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ON THE ITERATED ABSOLUTE DIFFERENTIATION
ON SOME FUNCTIONAL BUNDLES

ANTONELLA CABRAS, IvaNn KoLAR

Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. We deduce further properties of connections on the functional bundle of
all smooth maps between the fibers over the same base point of two fibered manifolds
over the same base, which we introduced in [2]. In particular, we define the vertical
prolongation of such a connection, discuss the iterated absolute differentiation by
means of an auxiliary linear connection on the base manifold and prove the general
Ricci identity.

Let py : Y1 — M, py : Yo — M be two classical fibered manifold over the same
base. Consider the set of all fiber maps

(1) FO1,Y2) = | O (Vie, Vau)

and denote by p : F(Y1,Y2) — M the canonical projection. The set F(¥7,Y2)
is a smooth space in the sense of Frolicher, [5]. In [2] we introduced the first jet
prolongation J'F(Y1,Ys) of F(Y1,Y2) and defined a connection on F(Y7,Y3) as a
smooth section T' : F(Y1,Ys) — JLF(Y1,Y3). Since such a connection is a kind of
differential operator, we have a well defined concept of finite order connection. In
[2] we also introduced the curvature of ' and the absolute differential Vs of a
smooth section s : M — F(Y1,Ys) with respect to I' and we deduced their basic
properties.

The main aim of the present paper is to study the iterated absolute differ-
entiation on F(Y1,Y3). Analogously to the case of an arbitrary fibered manifold
Y — M, we use an auxiliary linear connection A on M. We first construct the ver-
tical prolongation VI : VF (Y1, Ys) — JLVF(Y1,Ys) of a differentiable connection
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T on F(Y1,Ys), where VF(Y1,Y2) means the vertical tangent bundle of F(Y7, Y3).
The absolute differential of Vs with respect to the tensor product VI' ® A* is
called the iterated absolute differential V%AS of 5. In Section 4 we assume that Y5
is a vector bundle and T is a finite order connection (non-linear in general) and
deduce that the alternation of V%AS satisfies a direct modification of the Ricci
identity for non-linear connections on a vector bundle.

However, the first author has recently clarified that the general Ricci identity
holds even for a general connection on an arbitrary fibered manifold ¥ — M,
provided one replaces the tensor alternation by a more sophisticated operation of
the difference tensor of some distinguished iterated 2-jets, [1]. In the second half of
the present paper we show that the same is true for the case of F(¥7,Y2). At this
occasion we define the general concept of space J" (N, F(Y1,Y3)) of all r-jets of a
manifold N into F(Y7,Y2). In the second order we introduce the corresponding
space of iterated jets, characterize among them the semiholonomic and nonholo-
nomic 2-jets and describe their basic properties. The last section is devoted to the
proof of the general Ricci identity for F(¥1,Y3).

If we deal with two finite dimensional manifolds and a map between them, we
always assume they are of class C*™° | 1.e. smooth in the classical sense. On the other
hand, the idea of smoothness in the infinite dimension 1s taken from the theory of
smooth structures by Frolicher, [5], see also [3].

1. CoNNECTIONS ON F(Y1,Y5).

The definition of the r-th jet prolongation J"F(Y1,Y2) of F(Y1,Y2) is based
on the idea of fiber jet, [8], [10], p. 395. In general, let # : Y — M be a fibered
manifold, let Y, = #=(z), « € M, let N be a manifold and f,g : ¥ — N be
two C'°°-maps. We say that f and g determine the same fiber r-jet j7f = jog at
z e M, if

(2) Iyt =1Jyg forall yeVY,.

For every section s : M — F(Y1,Y2), we can construct the associated map
§:Y1 = Y3, 5(y) = s(p1y)(y). We say that s is smooth (in the sense of Frolicher,
[5]), if §'is a C'°°-map. Two smooth sections s1, s2 : M — F(Y1,Y3) determine the
same r-jet jhsy = jiso at @ € M, if j7§1 = jI S5 in the sense of (2).

