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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 23 { 35ON THE ITERATED ABSOLUTE DIFFERENTIATIONON SOME FUNCTIONAL BUNDLESAntonella Cabras, Ivan KoláøDedicated to the memory of Professor Otakar Bor�uvkaAbstract. We deduce further properties of connectionson the functional bundle ofall smoothmaps between the �bers over the same base point of two �beredmanifoldsover the same base, which we introduced in [2]. In particular, we de�ne the verticalprolongation of such a connection, discuss the iterated absolute di�erentiation bymeans of an auxiliary linear connection on the base manifold and prove the generalRicci identity.Let p1 : Y1 !M , p2 : Y2 !M be two classical �bered manifold over the samebase. Consider the set of all �ber maps(1) F(Y1; Y2) = [x2M C1(Y1x; Y2x)and denote by p : F(Y1; Y2) ! M the canonical projection. The set F(Y1; Y2)is a smooth space in the sense of Fr�olicher, [5]. In [2] we introduced the �rst jetprolongation J1F(Y1; Y2) of F(Y1; Y2) and de�ned a connection on F(Y1; Y2) as asmooth section � : F(Y1; Y2) ! J1F(Y1; Y2). Since such a connection is a kind ofdi�erential operator, we have a well de�ned concept of �nite order connection. In[2] we also introduced the curvature of � and the absolute di�erential r�s of asmooth section s : M ! F(Y1; Y2) with respect to � and we deduced their basicproperties.The main aim of the present paper is to study the iterated absolute di�er-entiation on F(Y1; Y2). Analogously to the case of an arbitrary �bered manifoldY !M , we use an auxiliary linear connection � onM . We �rst construct the ver-tical prolongation V� : VF(Y1; Y2)! J1VF(Y1; Y2) of a di�erentiable connection1991 Mathematics Subject Classi�cation : 53C05, 58A20.Key words and phrases: bundle of smooth maps, connection on a functional bundle, iteratedabsolute di�erentiation, iterated 2-jet, Ricci identity.This work has been performed during the visit of I. Kol�a�r at Dipartimento di MatematicaApplicata \G. Sansone", Universit�a di Firenze, supported by G.N.S.A.G. of C.N.R. The secondauthor was also supported by a grant of the GA �CR No. 201/96/0079.



24 A. CABRAS, I. KOLÁØ� on F(Y1; Y2), where VF(Y1; Y2) means the vertical tangent bundle of F(Y1; Y2).The absolute di�erential of r�s with respect to the tensor product V� 
 �� iscalled the iterated absolute di�erential r2�;�s of s. In Section 4 we assume that Y2is a vector bundle and � is a �nite order connection (non-linear in general) anddeduce that the alternation of r2�;�s satis�es a direct modi�cation of the Ricciidentity for non-linear connections on a vector bundle.However, the �rst author has recently clari�ed that the general Ricci identityholds even for a general connection on an arbitrary �bered manifold Y ! M ,provided one replaces the tensor alternation by a more sophisticated operation ofthe di�erence tensor of some distinguished iterated 2-jets, [1]. In the second half ofthe present paper we show that the same is true for the case of F(Y1; Y2). At thisoccasion we de�ne the general concept of space Jr(N;F(Y1; Y2)) of all r-jets of amanifold N into F(Y1; Y2). In the second order we introduce the correspondingspace of iterated jets, characterize