
Archivum Mathematicum

Katsuei Kenmotsu
On Veronese-Borůvka spheres

Archivum Mathematicum, Vol. 33 (1997), No. 1-2, 37--40

Persistent URL: http://dml.cz/dmlcz/107595

Terms of use:
© Masaryk University, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107595
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 37 { 40ON VERONESE-BOR�UVKA SPHERESK. KenmotsuDedicated to the memory of Professor Otakar Bor�uvkaAbstract. In this paper, history of reserches for minimal immersions fromconstant Gaussian curvature 2-manifolds into space forms is explained withspecial emphasis of works of O. Bor�uvka. Then recent results for the corre-sponding probrem to classify minimal immersions of such surfaces in complexspace forms are discussed.Let Sn[K] be an n dimensional sphere in Rn+1 of constant sectional curvatureK. The Veronese surface in this talk means the mapping from R3 into R5 de�nedby u1 = 1p3yz; u2 = 1p3zx; u3 = 1p3xy; u4 = 12p3(x2 � y2);u5 = 16(x2 + y2 � 2z2); where (x; y; z) 2 R3:This gives an isometric minimal immersion from S2[13 ] into S4[1]. For any positiveinteger n, the set of spherical harmonics with degree n of three variables is a (2n+1)dimensional vector space. Considering the unit sphere S2n[1] in the vector spacefor the standard inner product, we get an isometric minimal immersion :S2� 2n(n+ 1)� �! S2n[1]:In the early 1930's, Bor�uvka has studied structures of the second, third andhigher order fundamental forms of this minimal surface in detail [3], [4], [5]. It iscalled now the Veronese-Bor�uvka sphere. After about 40 years of these Bor�uvka'sreserches, Calabi [7] and Simons [17] revived the Bor�uvka spheres; in fact theyreminded us that minimal submanifolds in spheres are important to study singu-larities of minimal varieties in a Euclidean space. The Veronese-Bor�uvka spheres1991 Mathematics Subject Classi�cation: Primary 53A10, Secondary 53A05, 53C42.Key words and phrases: minimal immersions, constant curvature surfaces, harmonic maps.This is an English translation of the manuscript of my talk that is given in a Workshop heldin Kyoto University, Japan on 29th -31st January, 1997.



38 K. KENMOTSUshow us concrete examples of minimal surfaces in the spheres. We know now manyresults characterizing them, see for example [15].Minimal surfaces with constant Gaussian curvature in Sn[1] are classi�ed byKenmotsu [11] when n � 4 and by Bryant [6] for all n even locally.Theorem 1. Let M2[K] be a two dimensional Riemannian manifold of constantcurvature K and let X : M2[K] �! Sn[1] be an isometric minimal immersion ofM2[K] into Sn[1]. Then, when K > 0, the image is a part of the Veronese-Bor�uvkasphere in a totally geodesic S2m[1] � Sn[1]; when K = 0, the image is a part ofthe generalized Cli�ord surface [10] in a totally geodesic S2m+1[1] � Sn[1]; thereis no minimal surface with K < 0 in a sphere.Wallach [18] has also proved this when K > 0. Theorem 1 says that if a minimalsurface in a unit sphere has "simple" Riemannian structure, then the shape of thesurface is explicitly determined.Let us consider whether a Kaehler version of these results holds. CPn denotesan n dimensional complex projective space endowed with the Fubini-Study metricof constant holomorphic sectional curvature 4�.When K is one of some positive rational numbers, Bando and Ohnita [1] con-structed a family of isometric minimal immersions of M2[K] into CPn. We callthem complex Bor�uvka spheres. Bolton, Jensen, Rigoli and Woodward [2] and Chiand Zheng [8] also found out the same surfaces independently.When K = 0, Ludden, Okumura and Yano [14] found out a 
at minimal torus,CT , in CP 2 : CT = �(z0; z1; z2) 2 CP 2 : jz0j2 = jz1j2 = jz2j2	This is called the complex Cli�ord torus.Later Kenmotsu [12] has classi�ed all isometric and totally real minimal im-mersions of the 
at Euclidean plane into CPn; these are called the generalizedcomplex Cli�ord surfaces.It is not known untill now whether there are minimal surfaces with constantnegative curvature in CPn.A minimal surface in a Kaehler manifold has an invariant of the �rst order,called the Kaehler angle � of the minimal surface; it is de�ned by cos� = hJe1; e2i,where fe1; e2g is an orthonormal basis on the surface in a Kaehler manifold andJ denotes the complex structure of the ambient space. The Kaehler angle can notbe considered for surfaces in a sphere. All known minimal surfaces with constantGaussian curvature in CPn have constant Kaehler angles.Ohnita [16] proved thatTheorem 2. Let X : M2[K] �! CPn be an isometric minimal immersion withconstant Kaehler angle. Then, when K > 0, the image is a part of the complexBor�uvka sphere in a totally geodesic CPm � CPn; when K = 0, the image is apart of the generalized complex Cli�ord surface in a totally geodesic CPm � CPn;when K < 0, there is no such an immersion even locally.The main purpose of this talk is to explain our recent result [13], in which wecan classify minimal surfaces with constant Gaussian curvature in CP 2 without