In the rest of this section we discuss the case r = 1. Let X = jls € JIF(Y1, Y9)y,
where z is the source aX of X and ¢ = s(x) € C°°(Y1,, Yay) is the target 5X of
X. Then X determines a map X: JIY1 — JLvs,

(3) X(jlo)=jl(so0) for all jlo e Jlvy.
Let xl,yp) r (z%,2%) be some local fiber coordinates on Yj or Ya, let 2% =
(2", yP) be the coordinate expression of § and let # = . Write
a a a a L )
(1 V() = " (zon), i) = )

oxt
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Then the coordinate form of X is

oV (y)

() H=0%y), A= g

v+ Ui (),

where yf or z' are the induced coordinates on Y7 or Ys. It is well known that
JleZ' — Yz, ¢ = 1,2, 1s an affine bundle over Y;, with derived vector bundle
VoY @ T M, provided VY] denotes the vertical tangent bundle of Y;. Hence (5)
yields that X is an affine bundle morphism over ¥ : Y7, — Y5,, whose derived
linear morphismis T% @idpxpr 1 VoY1 @ Ty M — VYo @17 M. Conversely, Lemma
2 from [2] reads that for every affine bundle morphism ¥ : J1Y; — J1Y5 over
Y 1 Y1y, — Ya, with derived linear morphism 7% @ idrxps there exists a unique
element X € J}IF(Y1,Ys)y such that ¥ = X. Thus, on one hand, the associated
map X characterizes an element X € JYF(Y1,Ys) geometrically. On the other
hand, the numbers z and the functions ¥4 (y), ¥¢(y) from (4) are a kind of the
coordinate expression of X.

A connection on F(Y7,Ys) is defined as a section T' : F(Y7,Ys) — JLF(Y1,Ys),
which is smooth in the Frolicher sense, [2]. Since T is a kind of differential operator,
one can characterize an r-th order connection, r > 1, as follows. We say that I is
of order 7, if the condition jyo = jy¥, ¢, ¥ € C®(Y1s, Yar), y € Y1, implies

(6) L()|(7Y1)y =TI V),
1.e. the restrictions of the associated maps F/(\go/), F/(\{/J/) : JLY1 — J1Ys to the fiber
(J1Y1)y over y coincide, [2].

Write FJ"(Y1,Y2) = U J"(Y1iz, Yay), which is a finite dimensional manifold.
zeM

The jet coordinates on FJ"(Y1,Ys) are !, 3P, 2%, where a is a multiindex of the
range equal to the range of y? with 0 < |a| < r. Let S(J1Y7, J1Y3) be the space
of all affine maps (J'Y1), — (J'Y2), with the derived linear map of the form
B® idT;M, BeV,Ys® Vy*Yl. This 1s a fibered manifold over Y] x3s Yo with the

fiber coordinates by, ¢f induced by

(7) 2t = byl +cf

An r-th order connection I' determines the associated map G : FJ" (Y1, Y2) —
S(JlYl, Jle) by

(8) GUy¥) = L) Y1)y -
By [2], G is a C*°-map. The coordinate form of G corresponding to (5) is

(9) zf:zgyf—i—q)f(xi,yp,zg), 0< el <r.
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We say that @ is the coordinate expression of I'. Conversely, given any C'°°-map
G : FJ"(Y1,Ys) — S(J1Y1,J1Y3) of the form (9), it determines an r-th order
connection T' on F(¥7,Y2) by

(10) I = |J 6Gpv).

y€Yie

If #!, ¥%(y) is the coordinate expression of ¢, then F/(\{/J/) is given by

oy® :
(1) = Gl + B0, ().
In other words, ®(z%, y?, 0,¥?(y)) is the coordinate expression of I'(3)).

In [2] we defined a differentiable connection T by using the idea of jet prolon-
gation of I'. However, now we find it more convenient to express such an idea in
terms of the tangent prolongation. We recall only briefly that the tangent bundle
Tp : TF(Y1,Y2) — TM is the space of all tangent vectors X = %|0’y(t) to the
smooth curves y : R — F(¥1,Y3), [2]. The vertical tangent bundle VF(Y1,Y3) C
TF(Y1,Y2) consists of all X satisfying Tp(X) = 0.

