Marcelo Epstein; Manuel de León
Uniformity and homogeneity of elastic rods, shells and Cosserat three-dimensional bodies

Archivum Mathematicum, Vol. 32 (1996), No. 4, 267--280

Persistent URL: http://dml.cz/dmlcz/107580

Terms of use:

© Masaryk University, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
UNIFORMITY AND HOMOGENEITY OF ELASTIC RODS, SHELLS AND COSSERAT THREE-DIMENSIONAL BODIES

MARCELO EPSTEIN AND MANUEL DE LEÓN

To Ivan Kolár, on the occasion of his 60th birthday.

ABSTRACT. We present a general geometrical theory of uniform bodies which includes three-dimensional Cosserat bodies, rods and shells as particular cases. Criteria of local homogeneity are given in terms on connections.

1. Introduction

An n-dimensional Cosserat medium B is represented by an n-dimensional manifold B which can be embedded into \mathbb{R}^3, the embedded submanifold endowed at each point with a deformable linearly independent basis of 3 vectors. The mechanical response is supposed to depend on the deformations of the underlying n-body as well as on the gradients of the attached deformable basis.

In this paper we present a general geometrical framework for arbitrary Cosserat bodies. The geometrical picture consists of an n-dimensional body B which is embedded into the Euclidean space \mathbb{R}^{n+m}. The geometry of the embedding (the configuration) allows us to construct the principal bundle of linear frames of \mathbb{R}^{n+m} along the embedded submanifold. Thus, a deformation is nothing but a principal bundle isomorphism of two of these configuration bundles. The constitutive equation states that the mechanical response depends on the 1-jet of the deformation. We associate to the body a groupoid of material 1-jets in such a way that the smooth uniformity is equivalent to this groupoid being a Lie groupoid. If the Cosserat body enjoys smooth global uniformity we construct a non-holonomic parallelism and, by prolongating it by means of the material symmetry group, a non-holonomic \tilde{G}-structure. Its integrability (integrable prolongability, in fact) is equivalent to the local homogeneity of the body. Finally, we consider the case of rods, shells and three-dimensional Cosserat bodies as particular cases.

1991 Mathematics Subject Classification: 73B25, 73B10, 73B05, 53C10.

Keywords and phrases: Cosserat media, rods, shells, uniformity, homogeneity, non-holonomic frame bundles, non-holonomic G-structures, connections.

This research was supported in part by DGICYT (Spain), Project PB94-0106, NSERC (Canada) and NATO (CRG 950833).
Our theory is based on the original works of the Cosserat brothers [5] and is the natural extension of the theory of inhomogeneities developed by Noll and Wang [43, 50, 48, 49] (see also [37, 38, 39, 40, 45]). Our approach generalizes several previous papers on three-dimensional Cosserat bodies (including second grade materials) [46, 47, 6, 7, 14, 8, 15, 10, 11, 12, 13, 41] and shells [19, 20, 21]. A general setting for continua with microstructure [2] was developed in [16, 17]. The homogeneity conditions are obtained as integrability conditions of non-holonomic parallelisms. It seems to us that non-holonomic G-structures deserve a careful study in order to obtain nice homogeneity conditions for Cosserat bodies. So, the results discussed, for instance, in [32, 33, 34, 35, 36, 44, 52, 25, 29, 42, 4] should be extended to that case.

2. Bundle configurations

Let \mathcal{B} be an n-dimensional manifold. Consider an embedding $\Phi : \mathcal{B} \to \mathbb{R}^{n+m}$ of \mathcal{B} into \mathbb{R}^{n+m}. Thus, $\Phi(\mathcal{B})$ is an n-dimensional embedded submanifold in \mathbb{R}^{n+m}. At every point X in $\Phi(\mathcal{B})$ we consider the set of linear frames $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+m}\}$ of \mathbb{R}^{n+m} at X such that $\{e_1, \ldots, e_n\}$ is a basis of the tangent space $T_X(\Phi(\mathcal{B}))$. Consequently, $\{e_{n+1}, \ldots, e_{n+m}\}$ is a set of linearly independent tangent vectors in $T_X \mathbb{R}^{n+m}$ which are transverse to $\Phi(\mathcal{B})$. We denote by $\mathcal{F}\Phi$ the collection of all these bases at all the points of $\Phi(\mathcal{B})$. We define a canonical projection $\pi_\Phi : \mathcal{F}\Phi \to \Phi(\mathcal{B})$ which maps a basis at X onto X.

Proposition 2.1. $\mathcal{F}\Phi$ is a principal subbundle of the restriction of the linear frame bundle $\mathcal{F}\mathbb{R}^{n+m}$ of \mathbb{R}^{n+m} to $\Phi(\mathcal{B})$, and whose structural group is

\[
G_0 = \left\{ \begin{pmatrix} A & 0 \\ B & C \end{pmatrix} \mid A \in \text{Gl}(n, \mathbb{R}), C \in \text{Gl}(m, \mathbb{R}), B \in \mathcal{M}(m,n) \right\}
\subset \text{Gl}(n + m, \mathbb{R}),
\]

where $\mathcal{M}(m,n)$ is the real vector space of matrices of order $m \times n$. Φ will be called a configuration and $\mathcal{F}\Phi$ the bundle configuration.

