |-
1 Vi +2(p+q)1/)

From this we can immediately read off, that the simplest translation, which uses
two translation operators of order zero, just gives m times the identity on

KP K K? [¢].

3.4. To start the construction of the nontrivial translation operators, we have to
consider the mapping Z @ w @ v — 3", 1m0 @ [Z,&]-(w ® v) on gy @ W @ V =
K? K (K2* © K? @ K?). This endomorphism maps e;? Qe. Deq to

®(6 e —6Z b)(ec®ed):

(ae] @e. @eq—0iel @eq @ eq— hef @ e. @ ea).

2(p+q) €
= 2(p+q)

In this case, the situation 1s more complicated than before, since W @ V4 splits
into the two irreducible representations Wy: = S?K? and Wi: = A2KY. First,
we construct a homomorphism jl(WO) — W ® V. The module g; ® WO 1s the
exterior tensor product of KP with K¢ @ S?K?, which splits as a direct sum of
K? (the trace part) and another module (the trace free part). Since W ® Vp =
KP KK [«], the whole trace free part must be contained in the kernel of the action
O g W eVy — W V. To compute the action of the above mapping on the
trace part we have to evaluate it on elements of the form e;? Qep e, + e;? Re.Rep,
and one immediately verifies, that on such an element it acts by multiplication

a—g—1
with 564

Thus, the appropriate map @ in the construction of the translation operators
acts by this scalar on the trace part and as the identity on the trace free part. So
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its determinant is just the above scalar, while its classical adjoint i1s the identity.
Thus for any o we get a homomorphism J1(S?K?[a]) — K¢ @ V[a], respectively
an operator between the corresponding bundles of the form:

bbeq@e; + 8% @ e;
c 7 J acr J
(€q © ep, €; @ (eq®ef)) — ((g(;_i—q;)(ea ®eb—|—eb®ea))

VA’SD(AB)
QD(AB)H ((Oz—(f—l (AB)) .

2(p+9) )30

In particular, we get a homomorphism J'(S?K![q + 1]) — K K K?[¢ + 1], and
thus a first order invariant operator between the corresponding bundles.

On the other hand, to use this for translation of the operator D from 3.1,
we have to put « = ¢, which reduces the factor in the above formula to 2(;—4{(1)'
Composing the operator Dy from 3.3 with our operator we get a second order
operator between the bundles corresponding to S%K?[¢] and K¢ @ V[q]. Computing
(FETg

0

this composition, one gets (A7) — . Thus we see that the first

type of “medium” translations gives only the zero operator, but the top component
immediately gives us a second order operator between the bundles corresponding
to S?K?[q] and KP © KP[q]. To come to an irreducible target, we have to either
symmetrize or antisymmetrize. Symmetrizing, we get a true second order operator,
given by ¢(4P) — VSBBIVQI)QD(AB). Antisymmetrizing on the other hand, one gets
a commutator of absolutely invariant derivatives and thus an operator of order
zero involving the curvature of the canonical Cartan connection (see [CSS1, 2.5]).
In fact, the operators obtained here equal the result of the most complicated
translation, since the other translation operator equals a scalar multiple of the
identity on elements having a zero in the lower row.

3.5. Starting with the component Wy = A2IKY [«], everything looks quite similar.
As above, the module g; ® Wi splits into a trace part and a trace free part, which
lies in the kernel of the action. The eigenvalue on the trace part is easily seen
to be g&)i‘;;. The homomorphism J!(A%K[a]) — (K? @ V)[a] respectively the
corresponding operator is given by

bleq@e; — 8%er Qe
c f J atf J
eqg Nep, e Dleghe '—>< a_ )
( J ( f)) (z(p‘f:];)(ea @ep—ep Qeg)

VA HIBA]
[AB] ( AP )
¥ = a—q+1\ [AB] | -
(z(piq) )30[ ]

In particular, we get a homomorphism J1(A%KY[q — 1]) — K K K?[¢q — 1], and
thus a first order invariant operator between the corresponding bundles.

In the case o = ¢, which is relevant for translation, the scalar in the formula
becomes m. Composing Dy from 3.3 with the resulting operator again gives
zero in the lower row and immediately an invariant operator in the top row. This
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time, we get by antisymmetrizing a true second order operator between the bundles
corresponding to A*K?[q] and A%K? [¢], which is given by ¢4P] — VE:;‘ Vg ]go[AB],
while symmetrizing gives an operator of order zero which involves curvatures.

3.6. We finish the discussion of translation of the operator from 3.1 with a few
remarks:

(1) If one considers in this situation the translation operators as constructed in
1.11, one has to deal with homomorphisms J(K? @ V[a]) — KP @ KP[a], and to
obtain an irreducible target one has to symmetrize or antisymmetrize in the end,
and we only consider the case of symmetrization. Following the general scheme
described in 1.11, one gets the operator:

A'B o b
(V60 ) — Gt - vt
In particular, we get a first order invariant operator between the bundles corre-
sponding to K M K?[q — 1] and S?KP[¢ — 1].