Definition 1. A connection I' : F(Y7,Ys) — FJL(Y1,Y3) is called differentiable,
if the formula

(12) 11 (]90) = 5, r6@)

defines a smooth map TT : TF(Y1,Ys) — TJ (Y1, Ya).

One verifies easily that a connection differentiable in this sense is also differen-
tiable in the sense of [2]. Clearly, every finite order connection is differentiable.

In [2], the curvature CT of a differentiable connection T has been defined as a
map CT : F(Y1,Ys) — F(Y1, VY2 @A?T*M). If T is an r-th order connection with
the coordinate expression ®¢(z? y? 22), then CT is an operator of the order 2r,
whose coordinate form is the antisymmetrization (in ¢ and j) of

aPs 9P aPa aPa
13 d i pl DB+ 4+ LD, P
(13) Ol + gzt + 9zh P e dzb J

where D, or D, denotes the formal derivative with respect to y¥ or with respect
to multiindex «, [2].

Given a section s : M — F(Y1,Y3), its absolute differential Vs is a section
M — F(Y1,VY2 @ T*M) defined by the difference Vs(z) = jls — I'(s(z)), [2]. If
T is an r-th order connection (11) and z* = f%(x,y) is the coordinate form of s,
then the coordinate expression of Vrs is

3f"(l", Y)

(14) oz’

- q)?($iaypaaafa($ay))
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Example 1. We present the simpliest example of a connection on F(Y1,Y2). A
pair of connections I on Y7 and A on Y3 defines a connection (I', A) on F(¥7,Y3) as
follows. We have to prescribe (I', A)(¢), ¢ € C°° (Y14, Ya;) as an affine morphism
Jlel — Jlez with the derived linear morphism 7% @ idysps. Such a morphism is
uniquely determined by requiring that T'(y) should be transformed into A(¢(y)),
y € Yi,. Thus, if

(15) dy? =T (z,y) det or  dz* = Af(x,z)ds’

are the equations of T or A, respectively, then the equations of (I', A)(¢) are

o OY°
(16) Kl

Comparing with (11) we find that (', A) is a first order connection with the
assoclated map

(17) Af(w,2) = 2T (2, ).

(yf —Th(x,y) + Af(x,¢(y)) -

The second author, [7], or L. Mangiarotti and M. Modugno, [11], introduced the
absolute differential Vraf : Y1 — VYo @ T M of a base preserving morphism
f Y] — Y5 with respect to the pair I') A. Its coordinate form 1s

afe oafe
1 -
(18) Ox? + OyP

provided f is given by z% = f*(x,y). Comparing with (14) and (17), we find that
Vr af coincides with the absolute differential V(r A)f in the functional sense.

Ff(l‘,y) - Af(l‘,f)

2. PROJECTABLE CONNECTIONS.

Consider a fibered manifold 7 : Y3 — Y5, so that we have the total projection
mops: Ys — M. Denote by 7 : F(Y1,Y3) — F(Y1,Ys) or Jim @ JLF(Yy,Y3) —
JYF(Y1,Ys) the induced projections. Analogously to the finite dimensional case,
[7], we introduce the following concept.

Definition 2. A connections Ty : F(Y1,Y3) — J1F(Y1,Y3) is said to be pro-
jectable over a connection I' : F(Y7,Ys) — JLF(Y1,Ys), if the following diagram
commutes

Iy

F(Y1,Ys) JYF(Y1,Y3)
(19) 7TJ lew
F(Y1,Ys) L JYF(Y1,Y4)

Let w*® be some additional fiber coordinates on Y3 — Y5. Then the coordinate
expression of the associated map G; of an r-th order projectable connection I'y
over I' is of the form

(20) @f(xi,yp,zg), \I!f(xi,yp,zg,wg), 0< el <r.
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If Y3 — Y3 is a vector bundle, then F(Yy,Y3) — F(Y1,Y2) and J'F(Yy,V3) —
JYF(Y1,Ys) are vector bundles, too. If T';y is a linear morphism over I', then we
say (analogously to [7]) that T'; is a semilinear connection. The coordinate char-
acterization of such a case is that the functions ¥? from [20] are linear in w?,,
0<jal<r.