Given two configurations $\Phi_1, \Phi_2 : \mathcal{B} \to \mathbb{R}^{n+m}$, we put $\kappa = \Phi_2 \circ \Phi_1^{-1}$.

Definition 2.1. A deformation is a principal bundle isomorphism $\kappa : \mathcal{F}\Phi_1 \to \mathcal{F}\Phi_2$ between the corresponding bundle configurations which induces the identity map on the structure groups, and it covers κ.

In other words, κ maps a basis $\{Y_1, \ldots, Y_n, Y_{n+1}, \ldots, Y_{n+m}\}$ at $X \in \Phi_1(\mathcal{B})$ such that $\{Y_1, \ldots, Y_n\}$ is a basis of $T_X(\Phi_1(\mathcal{B}))$ and $\{Y_{n+1}, \ldots, Y_{n+m}\}$ are transversal to $\Phi_1(\mathcal{B})$, into a basis $\{\tilde{Y}_1, \ldots, \tilde{Y}_n, \tilde{Y}_{n+1}, \ldots, \tilde{Y}_{n+m}\}$ at $\kappa(X)$ of the same type, that is, $\{\tilde{Y}_1, \ldots, \tilde{Y}_n\}$ is a basis of $T_{\kappa(X)}(\Phi_2(\mathcal{B}))$ and $\{\tilde{Y}_{n+1}, \ldots, \tilde{Y}_{n+m}\}$ are transversal to $\Phi_2(\mathcal{B})$. With respect to these bases, κ is given by a tensor whose associated matrix is as follows:

\[
H = \begin{pmatrix} H_1 & 0 \\ H_2 & H_3 \end{pmatrix}.
\]
where \(H_1 \in Gl(n, \mathbb{R}), H_2 \in Gl(m, \mathbb{R}), H_3 \in \mathcal{M}(m, n). \)

We fix an embedding \(\Phi_0 : B \rightarrow \mathbb{R}^{n+m} \) once and for all, and the corresponding bundle configuration \(\mathcal{F}B_{\Phi_0} \) will be denoted by \(\mathcal{E}_0 \), for brevity. We also put \(B_0 = \Phi_0(B) \).

We assume that the elastic response depends on the 1-jet of the deformation so that the constitutive equation reads as

\[
W = W_0(j_1^X \dot{\kappa}),
\]

with respect to the reference configuration \(\Phi_0 \).

Definition 2.2. \(B_0 \) will be called a **deformable body**.

3. Uniformity and Material Symmetries

Definition 3.1. Given a deformable body \(B_0 \) we say that it is **uniform** if for any two points \(X \) and \(Y \) in \(B_0 \) there exists a local automorphism \(\Phi \) of principal bundles of \(\mathcal{E}_0 \) from \(X \) to \(Y \) which induces the identity map between the structure groups and such that

\[
W_0(j_1^Y \dot{\kappa} \circ j_1^X \Phi) = W_0(j_1^X \dot{\kappa}),
\]

for all 1-jet of deformation \(j_1^X \dot{\kappa} \). We will call \(j_1^X \Phi \) a **material 1-jet**.

We denote by \(\Phi \) the local diffeomorphism of \(B_0 \) covered by \(\Phi \).

Definition 3.2. A **material symmetry** at a point \(X \in B_0 \) is a 1-jet \(j_1^X \Phi \) of a local automorphism \(\Phi \) of principal bundles of \(\mathcal{E}_0 \) at \(X \) which induces the identity map between the structure groups and such that

\[
W_0(j_1^X \dot{\kappa} \circ j_1^X \Phi) = W_0(j_1^X \dot{\kappa}),
\]

for all 1-jet of deformation \(j_1^X \dot{\kappa} \).

The following result follows immediately from the above definitions.

Proposition 3.1. (1) The collection \(\Omega(B_0) \) of all material 1-jets is a groupoid over \(B_0 \) with source and target projections given by \(\alpha(j_1^X \Phi) = X \) and \(\beta(j_1^X \Phi) = \Phi(X) \), respectively.

(2) The collection \(G(X) \) of all material symmetries at a point \(X \in B_0 \) has a structure of group. In fact, \(G(X) = (\alpha, \beta)^{-1}(X, X) \), where \((\alpha, \beta) : \Omega(B_0) \rightarrow B_0 \times B_0 \) is defined by \((\alpha, \beta)(j_1^X \Phi) = (X, \Phi(X)) \).

Definition 3.3. We say that \(B_0 \) enjoys smooth uniformity if \(\Omega(B_0) \) is a Lie groupoid.

In such a case, there exist local smooth uniformities (i.e., local sections of \((\alpha, \beta) : \Omega(B_0) \rightarrow B_0 \times B_0 \)). For the sake of simplicity we will assume, from now on, that \(B_0 \) enjoys global smooth uniformity or, in other words, the Lie groupoid \(\Omega(B_0) \) is smoothly transitive.
Proposition 3.2. Assume that \mathcal{B}_0 enjoys smooth uniformity and take a point $X_0 \in \mathcal{B}_0$. Then $\Omega_{X_0}(\mathcal{B}_0) = \alpha^{-1}(X_0)$ is a principal bundle over \mathcal{B}_0 with structure group $G(X_0)$ and canonical projection β.

Proof: It follows the same lines that in Proposition 11.8 in [18].