Concerning translations, the situation is then somehow dual to the one we met
in 3.4: Composing this operator with the operator Dy from 3.3 one immediately
sees that this depends only on the p—component. Thus, the “medium” translation
is once more trivial and we directly get the most complicated translation, which
just gives the operator from 3.4.

(2) Sticking to the symmetric case, the construction of 3.3 and 3.4 can be iterated.
Inductively, one gets for each k > 1 a homomorphism J*(S*K?[q]) — S*KP[q],
and thus a k—th order operator between the corresponding bundles. The formula

for the corresponding operator is always (4 5) ng’ .. .Vgl)go(A'“B).

In fact, the situation is always as in 3.4, i.e. the “medium” translations are
automatically trivial.
(3) Tt is easy to verify, that the translation carried out in 3.3 and 3.4 can actually
be reversed. If one computes the simplest translation of the second order operator
from 3.4 with the dual V* of the standard representation, then up to a nonzero
factor one gets the first order operator from 3.1.
(4) If one tries to translate the operator D from 3.1 with the dual of the standard
representation, then the result is less nice. The simplest translation gives only
a nonzero multiple of the identity on K[a], which can be viewed as reversing
the translation from 3.1. The two “medium” translations lead to some nonzero
first order operators, which can easily be obtained directly similar to the one in
3.1. The most complicated translation gives a prospective second order operator
between KP* X K[a] and K @ K?* [«], which would be highly interesting since
these are (up to the central factor) just vector fields and one—forms, respectively.
Unfortunately, the homomorphism one obtains by translation gives an operator
of order zero involving the curvature of the canonical Cartan connection. It can
be verified by a direct computation that there 1s no second order operator with
nonzero symbol between these bundles.

3.7. We now turn to an example in which we translate a standard operator to
a nonstandard operator. To get the starting point for this translation, we con-
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sider the representation W: = A?K%*[a]. Tensorizing this with the standard
representation V of sl(p + ¢,K) we get the zero component A?K?* @ K?[a] which
contains Wy: = K% [a] as an irreducible component (the trace part). To con-
struct the translation operator jl(Wo) — W ®V we have to analyze the mapping
g1 ® Wo — g1 ® Wo defined by Zow@v— >, n@[Z,&](w®wv). Viewed as an
endomorphism of g; ® @?K?* @ K¢ this maps e;? Qe Rel® ef to

2(p-|—q) € ®(6bel _5Z D(ef0et@ep) =
= 2(p+q) (ae e’ ®e ®ef—|—e ®e ®e ®ef—|—e e’ ®e ®efs— 6fe] e’ ®e Req )

The submodule gy ® Wy is generated by all elements of the form e;? Qe ®el®
eq — elz ©e? ®e® @ ey, and this element is mapped to

2(p_l_q)(oze e’ ®e ®ed—ae ®e e’ ®ed—|—e ®e ®e ®ed—e ®e X e ®ed)

Finally, the module g; ® W is isomorphic to KPF RK?* @ KI* | so it splits into two
irreducible components corresponding to the symmetric and antisymmetric parts
in the second component. Since W @ V; = KP K AZK?* | the symmetric part must
lie in the kernel of the action 9* : g3 ® Wo— W V1, so we just have to compute
the eigenvalue of the above endomorphism on the skew symmetric part. From the
last formula it is easy to see that this eigenvalue is just 2(p+q)

Putting @ = 1 we get a homomorphism J!(K%*[1]) — K? K A?K?*[1] and an
operator between the corresponding bundles, which is given by ¢4 — Vféx ©p]

3.8. We want to translate the operator D between the bundles corresponding to
W: = K*[1] and W': = KP K A?K¢*[1] obtained in the end of 3.7 with the
standard representation V. First, we compute the twisted operator Dy . Similarly
as in 3.3, the difference between the corresponding homomorphism Dy and D®idy
depends only on the component Wolh =2KK Kq*, and one computes that it
maps e’ @e; to 2(p+q) D(ef@e’)@ele; = 2(p+q)(e et @e;Re—e’ Qe @e; Dey).
Thus, the twisted operator can be written as

(¢£’) . Viavs
e V[chog] - 2(p+q)1/) ldE

Note that the last term in the lower line corresponds just to the inclusion of
K? RIK?* into KP K AZK?* @ K¢ as the trace part. Thus, from the formula for the
twisted operator one reads off, that the result of the simplest translation (using
two operators of order zero) is the identity map on K ®K?*[1] plus the zero map
to the other irreducible component of KP R A?K?* @ KY.

3.9. To start the construction of the more complicated translations we have to
analyze the endomorphism Z@w@v— >, 7 @ [Z,&](w@v) on g1 @ W @ Vp =
K? K (K?* ® K @ K?). This maps e;? Qe @ eq to

®(6bez_6z b)(ec®ed):
Iz(pﬂ)(ae ©e" ®eqgte; ® e’ ®ed—6de Qe @ eq).