Consider now the case Y3 = VY3, so that F (Y1, VYs2) = VF(Y1,Ya), [2]. In [9]
the second author has constructed a canonical identification ¢ : J1Vf(Y1,Y2) —
VJLF(Y1,Ys). If T is a differentiable connection on F (Y7, Yz), the restriction on 7T
to VF(Y1,Ys) C TF(Y1,Ys) is a smooth map VI : VF(Yy,Ys) — VJLF(Y, Ya).

The composition
(21) VI =i o VI F(Y1, VYs) — JUF(Y1, VYs)

is a connection on F(Y7, VY2), which will be called the vertical prolongation of T'.
If I' 1s an r-th order connection with the associated map

22 & (P, 2°
(22) R CAN T

then VT is also an r-th order connection with the associated map (22) and

od¢ od¢
93 Zigb o A
(23) ozt Tt 9z @

provided Z¢ are the induced coordinates on VYs — Y5 and Z2 are the induced
jet coordinates on F.J" (Y1, VYa). Thus, for every finite order connection T', VT is
a semilinear connection over I'.

Example 2. Consider the connection (T', A) from Example 1. Then V(T', A) is a
connection on F(Y1,VYs). On the other hand, if we construct the classical ver-
tical prolongation VA : VYs — J1VY5, then (I', VA) is another connection on
F(Y1,VY3). The comparison of both approaches is given by the following asser-
tion.

Proposition 1. We have V(T', A) = (T, VA).

Proof. Applying (23) to the associated map (17) of (T, A), we find
OAY

i r7b a
(24) 372 -7, re.

On the other hand, the additional equations of VA are

a aAg b g
see [7]. Hence the associated map of (I', VA) coincides with (17) and (24), which
is the associated map of V(T', A). d
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3. TENSOR PRODUCTS.

We first recall a suitable approach to the tensor product of linear connections in
finite dimension, [11]. Let E; — M, i = 1,2, be two vector bundles and A; : E; —
J1E; be linear connections. Consider the tensor map ® : By X By — Fy ® Eb,
so that J'@ : J'E) xpr J1Ey — JY(Ey @ E3). Then there exists a unique linear
connection Ay®As : E1QFEy — Jl(E1®E2) such that following diagram commutes

J'®

JYEy xp J1ES JHE, ® Es)
(26) A1 XM A2 ]\Al & AZ
®
Fy xpr B Ey®Ey

where Ay X371 Ay means the fiber product of maps over id ;.

We need a modification of this idea to the functional case. First of all, we study
the “pure” case E — M is a vector bundle, I' is an r-th order linear connection on
F(Y1, F) and A is a classical linear connection on another vector bundle Fy — M.
Let 2*, w® be some linear fiber coordinates on E, so that the coordinate expression

of the associated map G : FJ (Y1, E) — S(J1Y1, J1E) is of the form
(27) Uiz, y)w' + -+ Wi, g,

Let z*, u” be some linear fiber coordinates on Ey — M and let the equations of A

be
(28) du = Al (2)u" de’ .

We have the tensor map @ : FJ" (Y1, E) xp By — FJ" (Y1, B @ E2), @(jy¢,u) =
Jy(P@u), ¥ 1 Yip — Ep, u € Eop. On the other hand, @ : E'xp By — E@FE, defines
J @ JYE xpyr JYEs — JH(E @ Es) and this induces a map 7 : S(J1Y, JLE) x
JYEy — S(JYY, JY(E @ E3)). The coordinate form of 7 is

(29) 7'(362',yp,ws,b;yﬁ7 + cf,uh,ulh) = (gr:i,yp,wsuh,uh(bf,yﬁ7 +e)+ wsulh)

Then one verifies easily that there is a unique linear r-th order connection I'® A
on F(Y1, E ® E3) such that its associated map # makes the following diagram
commutative

S(JY1, JYE) xar J1E, T S(JYy, JHE ® Es))
(30) G X A] w;f
FJ" (Y1, E) %y B © FJ' (Y1, E® E»)

The coordinate expression of J#1s

(31) S () o' 4 - U (e, ol + AR ()
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provided v*" are the induced fiber coordinates on F @ Es.