4. Reference crystals and non-holonomic parallelisms

Consider the principal bundle \mathcal{E} over \mathbb{R}^n consisting of all the linear frames $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+m}\}$ at all the points of \mathbb{R}^n such that $\{e_1, \ldots, e_n\}$ is a linear frame of \mathbb{R}^n. It is not hard to see that \mathcal{E} is a trivial bundle, say $\mathcal{E} = \mathbb{R}^n \times G_0$.

Consider now the set \mathcal{F}_0 of all 1-jets $j_1^0 \tilde{\Psi}$ of local isomorphisms of principal bundles from \mathcal{E} into \mathcal{E}_0 with source at the origin in \mathbb{R}^n, such that $\tilde{\Psi}$ induces the identity map between the structure groups.

It follows that \mathcal{F}_0 is a principal bundle over \mathcal{B}_0 with canonical projection $\tilde{\pi} : \mathcal{F}_0 \longrightarrow \mathcal{B}_0$, $\tilde{\pi}(j_1^0 \tilde{\Psi}) = \Psi(0)$, where Ψ is the induced local diffeomorphism between the base manifolds covered by $\tilde{\Psi}$. We also have a canonical projection $\tilde{\pi}_{1,0} : \mathcal{F}_0 \longrightarrow \mathcal{E}_0$, given by $\tilde{\pi}_{1,0}(j_1^0 \tilde{\Psi}) = \Psi(0, 1)$, where $(0, 1)$ is the distinguished element of \mathcal{E}, i.e., $0 \in \mathbb{R}^n$ and 1 is the identity matrix in $Gl(n+m, \mathbb{R})$. (It should be noticed that the functor \mathcal{F} coincides with the one previously defined by I. Kolář [29, 31].)

The element $j_1^0 \tilde{\Psi}$ will be called a non-holonomic frame at the point $\Psi(0) \in \mathcal{B}_0$. The structure group $\tilde{G}(n, n+m)$ of $\tilde{\pi} : \mathcal{F}_0 \longrightarrow \mathcal{B}_0$, consists of the 1-jets $j_1^0 \tilde{\Psi}$ of local automorphisms of \mathcal{E} which induces the identity map between the structure groups and with source and target at 0.

By a direct application of chain rule, we obtain that the structure group $\tilde{G}(n, n+m)$ may be described as follows. A generic element of $\tilde{G}(n, n+m)$ is a triple (A, B, C), where

$$A \in G_0, \ B \in Gl(n, \mathbb{R}), \ C \in Lin(\mathbb{R}^n, \mathfrak{g}_0),$$

where \mathfrak{g}_0 is the Lie algebra of G_0.

We will write

$$A = (A^i_j), \ B = (B^a_b^i), \ C = (C^i_{\alpha\beta}),$$

where Latin indices run from 1 to $n+m$, Greek indices run from 1 to n. For simplicity, we introduce new indices a, b, c, \ldots running from 1 to m.

We have

$$A^{a+b} = 0, \text{ if } 1 \leq a \leq n, \ 1 \leq b \leq m,$$

$$C^{b}_{\alpha\gamma} = 0, \text{ if } 1 \leq \alpha \leq n, \ 1 \leq b \leq m.$$

Proposition 4.1. The group $\tilde{G}(n, n+m)$ may be identified with the semidirect product $G_0 \times Gl(n, \mathbb{R}) \times Lin(\mathbb{R}^n, \mathfrak{g}_0)$, the multiplication group given by

$$(6) \quad (A_1, B_1, C_1)(A_2, B_2, C_2) = (A, B, C),$$
where
\[A_i^j = (A_1)_i^k (A_2)_k^j, \]
\[B_\alpha^\beta = (B_1)_\alpha^\gamma (B_2)_\gamma^\beta, \]
\[C_{i_\gamma} = (A_1)_i^k (B_1)_\gamma^\beta (C_2)_k^j + (A_2)_i^k (C_1)_\gamma^j. \]

Proof: It follows from a direct computation using the chain rule. \(\square \)

Remark 4.1. It should be noted that \(\dim \mathcal{G}(n, n+m) = (n+1)[n^2+nm+m^2]+n^2 \).

Definition 4.1. The bundle \(\mathcal{F}\mathcal{E}_0 \) will be called the non-holonomic frame bundle of \(\mathcal{E}_0 \). A global section \(\mathcal{P} \) of \(\mathcal{F}\mathcal{E}_0 \) will be called a non-holonomic parallelism on \(\mathcal{B}_0 \). A non-holonomic frame at a point \(X_0 \in \mathcal{B}_0 \) will be called a reference crystal at that point.

Suppose now that \(\mathcal{B}_0 \) enjoys smooth uniformity, and choose a crystal reference \(\mathcal{Z}_0 = j_0^1 \Psi \) at a point \(X_0 \). Given a smooth global uniformity on \(\mathcal{B}_0 \), we can transport the reference crystal at any point \(X \) in \(\mathcal{B}_0 \) by composing the uniformity from \(X_0 \) to \(X \) with the 1-jet \(j^1_{(0,1)} \Psi \). Thus, we get a global section of the bundle \(\mathcal{F}\mathcal{E}_0 \), or, in other words, a material non-holonomic parallelism \(\mathcal{P} \) on \(\mathcal{B}_0 \).