among them the semiholonomic and nonholo-nomic 2-jets and describe their basic properties. The last section is devoted to theproof of the general Ricci identity for F(Y1; Y2).If we deal with two �nite dimensional manifolds and a map between them, wealways assume they are of class C1, i.e. smooth in the classical sense. On the otherhand, the idea of smoothness in the in�nite dimension is taken from the theory ofsmooth structures by Fr�olicher, [5], see also [3].1. Connections on F(Y1; Y2).The de�nition of the r-th jet prolongation JrF(Y1; Y2) of F(Y1; Y2) is basedon the idea of �ber jet, [8], [10], p. 395. In general, let � : Y ! M be a �beredmanifold, let Yx = ��1(x), x 2 M , let N be a manifold and f; g : Y ! N betwo C1-maps. We say that f and g determine the same �ber r-jet jrxf = jrxg atx 2M , if(2) jryf = jryg for all y 2 Yx :For every section s : M ! F(Y1; Y2), we can construct the associated mapes : Y1 ! Y2, es(y) = s(p1y)(y). We say that s is smooth (in the sense of Fr�olicher,[5]), if es is a C1-map. Two smooth sections s1; s2 :M ! F(Y1; Y2) determine thesame r-jet jrxs1 = jrxs2 at x 2M , if jrxes1 = jrxes2 in the sense of (2).In the rest of this section we discuss the case r = 1. LetX = j1xs 2 J1xF(Y1; Y2) ,where x is the source �X of X and  = s(x) 2 C1(Y1x; Y2x) is the target �X ofX. Then X determines a map eX : J1xY1 ! J1xY2,(3) eX(j1x�) = j1x(s � �) for all j1x� 2 J1xY1 :Let (xi; yp) or (xi; za) be some local �ber coordinates on Y1 or Y2, let za ='a(xi; yp) be the coordinate expression of es and let x = x0. Write(4)  a(y) = 'a(x0; y);  ai (y) = @'a(x0; y)@xi :



25Then the coordinate form of eX is(5) za =  a(y); zai = @ a(y)@yp ypi +  ai (y) ;where ypi or zai are the induced coordinates on Y1 or Y2. It is well known thatJ1xYi ! Yix, i = 1; 2; is an a�ne bundle over Yix with derived vector bundleVxYi 
 T �xM , provided V Yi denotes the vertical tangent bundle of Yi. Hence (5)yields that eX is an a�ne bundle morphism over  : Y1x ! Y2x, whose derivedlinear morphism is T 
 idT�xM : VxY1
T �xM ! VxY2
T �xM . Conversely, Lemma2 from [2] reads that for every a�ne bundle morphism 	 : J1xY1 ! J1xY2 over : Y1x ! Y2x with derived linear morphism T 
 idT�xM there exists a uniqueelement X 2 J1xF(Y1; Y2) such that 	 = eX . Thus, on one hand, the associatedmap eX characterizes an element X 2 J1F(Y1; Y2) geometrically. On the otherhand, the numbers xi0 and the functions  a(y),  ai (y) from (4) are a kind of thecoordinate expression of X.A connection on F(Y1; Y2) is de�ned as a section � : F(Y1; Y2)! J1F(Y1; Y2),which is smooth in the Fr�olicher sense, [2]. Since � is a kind of di�erential operator,one can characterize an r-th order connection, r > 1, as follows. We say that � isof order r, if the condition jry' = jry , ';  2 C1(Y1x; Y2x), y 2 Y1x implies(6) ]�(')j(J1Y1)y =]�( )j(J1Y1)y ;i.e. the restrictions of the associated maps]�('),]�( ) : J1xY1 ! J1xY2 to the �ber(J1Y1)y over y coincide, [2].Write FJr(Y1; Y2) = Sx2M Jr(Y1x; Y2x), which is a �nite dimensional manifold.The jet coordinates on FJ r(Y1; Y2) are xi, yp, za�, where � is a multiindex of therange equal to the range of yp with 0 � j�j � r. Let S(J1Y1; J1Y2) be the spaceof all a�ne maps (J1Y1)y ! (J1Y2)z with the derived linear map of the formB 