However, we need a more general situation. Let £1 — Y5 be a vector bundle,
Iy be an r-th order semilinear connection on F(Y1, 1) over a connection T' on
F(Y1,Y3) and A be a classical linear connection on a vector bundle £3 — M. Then
a direct modification of the previous construction leads to an r-th order semilinear
connection T'y @ A on F(Y1, By ® F3) over T', which is called the tensor product
of T'y and A. If (22) and (27) with the ¥’s being functions of z*, y* and 22 is the
coordinate expression of T'y and (28) are the equations of A, then the coordinate
expression of 'y @ A is (22) and

(32) \ijt(x’ Y Zi)vth +ot \ijta(l" Y Zi)vih + AZi(x)USk .

Example 3. In the situation of Example 2, we find easily V(I', A)@ A = (T, VA®
A), where VA ® A is a finite dimensional concept defined e.g. in [10], p. 365.

4. THE ITERATED ABSOLUTE DIFFERENTIATION.

In this section we assume T is a finite order connection on F(Y7,Y2). Let us
consider a section s : M — F(Y1,Ys) in the form of the associated morphism
§S=f:Y1 — Ys. Then Vrf : M — F(Y1,VYy, @ T*M). Construct VT' and take
an auxiliary linear connection A on M. Then A* is a linear connection on 1% M
and we can construct VI' @ A*.

Definition 3. Vi ,f = Vyrea«(Vrf) is called the iterated absolute differential
of . ’

If Yo = E is a vector bundle, we can identify Vrf with a morphism ¥Y; —
E®T*M and V%Af with a morphism Y; — E®®2 T* M. Hence we can construct
the alternation Alt(V%yAf) : Y, — E @ A?T*M. In the vector bundle case, the
curvature CT can be interpreted as a map F(Y1, E) — F(Y1, EQA?*T*M). Let Sy
be the torsion of A, so that the contraction (Sx, Vrf) is amap Y, — E@ A?T*M.
The following assertion generalizes the Ricci identity for non-linear connections,
[1], to the functional case.

Proposition 2. We have

(33) AV A f) = =(CT)(f) + (Sa, Vi)

Proof. Let T be given by (22) and Afj(x) be the Christoffels of A. By (23) and
(32), the equations of VT' ® A* are (22) and

P P4
(34) 6—ng§? + 67{%’?& — Abog

By (14), the coordinate form of Vrf is

o

Bt P a
_81‘Z q)z(xayaaozf)

(35) fi
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Hence the coordinate form of Vyrga«(f{) is

J o , 0%} b 0P} b k
ey — b By oo L () 4+ Ak fa
(36) 81‘](1;) azb [ azg 83/( z) azga (fz)+ zyfk
If we evaluate the partial derivatives, we first obtain an expression
09 op owrop 0o 0et 0
Oridxi  0zb Ozt Ozt Oxd 028 Oxt 028 Oxi
which is symmetric in ¢ and j. Using (13) we find that the alternation of the
remaining terms is equal to the right hand side of (33). O

In the finite order case, the first author deduced the Ricci identity on an arbi-
trary fibered manifold Y — M, provided she replaced the tensor alternation by
a more sophisticated operation on some special iterated 2-jets. We are going to
develop such an operation in the functional case as well.

5. THE JET SPACE J" (N, F(Y1,Y3)).

Given a manifold N, amap f: N — F(Y1,Ys) is called smooth, if

(i) pof: N — M is a C*™-map,

(ii) the induced map f: (po f)*Y1 — Yo,

flay) = f@)(y),  (ay) € (pof) Vi,

is also C'°°, provided (po f)*Y; — N denotes the induced bundle, [2].

Consider the map Jyp; : J"(N,Y;) — J"(N, M), jih — ji(pioh), h: N =Y,
i =1,2. Write J5(N,Y;) = (Jup) ™' (X) C J(N,Y:), i = 1,2, X = j(po f),
a € N. The smooth map f induces a map

Jo [ J% (N, Y1) = J5 (N, Ya), Jg f(joh) = jof(u)(h(w)),

where b : N — V] satisfies pof = pjoh,u € N. Let ¢ : N — F(Y1,Y2) be another
map satisfying X = j%(p o g).
Definition 4. We say that f and ¢ determine the same r-jet j7f = jlg at a € N|

if
Jof =Ja9: Jx (N, Y1) — Jx (N, Ys)

The set of all such r-jets is denoted by J"(N, F(Y1,Y2)). This is a smooth space
in the sense of Frolicher, [5]. In the same way we proceed if we have a subbundle
EC F(1,Ys).