The Lie group \(G(X_0) \) can be transported via \(\mathcal{Z}_0 \) and we obtain a Lie subgroup \(\mathcal{G} \) of \(\mathcal{G}(n, n+m) \):
\[\mathcal{G} = \mathcal{Z}_0^{-1} \circ G(X_0) \circ \mathcal{Z}_0. \]

If we prolongate \(\mathcal{P} \) by the action of \(\mathcal{G} \) we obtain a \(\mathcal{G} \)-reduction of \(\mathcal{F}\mathcal{E}_0 \). Such a reduction will be called a non-holonomic \(\mathcal{G} \)-structure on \(\mathcal{B}_0 \).

Remark 4.2. A classification of the subgroups of \(\mathcal{G}(n, n+m) \) could be obtained in a similar way to that in \([6, 18]\). The details of this classification as well as the integrability conditions of the corresponding \(\mathcal{G} \)-structures are matter of a future research.

Let \((x^\alpha) \) be a coordinate system on \(\mathcal{B}_0 \) and take local bundle coordinates \((x^\alpha, X_i^j) \) for \(\mathcal{E}_0 \). We obtain induced coordinates \((x^\alpha, X_i^j, Y_\alpha^\beta, Z_i^j) \) on \(\mathcal{F}\mathcal{E}_0 \). We set
\[\mathcal{P}(x^\alpha) = (x^\alpha, \mathcal{P}^j_i, Q^\beta_\alpha, R^j_i) \] \hspace{1cm} (7)

From (7) it follows that there are \(n+m \) linearly independent vector fields \(\{\mathcal{P}_1, \ldots, \mathcal{P}_{n+m}\} \) on \(\mathbb{R}^{n+m} \) along \(\mathcal{B}_0 \) such that the first \(n \) vector fields \(\{\mathcal{P}_1, \ldots, \mathcal{P}_n\} \) define a linear parallelism on \(\mathcal{B}_0 \). These vector fields are locally given by
\[\mathcal{P}_i = \mathcal{P}^j_i \frac{\partial}{\partial x^j}. \]

The vector fields \(\{\mathcal{P}_{n+1}, \ldots, \mathcal{P}_{n+m}\} \) are transversal to \(\mathcal{B}_0 \).

There are also \(n \) vector fields \(\{Q_1, \ldots, Q_n\} \) yielding another linear parallelism on \(\mathcal{B}_0 \), and which come from the induced diffeomorphisms on the base manifolds. Indeed, there is an underlying “uniformity” on \(\mathcal{B}_0 \) and an induced ordinary reference crystal \(j_0^1 \Psi \) at \(X_0 \) which is transported to any arbitrary point of \(\mathcal{B}_0 \).
Moreover, there exists a connection Γ in the principal bundle $\pi_0 : \mathcal{E}_0 \to B_0$. In fact, a non-holonomic frame at a point $X \in B_0$ just defines:

1. a linear frame of \mathbb{R}^{n+m} at X such that its n first vectors are tangent to B_0 and the last m vectors are transversal;
2. a linear frame of B_0 at X;
3. and, a horizontal subspace at X of the principal bundle $\pi_0 : \mathcal{E}_0 \to B_0$, or, in other words, an infinitesimal piece of connection.

We introduce the following notation:

$$\mathcal{N}_1 = \mathcal{P}_{n+1}, \ldots, \mathcal{N}_m = \mathcal{P}_{n+m}.$$

Next, take local coordinates (x^α, x^a) on \mathbb{R}^{n+m} such that (x^α) are coordinates on B_0 and (x^a) are transversal coordinates.

Thus, we have

$$\begin{align*}
Q_\alpha &= Q_\alpha^\beta (x^\gamma) \frac{\partial}{\partial x^\beta}, \\
\mathcal{P}_\alpha &= \sum_{\beta=1}^{n} \mathcal{P}_\alpha^\beta (x^\gamma) \frac{\partial}{\partial x^\beta}, \\
\mathcal{N}_a &= \sum_{\beta=1}^{n} \mathcal{P}_a^\beta (x^\gamma) \frac{\partial}{\partial x^\beta} + \sum_{b=1}^{m} \mathcal{P}_a^b (x^\gamma) \frac{\partial}{\partial x^b},
\end{align*}$$

where, for simplicity, we have written $\mathcal{P}_{n+a}^\alpha = \mathcal{P}_a^\alpha$ and $\mathcal{P}_{n+a}^a = \mathcal{P}_a^a$.

The parallelism $\{\mathcal{P}_1, \ldots, \mathcal{P}_n\}$ defines a linear connection Γ_1 on B_0 whose Christoffel components are given by

$$(\Gamma_1)_\alpha^\beta = - (\mathcal{P}^{-1})_\beta^\sigma \frac{\partial \mathcal{P}_\alpha^\gamma}{\partial x^{\sigma}}.$$

That is, the covariant derivative ∇_1 associated with Γ_1 is given by

$$(\nabla_1)_{\cdot \cdot \cdot}^\alpha = (\Gamma_1)_\alpha^\beta \frac{\partial}{\partial x^\beta}.$$

The parallelism $\{Q_1, \ldots, Q_n\}$ defines another linear connection Γ_2 on B_0 with Christoffel components given by

$$(\Gamma_2)_\alpha^\beta = - (Q^{-1})_\beta^\sigma \frac{\partial Q_\alpha^\gamma}{\partial x^{\sigma}}.$$