 idT�yM , B 2 VzY2 
 V �y Y1. This is a �bered manifold over Y1 �M Y2 with the�ber coordinates bap, cai induced by(7) zai = bap ypi + caiAn r-th order connection � determines the associated map G : FJ r(Y1; Y2)!S(J1Y1; J1Y2) by(8) G(jry ) =]�( )j(J1Y1)y :By [2], G is a C1-map. The coordinate form of G corresponding to (5) is(9) zai = zap ypi +�ai (xi; yp; za�) ; 0 � j�j � r :



26 A. CABRAS, I. KOLÁØWe say that �ai is the coordinate expression of �. Conversely, given any C1-mapG : FJ r(Y1; Y2) ! S(J1Y1; J1Y2) of the form (9), it determines an r-th orderconnection � on F(Y1; Y2) by(10) ]�( ) = [y2Y1x G(jry ) :If xi,  a(y) is the coordinate expression of  , then]�( ) is given by(11) zai = @ a@yp ypi + �pi (xi; yp; @� a(y)) :In other words, �pi (xi; yp; @� a(y)) is the coordinate expression of �( ).In [2] we de�ned a di�erentiable connection � by using the idea of jet prolon-gation of �. However, now we �nd it more convenient to express such an idea interms of the tangent prolongation. We recall only brie
y that the tangent bundleTp : TF(Y1; Y2) ! TM is the space of all tangent vectors X = @@t��0
(t) to thesmooth curves 
 : R! F(Y1; Y2), [2]. The vertical tangent bundle V F(Y1; Y2) �TF(Y1; Y2) consists of all X satisfying Tp(X) = 0.De�nition 1. A connection � : F(Y1; Y2) ! FJ1(Y1; Y2) is called di�erentiable,if the formula(12) T�� @@t ���0
(t)� = @@t ���0�(
(t))de�nes a smooth map T� : TF(Y1; Y2)! TJ1(Y1; Y2).One veri�es easily that a connection di�erentiable in this sense is also di�eren-tiable in the sense of [2]. Clearly, every �nite order connection is di�erentiable.In [2], the curvature C� of a di�erentiable connection � has been de�ned as amap C� : F(Y1; Y2)! F(Y1; V Y2
�2T �M ). If � is an r-th order connection withthe coordinate expression �ai (xi; yp; za�), then C� is an operator of the order 2r,whose coordinate form is the antisymmetrization (in i and j) of(13) @�ai@xj + @�ai@zb �bj + @�ai@zbp Dp�bj + � � �+ @�ai@zb�D��bjwhere Dp or D� denotes the formal derivative with respect to yp or with respectto multiindex �, [2].Given a section s : M ! F(Y1; Y2), its absolute di�erential r�s is a sectionM ! F(Y1; V Y2 
 T �M ) de�ned by the di�erence r�s(x) = j1xs� �(s(x)), [2]. If� is an r-th order connection (11) and za = fa(x; y) is the coordinate form of s,then the coordinate expression of r�s is(14) @fa(x; y)@xi � �ai (xi; yp; @�fa(x; y))



27Example 1. We present the simpliest example of a connection on F(Y1; Y2). Apair of connections � on Y1 and � on Y2 de�nes a connection (�;�) on F(Y1; Y2) asfollows. We have to prescribe (�;�)( ),  2 C1(Y1x; Y2x) as an a�ne morphismJ1xY1 ! J1xY2 with the derived linear morphism T 
 idT�xM . Such a morphism isuniquely determined by requiring that �(y) should be transformed into �( (y)),y 2 Y1x. Thus, if(15) dyp = �pi (x; y) dxi or dza = �ai (x; z) dxiare the equations of � or �, respectively, then the equations of (�;�)( ) are(16) zai = @ a@yp (ypi � �pi (x; y)) + �ai (x;  (y)) :Comparing with (11) we �nd that (�;�) is a �rst order connection with theassociated map(17) �ai (x; z)� zap�pi (x; y) :The second author, [7], or L. Mangiarotti and M. Modugno, [11], introduced theabsolute di�erential r�;�f : Y1 ! V Y2 