To find a suitable description of the space J"(N,F(Y1,Y2)), we first discuss
the case of one-point base, so that the bundles are identified with the standard
fibers Y1 = @1, Y2 = Q2. Then F(¥1,Y2) = C®°(Q1,Q2). A smooth map f: N —
C*(Q1,Q2) defines a map

Tif:Qu— JI(N,Qs), ¢ jif(u)g), ueN.

Consider another smooth map ¢ : N — C'°(Q1,Q2). The following simple asser-
tion is equivalent to some results from [9] and [14].
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Proposition 3. j,f = jlg¢ if and only if fgf = J~2g. Conversely, for every -
map h: Q1 — JL(N,Q2), there exists a smooth map f: N — C*°(Q1,Q2) such
that h = J] f. O

Thus, J;(N,C*®(Q1,Q2)) is identified with C*°(Q1, J; (N, Q2)). Write

C2(Q1,J"(N,Q2)) = | C(@Q1,J3(N,Q2))

a€EN
(The subscript « indicates we consider the maps into the fibers of the projection
a:J'(N,Q2) — N.) Then we have
(37) JT(Na COO(QlaQZ)) = CZO(QMJT(N’ QZ))

Consider now the case of trivial bundles Y7 = M x @1, Yo = M X @2, so that
F(Y1,Y2) = M x C*(Q1,Q2). Hence a smooth map f: N — F(¥7,Y2) is a pair
of smooth maps fo : N — M and f1 : N — C°(Q1,Q2). Given another smooth
map ¢ = (go,91) of N into F(Y1,Y2), one finds easily

(38) Jof =Jag ML jifo=Jjugo and  jifi =jogr.
By Proposition 3, we obtain
(39) J'(N,F(Y1,Y2)) = J"(N, M) xn CJ(Q1, 7" (N, Q2))

In other words, an element X € Ji(N, M x C*®(Q1,Q2)) is a pair (Xp, X1),
where Xg € JJ (N, M) and X3 is a map X; : @1 — JL(N,Q2). If we use some
local coordinates on M, @1, @2 and N, (39) gives a coordinate description of
JT(N, F(Y1,Y2)).

It is worthwhile to show a simple application of (39). Let X = jif €
JI(N,F(Y1,Ys)) and A = jjg € J[(P,N)s be a classical jet of a manifold P

into N. Then we can define the jet composition
(40) XoA=ji(foyg)e Jy(PF(¥,Y2)).

To show correctness of this definition, we can write X in the above form X =
(Xo,X1). Then X 0 4 = (Xgo0 A, X1 0A4), where X304 : Q1 — JJ(P,Q>) is the
map ¢ — X1(q) o A.

6. ITERATED JETS.

The classical space of iterated 2-jets jZ(N, M) of N into M is defined by the
iteration J2(N, M) = J'(N, J*(N, M)), [15]. Beside the source and target projec-
tions oy : JAN,M) — N and 8y : J2(N,M) — J'(N, M) we have the induced
maps J'(1y, ) : J2(N, M) — JYN,N) and J'(1y, B) : J2(N, M) — JY(N, M),
where 1y means the identity of N, [1]. The set J~2(N, M) of nonholonomic 2-jets
by Ehresmann, [4], is the subset of all A € J2(N, M) satisfying J'(1x,a)(A) =
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jiln, a= a1 A = a(BA). The semiholonomic 2-jets are further characterized by
Bi(A) = J (1N, B)(A). If u® or z' are some local coordinates on N or M, then the
induced coordinates on J2(N, M) are, [1],

(41) (', o, u wh,, o, uf, v°)