In other words, the covariant derivative ∇_2 associated with Γ_2 is given by

$$(\nabla_2)_{\cdot \cdot \cdot}^\alpha = (\Gamma_2)_\alpha^\beta \frac{\partial}{\partial x^\beta}.$$

Finally, let us recall the definition of the induced connection $\tilde{\Gamma}$ in $\pi_0 : \mathcal{E}_0 \to B_0$. If $\tilde{\mathcal{P}}(X) = j_0^1 \Psi$, the horizontal subspace at $\mathcal{P}(X)$ is defined to be

$$H_{\mathcal{P}(X)} = T\varphi(T_0 \mathbb{R}^n),$$
where \(\varphi : \mathbb{R}^n \rightarrow \mathcal{B}_0 \) is given by \(\varphi(r) = \tilde{\Psi}(r, 1) \). Since the horizontal lift of \(\frac{\partial}{\partial x^\alpha} \) is

\[
(\frac{\partial}{\partial x^\alpha})^H = \frac{\partial}{\partial x^\alpha} - \Gamma^j_{k\alpha} P^k_i \frac{\partial}{\partial x^j_i}
\]

we deduce that the Christoffel components of \(\Gamma \) are the following [28, 9, 30]:

\[
\Gamma^j_{i\beta} = -R^j_{i\gamma}(\mathcal{P}^{-1})^\gamma_\beta.(Q^{-1})^\gamma_\beta.
\]

A direct computation taking into account that \(\mathcal{P}^\alpha = 0 \) and \(\mathcal{R}^\alpha_{\alpha\beta} = 0 \), shows that

\[
\begin{align*}
\Gamma^\gamma_{\alpha\beta} &= -R^\gamma_{\alpha\mu}(\mathcal{P}^{-1})^\mu_\alpha(Q^{-1})^\mu_\beta, \\
\Gamma^\gamma_{\alpha\beta} &= -R^\gamma_{\alpha\mu}(\mathcal{P}^{-1})^\mu_\alpha(Q^{-1})^\mu_\beta - R^\gamma_{\alpha\mu}(\mathcal{P}^{-1})^\mu_\alpha(Q^{-1})^\mu_\beta, \\
\Gamma^\gamma_{\alpha\beta} &= -R^\gamma_{\alpha\mu}(\mathcal{P}^{-1})^\mu_\alpha(Q^{-1})^\mu_\beta - R^\gamma_{\alpha\mu}(\mathcal{P}^{-1})^\mu_\alpha(Q^{-1})^\mu_\beta.
\end{align*}
\]

Since there exists a left action of \(G_0 \) on \(\mathbb{R}^{n+m} \) we can construct an associated vector bundle with \(\mathcal{E}_0 \) which becomes the Whitney sum \(TB_0 \oplus \mathcal{N} \), where \(\mathcal{N} \) is the normal bundle generated by the vector fields \(\{ \mathcal{N}_1, \cdots, \mathcal{N}_m \} \). The connection \(\Gamma \) induces a connection in \(TB_0 \oplus \mathcal{N} \) whose tangent component defines a linear connection \(\Gamma_3 \) with covariant derivative \(\nabla_3 \) given by

\[
(\nabla_3)_{\frac{\partial}{\partial x^\beta}} \frac{\partial}{\partial x^\gamma} = \Gamma^\gamma_{\beta\alpha} \frac{\partial}{\partial x^\gamma}.
\]

Taking into account that

\[
\mathcal{P}^\beta_\beta(\mathcal{P}^{-1})^\mu_\beta + \mathcal{P}^\beta_\mu(\mathcal{P}^{-1})^\mu_\beta = 0,
\]

and putting

\[
\begin{align*}
\nabla_{\frac{\partial}{\partial x^\alpha}} \frac{\partial}{\partial x^\beta} &= \Gamma^\gamma_{\beta\alpha} \frac{\partial}{\partial x^\gamma} + \Gamma^\epsilon_{\beta\alpha} \frac{\partial}{\partial x^\epsilon}, \\
\nabla_{\frac{\partial}{\partial x^\alpha}} \frac{\partial}{\partial x^d} &= \Gamma^\gamma_{d\alpha} \frac{\partial}{\partial x^\gamma} + \Gamma^\epsilon_{d\alpha} \frac{\partial}{\partial x^\epsilon},
\end{align*}
\]

we compute the covariant derivative of \(\mathcal{N}_0 \) with respect to \(\Gamma \):

\[
(9) \quad \nabla_{\frac{\partial}{\partial x^\alpha}} \mathcal{N}_b = \left(\frac{\partial}{\partial x^\alpha} \mathcal{P}^\gamma_\beta - \mathcal{R}^\gamma_{\beta\epsilon}(Q^{-1})^\epsilon_\gamma \right) \frac{\partial}{\partial x^\gamma} + \left(\frac{\partial}{\partial x^\alpha} \mathcal{P}^\gamma_\epsilon - \mathcal{R}^\gamma_{\epsilon\delta}(Q^{-1})^\epsilon_\gamma \right) \frac{\partial}{\partial x^\delta}.
\]