 T �M of a base preserving morphismf : Y1 ! Y2 with respect to the pair �;�. Its coordinate form is(18) @fa@xi + @fa@yp �pi (x; y)��ai (x; f)provided f is given by za = fa(x; y). Comparing with (14) and (17), we �nd thatr�;�f coincides with the absolute di�erential r(�;�)f in the functional sense.2. Projectable connections.Consider a �bered manifold � : Y3 ! Y2, so that we have the total projection� � p2 : Y3 ! M . Denote by �� : F(Y1; Y3) ! F(Y1; Y2) or J1�� : J1F(Y1; Y3) !J1F(Y1; Y2) the induced projections. Analogously to the �nite dimensional case,[7], we introduce the following concept.De�nition 2. A connections �1 : F(Y1; Y3) ! J1F(Y1; Y3) is said to be pro-jectable over a connection � : F(Y1; Y2) ! J1F(Y1; Y2), if the following diagramcommutes(19) F(Y1; Y3)u�� w�1 J1F(Y1; Y3)u J1��F(Y1; Y2) w� J1F(Y1; Y2)Let ws be some additional �ber coordinates on Y3 ! Y2. Then the coordinateexpression of the associated map G1 of an r-th order projectable connection �1over � is of the form(20) �ai (xi; yp; za�) ; 	si (xi; yp; za�; ws�) ; 0 � j�j � r :



28 A. CABRAS, I. KOLÁØIf Y3 ! Y2 is a vector bundle, then F(Y1; Y3) ! F(Y1; Y2) and J1F(Y1; Y3) !J1F(Y1; Y2) are vector bundles, too. If �1 is a linear morphism over �, then wesay (analogously to [7]) that �1 is a semilinear connection. The coordinate char-acterization of such a case is that the functions 	si from [20] are linear in ws�,0 � j�j � r.Consider now the case Y3 = V Y2, so that F(Y1; V Y2) � VF(Y1; Y2), [2]. In [9]the second author has constructed a canonical identi�cation i : J1V F(Y1; Y2) !V J1F(Y1; Y2). If � is a di�erentiable connection on F(Y1; Y2), the restriction on T�to VF(Y1; Y2) � TF(Y1; Y2) is a smooth map V � : V F(Y1; Y2) ! V J1F(Y1; Y2).The composition(21) V� = i�1 � V � : F(Y1; V Y2)! J1F(Y1; V Y2)is a connection on F(Y1; V Y2), which will be called the vertical prolongation of �.If � is an r-th order connection with the associated map(22) �ai (xi; yp; za�)then V� is also an r-th order connection with the associated map (22) and(23) @�ai@zb Zb + � � �+ @�ai@zb� Zb�provided Za are the induced coordinates on V Y2 ! Y2 and Za� are the inducedjet coordinates on FJr(Y1; V Y2). Thus, for every �nite order connection �, V� isa semilinear connection over �.Example 2. Consider the connection (�;�) from Example 1. Then V(�;�) is aconnection on F(Y1; V Y2). On the other hand, if we construct the classical ver-tical prolongation V� : V Y2 ! J1V Y2, then (�;V�) is another connection onF(Y1; V Y2). The comparison of both approaches is given by the following asser-tion.Proposition 1. We have V(�;�) = (�;V�).Proof. Applying (23) to the associated map (17) of (�;�), we �nd(24) @�ai@zb Zb � Zap�pi :On the other hand, the additional equations of V� are(25) dZa = @�ai@zb Zb dxisee [7]. Hence the associated map of (�;V�) coincides with (17) and (24), whichis the associated map of V(�;�). �



293. Tensor products.We �rst recall a suitable approach to the tensor product of linear connections in�nite dimension, [11]. Let Ei !M , i = 1; 2, be two vector bundles and �i : Ei !J1Ei be linear connections. Consider the tensor map 
 : E1 �M E2 ! E1 
 E2,so that J1
 : J1E1 �M J1E2 ! J1(E1 
 E2). Then there exists a unique linearconnection �1