The first author introduced the concept of distinguished iterated 2-jet, [1]. Let [a]
denotes the constant map of N into @ € N. An element A € J?(N, M) is called
distinguished, if J1(1y,a)(A) = jl[a] for some a € N and 1 (A) = J (1n, B)(A).
The coordinate form of a distinguished iterated 2-jet is

(42) (xl’xé’us’xé’xét’oﬁus)

The set of all distinguished iterated 2-jets is denoted by fZ(N, M).
In the functional case, we define analogously

(43) JA(N, F(Y1,Ya)) = JHN, JH(N, F(Y1,Ys))).
Even here we have the projections
ay  JHN, F(Y1,Ys)) = N, By JA(N, F(Y1,Ys)) — JHN, F(Y1,Y3))

and the induced maps J'(1x,a) : J2(N, F(Y1,Ys)) — JYN,N) and J* (1, 3) :
J2(N, F(Y1,Ys)) — JYN,F(Y1,Ys)). To find a description of J2(N, F(Yy,Ys))
analogous to (39), we first remark, that if ¥ — M, Z — M are two fibered
manifolds, then JY(N,Y xp Z) = JYN,Y) X JU(N, M) JYN,Z). In particular, if
P is another manifold, then J?(N, M x P) = JY(N,J'(N, M) xn J' (N, P)) =
J2(N, M)le(NyN)Jvz(N, P). To simplify the notation, we write C$°(Q1, J*(N, Q1))
for the space of all C*°-maps from @ into the fibers of J'(1y, ) : J2(N,Q2) —
JY(N, N). Then we deduce analogously to Section 5

(44) JHN, M x C®(Q1,Q2)) = J*(N, M) x ji v vy C5(Q1, J*(N, Q1)) .

The idea of distinguished iterated 2-jet takes place in the functional case as
well.

Definition 5. An element A € J?(N,F(Y1,Ys)) will be called distinguished, if
JH(An, a)(A) = jlla] for some a € N and B1(A) = J*(1n, B)(A).

The set of all distinguished iterated 2-jets from N into F (Y7, Y2) will be denoted
by J2(N, F(Y1,Ys)).

One verifies easily, that if 4 is expressed in the form (44) as (Ag, A1), Ao €
JHN, M), Ay : Q1 — JA(N,Qs), then A € J2(N, F(Y1,Ys)) iff Ay € J2(N, M)
and the values of A; lie in fZ(N, Q2).



34 A. CABRAS, 1. KOLAR

7. THE DIFFERENCE TENSOR.

Using an idea by Pradines, [13], the first author clarified that every distinguished
iterated 2-jet A € jg(N, M), determines a tensor §(A) € T, M @ A?T; N, which
is called the difference tensor of A. If (42) is the coordinate form of A, then the
coordinate expression of §(A) is

(45) xit - xis :

In the functional case, Ty F (Y1, Y2) @ A2T* N will mean the space of all bilinear
antisymmetric maps from T, N into Ty (Y7, Ya). For every A € J*(N,F(Y1,Y2))y,
we construct in the same way as in [1] an element

§(A) € Ty F(Y1,Ys) @ A*TiN

which 1s also called the difference tensor of A. Our construction implies directly
the following assertion.

Proposition 4. If A € fZ(N,M x C™(Q1,Q2)) is of the form (Ag, A1), Ay €
Jz(N, M), Al : Ql — Jz(N, Qz), then (S(A) = ((S(Ao),(S(Al))

8. THE GENERAL RIcCI IDENTITY.

Consider a finite order connection T' on an arbitrary bundle F(¥7,Y2) and
a linear connection A on M. Analogously to the finite dimensional case, [1],
we find that for every base preserving morphism f : Y7 — Y5, the values of
V%yAf lie in fz(M, F(Y1,Y2)) and the values of 6(V%7Af) lie in VF(Y1,Y2) ®
A2T*M C TF(Y1,Y2) © A*T*M. Hence 6(V%7Af) can be interpreted as a map
Y1 — VYo @ A2T* M. The following assertion is the general Ricci identity for finite
order connections on F (Y7, Ya).

Proposition 5. We have
8(Viaf) = =(CT)(f) + (Sa, Vrf)

Proof. By (45) and Proposition 4, the coordinate form of (46) is the same as in
Proposition 2. a
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