Next, we will introduce the notion of prolongability of non-holonomic parallelisms. As we have seen, a material non-holonomic parallelism \(\tilde{\mathcal{P}} \) induces a global field of frames \(\mathcal{P} \) along \(\mathcal{B}_0 \), a linear parallelism \(\mathcal{Q} \) on \(\mathcal{B}_0 \), and a connection on the principal bundle \(\pi_0 : \mathcal{E}_0 \rightarrow \mathcal{B}_0 \). The global section \(\mathcal{P} \) of \(\pi_0 \) gives a new flat connection \(\tilde{\Gamma} \) by defining the horizontal lift of a tangent vector \(U \in T_X \mathcal{B}_0 \) as follows:

\[
U^{\tilde{\Gamma}} = T\mathcal{P}(X)(U) \in T_{\mathcal{P}(X)} \mathcal{E}_0.
\]
Thus, we have
\[
\left(\frac{\partial}{\partial x^\alpha} \right)^\mu = \frac{\partial}{\partial x^\alpha} + \frac{\partial \mathcal{P}_j^i}{\partial x^\alpha} \frac{\partial}{\partial X^j_i}.
\]

Definition 4.2. We say that \(\mathcal{P} \) is a prolongation if both connections, \(\Gamma \) and \(\mathcal{\tilde{\Gamma}} \), coincide. If, moreover, \(\mathcal{Q} \) is integrable, \(\mathcal{P} \) is said to be an integrable prolongation.

The reason for the above terminology is that an integrable prolongation is a non-holonomic parallelism which is obtained from \(\mathcal{P} \) and \(\mathcal{Q} \). In fact, note that a non-holonomic frame \(j_0^1 \mathcal{\tilde{\Psi}} \) at a point \(X = \mathcal{\Psi}(0) \in B_0 \) is a linear frame of \(\mathcal{E}_0 \) at the point \(\mathcal{\tilde{\Psi}}(0) \). Thus, given a global section \(\mathcal{P} \) of \(\pi_0 : \mathcal{E}_0 \to B_0 \) and a linear parallelism \(\mathcal{Q} \) of \(B_0 \), we can construct a non-holonomic parallelism denoted by \(\mathcal{P}^1(\mathcal{Q}) \) as follows: \(\mathcal{P}^1(\mathcal{Q})(X) \) is defined to be the linear frame at \(\mathcal{P}(X) \) which consists of the tangent vectors \(\{TP(X)(Q_1), \ldots, TP(X)(Q_1)\} \), completed with a suitable family of vertical tangent vectors. Of course, \(\mathcal{P}^1(\mathcal{Q}) \) defines \(\mathcal{P} \), \(\mathcal{Q} \), and the connection \(\mathcal{\tilde{\Gamma}} \).

Proposition 4.2. A non-holonomic parallelism \(\mathcal{P} \) is an integrable prolongation if and only if the torsion tensor \(T_2 \) of \(\Gamma_2 \), the difference tensor \(D_{13} = \nabla_1 - \nabla_3 \), and the \(m \)-forms \(\nabla N_a \), \(1 \leq a \leq m \), simultaneously vanish.

Proof: If \(T_2 = 0 \), there exist local coordinates \((x^\alpha) \) on \(B_0 \) such that
\[
Q_\alpha^\beta = \delta_\alpha^\beta,
\]
or, equivalently,
\[
Q_\alpha = \frac{\partial}{\partial x^\alpha}.
\]

Thus, the non-holonomic parallelism \(\mathcal{P} \) can be locally written as follows:
\[
\mathcal{P}(x^\alpha) = (x^\alpha, \mathcal{P}_j^i, 1, \mathcal{R}_{i\beta}^j).
\]

Moreover, the difference tensor \(D_{13} \) also vanishes. This implies that
\[
\mathcal{R}_{\alpha\beta}^\gamma = \frac{\partial \mathcal{P}_\alpha^\gamma}{\partial x^\beta}.
\]

Now, we will use that the transversal vector fields \(N_\alpha \) are parallel, and we deduce that
\[
\mathcal{R}_{b\beta}^\gamma = \frac{\partial \mathcal{P}_b^\gamma}{\partial x^\beta}, \quad \mathcal{R}_{i\beta}^c = \frac{\partial \mathcal{P}_i^c}{\partial x^\beta}.
\]

Finally, we know that
\[
\mathcal{R}_{\alpha\beta}^\gamma = 0, \quad \mathcal{P}_\alpha^\gamma = 0.
\]

Thus, the result follows.

The converse is trivial. \(\square \)

The tensors \(T_2, D_{13} \) and \(\nabla N_\alpha \) will be called the **inhomogeneity tensors** of the given material non-holonomic parallelism \(\mathcal{P} \).
Definition 4.3. A non-holonomic \mathcal{G}-structure on \mathcal{B}_0 is said to be an integrable prolongation if around each point of \mathcal{B}_0 there exists a local section which is an integrable prolongation.

From Proposition 4.2 it follows the following

Proposition 4.3. A non-holonomic \mathcal{G}-structure on \mathcal{B}_0 is an integrable prolongation if and only if it admits local sections whose inhomogeneity tensors vanish.

