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ON VERONESE-BORUVKA SPHERES

K. KENMOTSU

Dedicated to the memory of Professor Otakar Borivka

ABSTRACT. In this paper, history of reserches for minimal immersions from
constant Gaussian curvature 2-manifolds into space forms is explained with
special emphasis of works of O. Boruvka. Then recent results for the corre-
sponding probrem to classify minimal immersions of such surfaces in complex
space forms are discussed.

Let S"[K] be an n dimensional sphere in R"t1 of constant sectional curvature
K. The Veronese surface in this talk means the mapping from R3 into R’ defined

by
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This gives an isometric minimal immersion from S?[1] into S*[1]. For any positive
integer n, the set of spherical harmonics with degree n of three variablesis a (2n+1)
dimensional vector space. Considering the unit sphere S??[1] in the vector space
for the standard inner product, we get an isometric minimal immersion :

2 2 2n
S [n(n—i— 1)] — S°71].

In the early 1930’s, Boruvka has studied structures of the second, third and
higher order fundamental forms of this minimal surface in detail [3], [4], [5]. Tt is
called now the Veronese-Boruvka sphere. After about 40 years of these Bortivka’s
reserches, Calabi [7] and Simons [17] revived the Boruvka spheres; in fact they
reminded us that minimal submanifolds in spheres are important to study singu-
larities of minimal varieties in a Euclidean space. The Veronese-Boruvka spheres
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show us concrete examples of minimal surfaces in the spheres. We know now many
results characterizing them, see for example [15].

Minimal surfaces with constant Gaussian curvature in S™[1] are classified by
Kenmotsu [11] when n < 4 and by Bryant [6] for all n even locally.

Theorem 1. Let M?[K] be a two dimensional Riemannian manifold of constant
curvature K and let X : M?[K] — S™[1] be an isometric minimal immersion of
M?[K] into S"[1]. Then, when K > 0, the image is a part of the Veronese-Boriivka
sphere in a totally geodesic S?™[1] C S™[1]; when K = 0, the image is a part of
the generalized Clifford surface [10] in a totally geodesic S*™*1[1] C S™[1]; there
is no minimal surface with K < 0 in a sphere.

Wallach [18] has also proved this when K > 0. Theorem 1 says that if a minimal
surface in a unit sphere has ”simple” Riemannian structure, then the shape of the
surface is explicitly determined.

Let us consider whether a Kaehler version of these results holds. C'P™ denotes
an n dimensional complex projective space endowed with the Fubini-Study metric
of constant holomorphic sectional curvature 4p.

When K is one of some positive rational numbers, Bando and Ohnita [1] con-
structed a family of isometric minimal immersions of M?[K] into C'P™. We call
them complex Bortuvka spheres. Bolton, Jensen, Rigoli and Woodward [2] and Chi
and Zheng [8] also found out the same surfaces independently.

When K = 0, Ludden, Okumura and Yano [14] found out a flat minimal torus,

CT, in CP? .
CT = {(zo,zl,zz) e CpP?: |zo|2 = |,21|2 = |z2|2}

This is called the complex Clifford torus.

Later Kenmotsu [12] has classified all isometric and totally real minimal im-
mersions of the flat Euclidean plane into C'P™; these are called the generalized
complex Clifford surfaces.

It is not known untill now whether there are minimal surfaces with constant
negative curvature in C'P".

A minimal surface in a Kaehler manifold has an invariant of the first order,
called the Kaehler angle v of the minimal surface; it is defined by cosa = (Jeq, €3),
where {ej,es} is an orthonormal basis on the surface in a Kaehler manifold and
J denotes the complex structure of the ambient space. The Kaehler angle can not
be considered for surfaces in a sphere. All known minimal surfaces with constant
Gaussian curvature in C'P” have constant Kaehler angles.

Ohnita [16] proved that

Theorem 2. Let X : M*[K] — CP" be an isometric minimal immersion with
constant Kaehler angle. Then, when K > 0, the image is a part of the complex
Bortivka sphere in a totally geodesic C P™ C C'P"™; when K = 0, the image is a
part of the generalized complex Clifford surface in a totally geodesic CP™ C C'P";
when K < 0, there is no such an immersion even locally.

The main purpose of this talk is to explain our recent result [13], in which we
can classify minimal surfaces with constant Gaussian curvature in C'P? without
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any other global or local assumptions of the surfaces [9], [8]. Namely we proved
that

Theorem 3. Let X : M?[K] — C'P? be an isometric minimal immersion. Then
the Kaehler angle of X is constant.

Outline of the proof: Under the condition that K is constant, we determine the
covariant derivatives of the second fundamental form of X explicitly. Using these,
we see that the Kaehler angle « is an isoparametric function on the surface. That
is, Aa and |da|? are functions of a. These give an overdetermined system for «.
From its integrability condition, we see that there is a function of one variable
which satisfies two ordinary differential equations. It shall be remarked that the
coefficients of these ODE’s are written in a precise way by elementary functions,
although they are different from the sign of K.

Let us explain the system of these ODE’s when K > 0. If there exists an
isometric minimal immersion X : M?[K] — C'P? such that the Kaehler angle is
not constant, then we have a non-constant function y = y(x) of one variable which
satisfies the following two ODE’s on an interval of (0, 7):

y'(2) + cotx -y (x) — coty(x) -y (z)* + ?}? sin 2z -y (x)* =0,
y'(2) — cotx -y () — Fi(y(e))y (z)* + %(4p — K —6sin’ ) cot x - ¢/ (x)?
—|—%(4p — K = 3sin” 2) Fi(y(2))y (2)* = 0,
where we set
Fiy) = ¢y + 34 /c1 cosy

Versiny

and ¢y, cg are real constants.
For the case of K = 0, we have the following system:

3
y' () + cote - y' () + 2P Gin 2 - ezy(x)y’(x)?’ =0,
C1

4p .
() — cotx - /J:—Q—I—c—z "(2)2 + -2 —sin? #) cot - 2V (2)3
y'(x) y'(x) —( \/a)y() c1( ) y'(x)
(c2 + 3V/e1) c 2N 2
422 TNV 4 sin® 2)e2V @)y ()t = 0.
e ( ) y'(x)

For the case of K < 0, we have the following system:

3
Y’ () + cot - ¢ (¥) — cothy(x) -/ (x)* + fp sin2x -y (2)> =0,

y'(z) — cotx -y (x) — Fz(y(a:))y/(x)z + 204p+ 1L szsin ?) cot z - y’(a:)?’

2(4p + L — 3psin® x)
+ L

Fa(y(x))y' (x)* =0,
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where we set

(c2 4 3/c1 cosh y)
y/c1sinhy

Fay(y) =

We studied these systems in detail and proved that they did not have common
solution except constants [13]. As a corollary of Theorem 2 and 3 | we proved that
there is no minimal surface with constant negative Gaussian curvature in C P2
even locally.
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