2(p+q) €
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Now W @ Vp =2 K" @ K? splits into two components, one isomorphic to K[«]
(the trace part), the other one isomorphic to the adjoint representation of sl(q, )
(the trace free part). We are interested in the part W = K[a]. Thus, we have to
evaluate the above mapping on the element e;? ® e® ® e. and clearly i1t acts just
by multiplication by m. Hence, similarly as in 3.1, we get a homomorphism

T K[a]) — K% @ V[a], respectively an operator between the corresponding bun-
dles given by

b A’
e’ @ ej Vi e
(1aeb)'_>< a a] ) QDH< o - 1B .
7 gt @ ca W ¥ 140
In particular, this gives an invariant operator for o = 0, which is just the exterior
derivative from functions to one forms.

To translate the operator D from 3.7, we have to insert « = 1. Composing
our translation operator with the twisted operator from 3.8 we get a second order
operator between the bundles corresponding to K[1] and KP K A%K?* @ V[1], which

A'o B’
is given by ¢ — (v[A ZB]SD). As before, the “middle” translation is automati-
cally trivial, and we immediately get a second order operator between the bundles
corresponding to K[1] and K? @ KP K A2K?*[1]. To get an irreducible target, we
have to either symmetrize or antisymmetrize in the K? —factor, and symmetrizing
we get an operator of order zero involving the curvature of the canonical Cartan
connection. The remaining interesting part is a second order operator between the

bundles corresponding to K[1] and A*KP & A?K?*[1] given by ¢ — V%ﬁlvg]’]go.

3.10. Remarks. (1) The relevance of the example given in 3.9 shows up, if
one looks at the classification of invariant operators in the flat case in terms of
Bernstein—Gelfand-Gelfand resolutions (see [Baston—Eastwood, chapter 8]). In
this classification, the operator constructed in the end of 3.7 occurs as a standard
operator in a pattern corresponding to a singular infinitesimal character, while
the operator in 3.9 to which it is translated, occurs as a non—standard operator in
a pattern corresponding to a different (but also singular) infinitesimal character.
This shows, that our method allows translations between various infinitesimal
characters, and from standard to nonstandard operators.

(2) Tt is well known that almost Grassmannian structures in the case p = ¢ = 2
coincide with conformal structures in dimension 4. In this case, AZK?* = AZRP ==
K[1], so the operator from 3.7 actually goes between the bundles corresponding
to K?*[1] and KP[2]. It can be verified, that this is just a Dirac operator. The
operator from 3.9 goes between the bundles corresponding to K[1] and K[3] and
is actually the conformally invariant Laplacian.

(3) Tt should be remarked that in the case ¢ = 2 the translation carried out in
3.9 coincides with the one from 3.5.

3.11. We finish with a more complicated example by carrying out the most com-
plicated translation of the operator obtained in 3.9 with the standard representa-
tion. For simplicity, we will carry out the last step only in the case p = ¢ = 2.
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First, we construct in general the twisted operator corresponding to the one
constructed in 3.9 and the standard representation. The correction of the corre-
sponding homomorphism compared to D @ idy is of first order and depends only
on the component g_; @ KP[1] of g_; ® V[1]. Using the formula from proposition
1.7 we see that this correction maps e;? ® er to

D(ef@e?—i—e?@ef)@egek = quea/\eb(}bek/\ej @ eq.

B
2(p+9)
Expressing this in terms of operators, we see that the twisted operator, which
maps sections of the bundle corresponding to V[1] to sections of the bundle cor-

responding to AZK? K AZK! @ V[1], is given by

; [A/ B/] 7
SR\
A [D/ El] [D/ El] \E .
(G Vie Vo f + 75 Vie ¢ idp,

The zero component K¢[1] of V[1] is irreducible, and we can read off the corre-
sponding translation operator J!(K¢[1]) — V[1] directly from 3.1. Putting o = 1
in the last formula of 3.1 we see that the corresponding operator is given by

V4 ot L : .
oA — ( 1_‘4q z A ) Composing this with the twisted operator we get a third or-

2(p+q)
der operator between the bundles corresponding to K [1] and A2KF KA%K! @ V1],

which is given by

[A' B lgc!
A ( v[A vB] Vg ¢
SD —

e Vo Ve~ i idin Vi Vo ]%0")

3.12. To finish the translation, we have to construct the second translation opera-
tor. We will only do this in the case p = ¢ = 2, in which A2KP RAZKI @V[1] = V[3].
Thus, in this case there is only one relevant translation operator, which corresponds
to a homomorphism J!(V[3]) — KP[3]. To construct this operator following the
procedure from 1.11, we need the mapping ®’, which we can immediately read
off from 3.1. In the case & = 3 which is relevant here, we see from 3.1 that
A(9) = m, while the classical adjoint of ® is just the identity. Thus, we
see from 1.11 that the homomorphism J1(V[3]) — KP[3], respectively the corre-
sponding translation operator is given by

e, | b ' Y ' A

S R v L pA ) T T T Yav
Composing this with the operator obtained in the end of 3.11 we get (in the case
p = q = 2) a third order operator between the bundles corresponding to K?[1] and
K? [3], which is given by (omitting a factor m)

Pt = VI VEIVE o + VE VI Vi + 2V Vi vE e
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