5. Homogeneity

Definition 5.1. \mathcal{B} is said to be homogeneous if there exists a uniform configuration $\Phi : \mathcal{B} \rightarrow \mathbb{R}^{n+m}$ such that:

(i) $\Phi(\mathcal{B})$ is an open subset of \mathbb{R}^n, where \mathbb{R}^n is considered as a natural subspace of \mathbb{R}^{n+m} defined by the vanishing of the coordinates x^{n+1}, x^{n+2} and x^{n+m}. Here $(x^1, \ldots, x^n, x^{n+1}, \ldots, x^{n+m})$ denote the standard coordinates in \mathbb{R}^{n+m};

(ii) There exists a global deformation κ from $\mathcal{F}\mathcal{B}_\Phi$ into \mathcal{E} covering a global diffeomorphism $\kappa : \Phi(\mathcal{B}) \rightarrow \mathbb{R}^n$ such that $\tilde{\mathcal{P}} = \kappa^{-1}$ defines a material non-holonomic parallelism, i.e.,

$$\tilde{\mathcal{P}}(X) = j_0^1(\kappa^{-1} \circ F\tau_\kappa(X)), \forall X \in \Phi(\mathcal{B}),$$

where $\tau_\kappa(X) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denotes the translation on \mathbb{R}^n by the vector $\kappa(X)$, and $F\tau_\kappa(X)$ is the induced mapping between frame bundles.

\mathcal{B} is said to be locally homogeneous if for every point $X \in \mathcal{B}$ there exists an open neighborhood which is homogeneous.

This definition is referred to a particular chosen reference crystal. More generally, we will say that \mathcal{B} is homogeneous if it is homogeneous with respect to at least one reference crystal.

We will obtain a geometrical characterization of the local homogeneity.

For the sake of simplicity, we first assume that the group of material symmetries is trivial. So, we have the following

Theorem 5.1. \mathcal{B} is locally homogeneous (with respect to a chosen reference crystal) if and only if there exists a uniform configuration Φ such that the associated material non-holonomic parallelism $\tilde{\mathcal{P}}$ is an integrable prolongation.

Proof: If \mathcal{B} is locally homogeneous, and κ is as in the above definition, we obtain

$$\tilde{\mathcal{P}}(x^\alpha) = (x^\alpha, P^j_i, 1, \frac{\partial P^j_i}{\partial x^\alpha}).$$

Therefore, $\tilde{\mathcal{P}}$ is an integrable prolongation.

Assume now that the inhomogeneity tensors associated with a material non-holonomic parallelism $\tilde{\mathcal{P}}$ identically vanish. We assume that $\tilde{\mathcal{P}}$ was obtained from a configuration $\Phi : \mathcal{B} \rightarrow \mathbb{R}^{n+m}$. Then, from Proposition 4.2, it is an integrable
prolongation. This means that there exist local coordinates \((x^\alpha)\) on \(\Phi(B)\) such that

\[
\tilde{P}(x^\alpha) = (x^\alpha, P^i_j, 1, \frac{\partial P^i_j}{\partial x^\alpha}).
\]

Next, we define a principal bundle automorphism

\[
\tilde{\kappa} : \tilde{FB}_B \rightarrow \mathcal{E}
\]
as follows:

\[
\tilde{\kappa}(x^\alpha, X^j_i) = (x^\alpha, P^k_i X^j_k).
\]

\(\tilde{\kappa}\) is the required deformation.\(\square\)

To end this section, we will investigate what happens if a change of reference crystal is performed. Notice that a change of reference crystal consists of composing the material non-holonomic parallelism \(\tilde{P} = (P, Q, R)\) with an element \((A, B, C)\) in the Lie group \(\tilde{G}(n, n + m)\). The new material non-holonomic parallelism is then given by \(\tilde{P}' = (P', Q', R')\), where

\[
(P')^j_i = A^k_i P^j_k, \quad (Q')^\beta_\alpha = B^\beta_\alpha Q^\gamma_\gamma, \quad (R')^j_i = A^k_i B^\beta_\gamma R^j_k + P^j_k C^k_i.
\]

So, the new connections \(\Gamma'_1\) and \(\Gamma'_2\) coincide with the former ones, \(\Gamma_1\) and \(\Gamma_2\). This fact implies that, if the torsion tensor \(T_2\) of \(\tilde{P}\) vanishes, the same is true for \(\tilde{P}'\). Therefore, the first test in order to know if a material non-holonomic parallelism is an integrable prolongation is to check the torsion tensor \(T_2\). If \(T_2\) does not vanish, we can conclude that any \(\tilde{P}\) would be not an integrable prolongation. If \(T_2\) vanishes, but the other tensors do not so, we can try for a change of reference crystal. Consider the vector fields

\[
D_{\alpha\beta} = (\nabla_1)_{\alpha} P_{\beta} - (\nabla_3)_{\alpha} P_{\beta}, \quad D_{\alpha\beta} = \nabla_{\alpha} N_{\beta}.
\]

By the same argument that in [16], we conclude the following.

Theorem 5.2. \(B\) is locally homogeneous if and only if there exists a uniform configuration \(\Phi\) such that the associated material non-holonomic parallelism \(\tilde{P}\) have \(T_2 = 0\) and \(D_{\alpha\beta} = 0\).

6. **Particular cases**

6.1. **Elastic rods.** (see [1, 5])

In this case, \(n = 1, m = 2\). That is, \(B_0\) is a curve in \(\mathbb{R}^3\). Since \(n = 1\), we always have that the linear parallelism \(\{Q\}\) is integrable, so that \(T_2\) identically vanishes. Proposition 4.2 becomes as follows.