ON VERONESE-BOR�UVKA SPHERES 39any other global or local assumptions of the surfaces [9], [8]. Namely we provedthatTheorem 3. Let X :M2[K] �! CP 2 be an isometric minimal immersion. Thenthe Kaehler angle of X is constant.Outline of the proof: Under the condition that K is constant, we determine thecovariant derivatives of the second fundamental form of X explicitly. Using these,we see that the Kaehler angle � is an isoparametric function on the surface. Thatis, �� and jd�j2 are functions of �. These give an overdetermined system for �.From its integrability condition, we see that there is a function of one variablewhich satis�es two ordinary di�erential equations. It shall be remarked that thecoe�cients of these ODE's are written in a precise way by elementary functions,although they are di�erent from the sign of K.Let us explain the system of these ODE's when K > 0. If there exists anisometric minimal immersion X :M2[K] �! CP 2 such that the Kaehler angle isnot constant, then we have a non-constant function y = y(x) of one variable whichsatis�es the following two ODE's on an interval of (0; �):y00(x) + cotx � y0(x)� cot y(x) � y0(x)2 + 3�K sin 2x � y0(x)3 = 0 ;y00(x)� cotx � y0(x)� F1(y(x))y0(x)2 + 2K (4� �K � 6 sin2 x) cotx � y0(x)3+ 2K (4��K � 3 sin2 x)F1(y(x))y0(x)4 = 0;where we set F1(y) = c2 + 3pc1 cos ypc1 sin yand c1; c2 are real constants.For the case of K = 0, we have the following system:y00(x) + cotx � y0(x) + 3�c1 sin 2x � e2y(x)y0(x)3 = 0 ;y00(x)� cotx � y0(x)� (2 + c2pc1 )y0(x)2 + 4�c1 (2� sin2 x) cotx � e2y(x)y0(x)3+2� (c2 + 3pc1)c1pc1 (4� sin2 x)e2y(x)y0(x)4 = 0:For the case of K < 0, we have the following system:y00(x) + cotx � y0(x)� coth y(x) � y0(x)2 + 3�L sin 2x � y0(x)3 = 0 ;y00(x)� cotx � y0(x)� F2(y(x))y0(x)2 + 2(4� + L � 6� sin2 x)L cot x � y0(x)3+2(4� + L� 3� sin2 x)L F2(y(x))y0(x)4 = 0 ;



40 K. KENMOTSUwhere we set F2(y) = (c2 + 3pc1 cosh y)pc1 sinh y :We studied these systems in detail and proved that they did not have commonsolution except constants [13]. As a corollary of Theorem 2 and 3 , we proved thatthere is no minimal surface with constant negative Gaussian curvature in CP 2even locally. References[1] S. Bando, Y. Ohnita, Minimal 2-spheres with constant curvature in Pn(C), J. Math. Soc.Japan 39(1987), 477-487.[2] J. Bolton, G. R. Jensen, M. Rigoli, L. M. Woodward, On conformal minimal immersionsof S2 into CPn , Math. Ann. 279(1988), 599-620.[3] O. Bor�uvka, Sur une classe de surfaces minima plong�ees dans un espace �a quatre dimen-sions �a courbure constante, Bull. Intern. de l'Acad. Tech. des Sci. Prague 29(1928), 256-277.[4] O. Bor�uvka, Recherches sur la courbure des surfaces dans des espaces �a n dimensions �acourbure constante I, Publ. de la Fac. des Sci. de L'universite Masaryk (1932) 2-22.[5] O. Bor�uvka, Sur les surfaces represent�ees par les fonctions sph�eriques de premiere esp�ece,J. Math. Pure et Appl. (1933) 337-383.[6] R. L. Bryant, Minimal surfaces of constant curvature in Sn, Trans. Amer. Math. Soc.290(1985), 259-271.[7] E. Calabi, Minimal immersions of surfaces in euclidean spheres, J. Di�. Geo. 1(1967),111-125.[8] Q-S. Chi, Y. Zheng, Rigidity of pseudo-holomorphic curves of constant curvature in Grass-mann manifolds, Trans. Amer. Math. Soc. 313(1989), 393-406.[9] Q-S. Chi, G. R. Jensen, R. Liao, Isoparametric Functions and Flat Minimal Tori in CP 2,Proc. Amer. Math. Soc. 123(1995), 2849-2854.[10] K. Kenmotsu,On minimal immersions of R2 into Sn , Jour. of Math. Soc. Japan 28(1976),182-191.[11] K. Kenmotsu, Minimal surfaces with constant curvature in 4-dimensional space forms,Proc. Amer. Math. Soc. 89(1983), 133-138.[12] K. Kenmotsu, On minimal immersions of R2 into Pn(C), Jour. of Math. Soc. Japan37(1985), 663-680.[13] K. Kenmotsu, K. Masuda, On the K�ahler angles of minimal surfaces of constant curvaturein CP 2 , in preparation.[14] G. Ludden, M. Okumura, K. Yano, A totally real surface in CP 2 that is not totally geodesic,Proc. Amer. Math. Soc. 53(1975), 186-190.[15] T. Ogata, U.Simon's conjectures on minimal submanifolds in a sphere, Bull. YamagataUniv. 11(1987), 345-350.[16] Y. Ohnita, Minimal surfaces with constant curvature and K�ahler angle in complex spaceforms, Tsukuba J. Math. 13(1989), 191-207.[17] J. Simons, Minimal varieties in riemannian manifolds, Ann. Math. 88(1968), 62-105.[18] N. Wallach, Extension of locally de�ned minimal immersions of spheres into spheres, Arch.Math. 21(1970), 210-213.Mathematical InstituteTohoku University980-77 Kawauchi, Sendai, JAPANE-mail: kenmotsu@math.tohoku.ac.jp
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