�2 : E1
E2 ! J1(E1
E2) such that following diagram commutes(26) J1E1 �M J1E2 wJ1
 J1(E1 
E2)E1 �M E2u�1 �M �2 w
 E1 
E2u �1 
 �2where �1 �M �2 means the �ber product of maps over idM .We need a modi�cation of this idea to the functional case. First of all, we studythe \pure" case E !M is a vector bundle, � is an r-th order linear connection onF(Y1; E) and � is a classical linear connection on another vector bundle E2 !M .Let xi, ws be some linear �ber coordinates on E, so that the coordinate expressionof the associated map G : FJr(Y1; E)! S(J1Y1; J1E) is of the form(27) 	sit(x; y)wt + � � �+	s�it (x; y)wt� :Let xi, uh be some linear �ber coordinates on E2 !M and let the equations of �be(28) duh = �hki(x)uh dxi :We have the tensor map 
 : FJr(Y1; E)�M E2 ! FJr(Y1; E 
 E2), 
(jry ; u) =jry( 
u),  : Y1x ! Ex, u 2 E2x. On the other hand,
 : E�ME2 ! E
E2 de�nesJ1
 : J1E �M J1E2 ! J1(E 
 E2) and this induces a map � : S(J1Y; J1E) �MJ1E2 ! S(J1Y; J1(E 
E2)). The coordinate form of � is(29) � (xi; yp; ws; bspypi + csi ; uh; uhi ) = (xi; yp; wsuh; uh(bspypi + csi ) + wsuhi )Then one veri�es easily that there is a unique linear r-th order connection �
�on F(Y1; E 
 E2) such that its associated map H makes the following diagramcommutative(30) S(J1Y1; J1E) �M J1E2 w� S(J1Y1; J1(E 
 E2))FJr(Y1; E)�M E2uG �M � w
 FJr(Y1; E 
 E2)u HThe coordinate expression of H is(31) 	sit(x; y)vth + � � �+ 	s�it (x; y)vth� +�hki(x)vsk



30 A. CABRAS, I. KOLÁØprovided vsh are the induced �ber coordinates on E 
 E2.However, we need a more general situation. Let E1 ! Y2 be a vector bundle,�1 be an r-th order semilinear connection on F(Y1; E1) over a connection � onF(Y1; Y2) and � be a classical linear connection on a vector bundle E2 !M . Thena direct modi�cation of the previous construction leads to an r-th order semilinearconnection �1 
 � on F(Y1; E1 
 E2) over �, which is called the tensor productof �1 and �. If (22) and (27) with the 	's being functions of xi, yp and za� is thecoordinate expression of �1 and (28) are the equations of �, then the coordinateexpression of �1 
 � is (22) and(32) 	sit(x; y; za�)vth + � � �+ 	s�it (x; y; za�)vth� +�hki(x)vsk :Example 3. In the situation of Example 2, we �nd easily V(�;�)
� = (�;V�
�), where V� 
 � is a �nite dimensional concept de�ned e.g. in [10], p. 365.4. The iterated absolute differentiation.In this section we assume � is a �nite order connection on F(Y1; Y2). Let usconsider a section s : M ! F(Y1; Y2) in the form of the associated morphismes = f : Y1 ! Y2. Then r�f : M ! F(Y1; V Y2 
 T �M ). Construct V� and takean auxiliary linear connection � on M . Then �� is a linear connection on T �Mand we can construct V� 
 ��.De�nition 3. r2�;�f = rV�
��(r�f) is called the iterated absolute di�erentialof f .If Y2 = E is a vector bundle, we can identify r�f with a morphism Y1 !E
T �M and r2�;�f with a morphism Y1 ! E
N2 T �M . Hence we can constructthe alternation Alt(r2�;�f) : Y1 ! E 
 �2T �M . In the vector bundle case, thecurvature C� can be interpreted as a map F(Y1; E)! F(Y1; E
�2T �M ). Let S�be the torsion of �, so that the contraction hS�;r�fi is a map Y1 ! E