Proposition 6.1. \(\tilde{P}\) is an integrable prolongation if and only if the difference tensor \(D_{13} = \nabla_1 - \nabla_3\), and the 1-forms \(\nabla N_1\) and \(\nabla N_2\) simultaneously vanish.
If the group of material symmetries is continuous, we obtain a \bar{G}-structure on the curve B_0, where \bar{G} is a Lie subgroup of $\bar{G}(1, 3)$.

A particular case is obtained when we consider principal bundle isomorphisms $\bar{\kappa} : \mathcal{F}(\Phi_1(B)) \to \mathcal{F}(\Phi_2(B))$ such that the tangent part is precisely given by the tangent map of the induced diffeomorphisms $\kappa : \Phi_1(B) \to \Phi_2(B)$. In this case, $\mathcal{P}_1 = \mathcal{Q}_1$, and, then, $\Gamma_1 = \Gamma_2$.

6.2. Elastic shells.

In this case, $n = 2$, $m = 1$. That is, B_0 is a surface in \mathbb{R}^3. Thus, the non-holonomic parallelism $\bar{\mathcal{P}}$ defines two linear parallelisms $\{\mathcal{P}_1, \mathcal{P}_2\}$ and $\{\mathcal{Q}_1, \mathcal{Q}_2\}$ on the surface B_0, and a normal vector field \mathcal{N}.

Proposition 4.2 becomes as follows.

Proposition 6.2. $\bar{\mathcal{P}}$ is an integrable prolongation if and only if the tensor torsion T_2, the difference tensor $D_{13} = \nabla_1 - \nabla_3$, and the 1-form $\nabla \mathcal{N}$ simultaneously vanish.

If the group of material symmetries is continuous, we obtain a \bar{G}-structure on the surface B_0, where \bar{G} is a Lie subgroup of $\bar{G}(2, 3)$.

A particular case is obtained when we consider principal bundle isomorphisms $\bar{\kappa} : \mathcal{F}(\Phi_1(B)) \to \mathcal{F}(\Phi_2(B))$ such that the tangent part is precisely given by the tangent map of the induced diffeomorphisms $\kappa : \Phi_1(B) \to \Phi_2(B)$. In this case, $\mathcal{P}_1 = \mathcal{Q}_1$, $\alpha = 1, 2$, and, then, $\Gamma_1 = \Gamma_2$.

6.3. Cosserat media.

Assume that $n = 3$, $m = 0$. In this case, a bundle configuration \bar{FB}_0 is just the linear frame bundle $\mathcal{F}(\Phi(B))$ of $\Phi(B)$, that is, the collection of all bases at all the points of $\Phi(B)$. Thus, the Lie group G_0 is $Gl(n, \mathbb{R})$. A deformation is a principal bundle isomorphism $\bar{\kappa} : \mathcal{F}(\Phi_1(B)) \to \mathcal{F}(\Phi_2(B))$ covering a diffeomorphism $\kappa : \Phi_1(B) \to \Phi_2(B)$. Chosen an uniform configuration $\Phi_0 : B \to \mathbb{R}^n$, we obtain a non-holonomic parallelism $\bar{\mathcal{P}} : B_0 \to \mathcal{F}E_0$ (we follow the notations introduced in the precedent sections). It should be noted that $\bar{\mathcal{F}}E_0$ is just the so-called non-holonomic second order frame bundle of B_0, and, hence, $\bar{\mathcal{P}}$ is a non-holonomic second order parallelism. Thus, we have two linear parallelisms \mathcal{P} and \mathcal{Q}, and a linear connection Γ on B_0. There are no transversal vector fields, and Proposition 4.2 becomes as follows.

Proposition 6.3. $\bar{\mathcal{P}}$ is an integrable prolongation if and only if the torsion tensor T_2 of Γ_2 and the difference tensor $D_{13} = \nabla_1 - \nabla_3$ simultaneously vanish.

If the group of material symmetries is continuous, we obtain a material non-holonomic second order \bar{G}-structure, where \bar{G} is a Lie subgroup of the second order non-holonomic group $\bar{G}(n) = \bar{G}(3, 3)$.

Particular cases are obtained if we only consider deformations such that they are the natural prolongation of the diffeomorphisms between the bases, that is, $\bar{\Phi} = \mathcal{F}\Phi$. This occurs for second grade material bodies [6, 7, 8, 10, 11, 12, 13]. In this case, $\mathcal{P}_\alpha = \mathcal{Q}_\alpha$ and, hence, $\Gamma_1 = \Gamma_2$. So, we have the following.
Proposition 6.4. The following statements are equivalent:

1. \(\tilde{P} \) is an integrable prolongation;
2. it is an integrable parallelism of second order;
3. the torsion tensor \(T_2 \) of \(\Gamma_2 \) and the difference tensor \(D_{13} = \nabla_1 - \nabla_3 \) simultaneously vanish.

References

M. Epstein
DEPARTMENT OF MECHANICAL ENGINEERING
UNIVERSITY OF CALGARY
2500 UNIVERSITY DRIVE NW, T2N 1N4
CALGARY, ALBERTA, CANADA
E-mail: epstein@enme.ucalgary.ca

M. de León
INSTITUTO DE MATEMÁTICAS Y FÍSICA FUNDAMENTAL
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS
SERRANO 123, 28006 MADRID, SPAIN
E-mail: mdeleon@pinari.csic.es