�2T �M .The following assertion generalizes the Ricci identity for non-linear connections,[1], to the functional case.Proposition 2. We have(33) Alt(r2�;�f) = �(C�)(f) + hS�;r�fiProof. Let � be given by (22) and �kij(x) be the Christo�els of �. By (23) and(32), the equations of V� 
 �� are (22) and(34) @�aj@zb vbi + � � �+ @�aj@zb� vbi� � �kijvakBy (14), the coordinate form of r�f is(35) fai = @fa@xi ��ai (xi; yp; @�fa)



31Hence the coordinate form of rV�
��(fai ) is(36) @@xj (fai )� @�aj@zb fbi � @�aj@zbp @y(fbi ) � � � � � @�aj@zb� @�(fbi ) + �kijfakIf we evaluate the partial derivatives, we �rst obtain an expression@2fa@xi@xj � @�aj@zb @fp@xi � @�ai@zb @fp@xj � � � � � @�aj@zb� @@xi @�fp � @�ai@zb� @@xj @�fbwhich is symmetric in i and j. Using (13) we �nd that the alternation of theremaining terms is equal to the right hand side of (33). �In the �nite order case, the �rst author deduced the Ricci identity on an arbi-trary �bered manifold Y ! M , provided she replaced the tensor alternation bya more sophisticated operation on some special iterated 2-jets. We are going todevelop such an operation in the functional case as well.5. The jet space Jr(N;F(Y1; Y2)).Given a manifold N , a map f : N ! F(Y1; Y2) is called smooth, if(i) p � f : N !M is a C1-map,(ii) the induced map ef : (p � f)�Y1 ! Y2,ef (a; y) = f(a)(y); (a; y) 2 (p � f)�Y1 ;is also C1, provided (p � f)�Y1 ! N denotes the induced bundle, [2].Consider the map JrNpi : Jr(N; Yi)! Jr(N;M ), jrah 7! jra(pi � h), h : N ! Yi,i = 1; 2. Write JrX(N; Yi) = (JrNpi)�1 (X) � Jr(N; Yi), i = 1; 2, X = jra(p � f),a 2 N . The smooth map f induces a mapJra f : JrX (N; Y1)! JrX (N; Y2); Jra f(jrah) = jraf(u)(h(u)) ;where h : N ! Y1 satis�es p�f = p1 �h, u 2 N . Let g : N ! F(Y1; Y2) be anothermap satisfying X = jra(p � g).De�nition 4. We say that f and g determine the same r-jet jraf = jrag at a 2 N ,if Jraf = Jrag : JrX(N; Y1)! JrX(N; Y2)The set of all such r-jets is denoted by Jr(N;F(Y1; Y2)). This is a smooth spacein the sense of Fr�olicher, [5]. In the same way we proceed if we have a subbundleE � F(Y1; Y2).To �nd a suitable description of the space Jr(N;F(Y1; Y2)), we �rst discussthe case of one-point base, so that the bundles are identi�ed with the standard�bers Y1 = Q1, Y2 = Q2. Then F(Y1; Y2) = C1(Q1; Q2). A smooth map f : N !C1(Q1; Q2) de�nes a mapeJraf : Q1 ! Jra (N;Q2); q 7! jraf(u)(q) ; u 2 N :Consider another smooth map g : N ! C1(Q1; Q2). The following simple asser-tion is equivalent to some results from [9] and [14].



32 A. CABRAS, I. KOLÁØProposition 3. jraf = jrag if and only if eJraf = eJrag. Conversely, for every C1-map h : Q1 ! Jra(N;Q2), there exists a smooth map f : N ! C1(Q1; Q2) suchthat h = eJraf . �Thus, Jra(N;C1(Q1; Q2)) is identi�ed with C1(Q1; Jra(N;Q2)). WriteC1� (Q1; Jr(N;Q2)) = [a2N C1(Q1; Jra(N;Q2))(The subscript � indicates we consider the maps into the �bers of the projection� : Jr(N;Q2)! N .) Then we have(37) Jr(N;C1(Q1; Q2)) = C1� (Q1; Jr(N;Q2))Consider now the case of trivial bundles Y1 = M � Q1, Y2 = M � Q2, so thatF(Y1; Y2) = M � C1(Q1; Q2). Hence a smooth map f : N ! F(Y1; Y2) is a pairof smooth maps f0 : N ! M and f1 : N ! C1(Q1; Q2). Given another smoothmap g = (g0; g1) of N into F(Y1; Y2), one �nds easily(38) jraf = jrag i� jraf0 = jrag0 and jraf1 = jrag1 :By Proposition 3, we obtain(39) Jr(N;F(Y1; Y2)) = Jr(N;M ) �N C1� (Q1; Jr(N;Q2))In other words, an element X 2 Jra (N;M � C1(Q1; Q2)) is a pair (X0; X1),where X0 2 Jra (N;M ) and X1 is a map X1 : Q1 ! Jra (N;Q2). If we use somelocal coordinates on M , Q1, Q2 and N , (39) gives a coordinate description ofJr(N;F(Y1; Y2)).It is worthwhile to show a simple application of (39). Let X = jraf 2Jra(N;F(Y1; Y2)) and A = jrb g 2 Jrb (P;N )a be a classical jet of a manifold Pinto N . Then we can de�ne the jet composition(40) X �A = jrb (f � g) 2 Jrb (P;F(Y1; Y2)) :To show correctness of this de�nition, we can write X in the above form X =(X0; X1). Then X �A = (X0 � A;X1 � A), where X1 �A : Q1 ! Jrb (P;Q2) is themap q 7! X1(q) �A. 6. Iterated jets.The classical space of iterated 2-jets �J2(N;M ) of N into M is de�ned by theiteration �J2(N;M ) = J1(N; J1(N;M )), [15]. Beside the source and target projec-tions �1 : �J2(N;M ) ! N and �1 : �J2(N;M ) ! J1(N;M ) we have the inducedmaps J1(1N ; �) : �J2(N;M ) ! J1(N;N ) and J1(1N ; �) : �J2(N;M ) ! J1(N;M ),where 1N means the identity of N , [1]. The set eJ2(N;M ) of nonholonomic 2-jetsby Ehresmann, [4], is the subset of all A 2 �J2(N;M ) satisfying J1(1N ; �)(A) =



33j1a1N , a = �1A = �(�1A). The semiholonomic 2-jets are further characterized by�1(A) = J1(1N ; �)(A). If us or xi are some local coordinates on N orM , then theinduced coordinates on �J2(N;M ) are, [1],(41) (xi; xis; us; xios; xist; ust ; vs) :The �rst author introduced the concept of distinguished iterated 2-jet, [1]. Let [a]denotes the constant map of N into a 2 N . An element A 2 bJ2(N;M ) is calleddistinguished, if J1(1N ; �)(A) = j1a[a] for some a 2 N and �1(A) = J1(1N ; �)(A).The coordinate form of a distinguished iterated 2-jet is(42) (xi; xis; us; xis; xist; 0; us) :The set of all distinguished iterated 2-jets is denoted by bJ2(N;M ).In the functional case, we de�ne analogously(43) �J2(N;F(Y1; Y2)) = J1(N; J1(N;F(Y1; Y2))) :Even here we have the projections�1 : �J2(N;F(Y1; Y2))! N; �1 : �J2(N;F(Y1; Y2))! J1(N;F(Y1; Y2))and the induced maps J1(1N ; �) : �J2(N;F(Y1; Y2)) ! J1(N;N ) and J1(1N ; �) :�J2(N;F(Y1; Y2)) ! J1(N;F(Y1; Y2)). To �nd a description of �J2(N;F(Y1; Y2))analogous to (39), we �rst remark, that if Y ! M , Z ! M are two �beredmanifolds, then J1(N; Y �M Z) = J1(N; Y ) �J1(N;M) J1(N;Z). In particular, ifP is another manifold, then �J2(N;M � P ) = J1(N; J1(N;M ) �N J1(N;P )) =�J2(N;M )�J1(N;N) �J2(N;P ). To simplify the notation, we write C11 (Q1; �J2(N;Q2))for the space of all C1-maps from Q1 into the �bers of J1(1N ; �) : �J2(N;Q2) !J1(N;N ). Then we deduce analogously to Section 5(44) �J2(N;M � C1(Q1; Q2)) = �J2(N;M )�J1(N;N) C11 (Q1; �J2(N;Q2)) :The idea of distinguished iterated 2-jet takes place in the functional case aswell.De�nition 5. An element A 2 �J2(N;F(Y1; Y2)) will be called distinguished, ifJ1(1N ; �)(A) = j1a[a] for some a 2 N and �1(A) = J1(1N ; �)(A).The set of all distinguished iterated 2-jets fromN into F(Y1; Y2) will be denotedby bJ2(N;F(Y1; Y2)).One veri�es easily, that if A is expressed in the form (44) as (A0; A1), A0 2�J2(N;M ), A1 : Q1 ! �J2(N;Q2), then A 2 bJ2(N;F(Y1; Y2)) i� A0 2 bJ2(N;M )and the values of A1 lie in bJ2(N;Q2).



34 A. CABRAS, I. KOLÁØ7. The difference tensor.Using an idea by Pradines, [13], the �rst author clari�ed that every distinguishediterated 2-jet A 2 bJ2a(N;M )x determines a tensor �(A) 2 TxM 
 �2T �aN , whichis called the di�erence tensor of A. If (42) is the coordinate form of A, then thecoordinate expression of �(A) is(45) xist � xits :In the functional case, T F(Y1; Y2)
�2T �aN will mean the space of all bilinearantisymmetric maps from TaN into T (Y1; Y2). For every A 2 bJ2(N;F(Y1; Y2)) ,we construct in the same way as in [1] an element�(A) 2 T F(Y1; Y2) 
 �2T �aNwhich is also called the di�erence tensor of A. Our construction implies directlythe following assertion.Proposition 4. If A 2 bJ2(N;M � C1(Q1; Q2)) is of the form (A0; A1), A0 2bJ2(N;M ), A1 : Q1 ! bJ2(N;Q2), then �(A) = (�(A0); �(A1)).8. The general Ricci identity.Consider a �nite order connection � on an arbitrary bundle F(Y1; Y2) anda linear connection � on M . Analogously to the �nite dimensional case, [1],we �nd that for every base preserving morphism f : Y1 ! Y2, the values ofr2�;�f lie in bJ2(M;F(Y1; Y2)) and the values of �(r2�;�f) lie in V F(Y1; Y2) 
�2T �M � TF(Y1; Y2) 
 �2T �M . Hence �(r2�;�f) can be interpreted as a mapY1 ! V Y2
�2T �M . The following assertion is the general Ricci identity for �niteorder connections on F(Y1; Y2).Proposition 5. We have�(r2�;�f) = �(C�)(f) + hS�;r�fiProof. By (45) and Proposition 4, the coordinate form of (46) is the same as inProposition 2. �References[1] Cabras A., The Ricci identity for general connections, Proceedings Conf. Di�. Geom. andApplications, 1995, Masaryk University, Brno 1996, 121-126.[2] Cabras A., Kol�a�r I., Connections on some functional bundles, Czechoslovak Math. J.,45(1995), 529-548.[3] Cabras A., Kol�a�r I., The universal connection of an arbitrary system, to appear in Annalidi Matematica.[4] Ehresmann C., Extension du calcul des jets aux jets non holonomes, CRAS Paris, 239(1954), 1762-1764.



35[5] Fr�olicher A., Smooth structures, Category theory 1981, LNM 962, Springer-Verlag, 1982,69-81.[6] Jadczyk A., Modugno M., Galilei general relativistic quantum mechanics, to appear.[7] Kol�a�r I., Connections in 2-�bred manifolds, Arch. Math.(Brno), XVII(1981), 23-30.[8] Kol�a�r I, Higher order absolute di�erentiation with respect to generalized connections, Dif-ferential Geometry, Banach Center Publications, Volume 12, Warszaw 1984, 153-162.[9] Kol�a�r I., An in�nite dimensional motivation in higher order geometry, Proceedings Conf.Di�. Geom. and Applications, 1995, Masaryk University, Brno 1996, 151-159.[10] Kol�a�r I., Michor P. W., Slov�ak J., Natural operations in di�erential geometry, Springer-Ver-lag, 1993.[11] Mangiarotti L., Modugno M., Connections and di�erential calculus on �bered manifolds,preprint.[12] ModugnoM., New results on the theory of connections: systems, overconnections and pro-longations, Di�erential Geometry and Its Applications, Proceedings, D. Reidel PublishingCompany, 1987, 243-269.[13] Pradines J., Repr�esentation des jets non holonomes par des morphisms vectoriels doublessoud�es, CRAS Paris, s�erie A 278, 1974, 1523-1526.[14] Slov�ak J., Smooth structures on �bre jet spaces, CzechoslovakMath. J., 36(1986), 358-375.[15] Virsik G., Total connections in Lie groupoids, Arch. Math.(Brno), 31(1995), 183-200.Antonella CabrasDipartimento di Matematica Applicata \G. Sansone"Via S. Marta 350139 Firenze, ITALYIvan Kol�a�rDepartment of Algebra and GeometryFaculty of Science, Masaryk UniversityJan�a�ckovo n�am. 2a662 95 Brno, CZECH REPUBLIC
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