Archivum Mathematicum

Lev M. Berkovi¢; Nikolai Khristovich Rozov

Transformations of linear differential equations of second order and adjoined
nonlinear equations

Archivum Mathematicum, Vol. 33 (1997), No. 1-2, 75--98

Persistent URL: http://dml.cz/dmlcz/107599

Terms of use:

© Masaryk University, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107599
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 33 (1997), 75 — 98

TRANSFORMATIONS OF LINEAR DIFFERENTIAL
EQUATIONS OF SECOND ORDER AND
ADJOINED NONLINEAR EQUATIONS

L. M. BeErkovicH, N. H. Rozov

Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. Transformations of linear differential equations were studied by Euler,
Kummer, Liouville, Lyapunov, S. Lie, Darboux, Halphen, Imshenetskii, Bohl and
others. Otakar Boruvka’s name takes a deserved place even in this list of famous
mathematicians. His work [1] is prominent contribution to classic theory develop-
ment. In this paper a short review of some works (including not well-known ones)
dedicated to stated subject is given. Moreover, Kummer—Liouville’s transformations
and Euler—Imshenetskii-Darboux’s transformations of second order linear equations
are considered. Algorithmic procedures of related equations construction are indi-
cated. Also adjoined nonlinear equations are investigated, namely Ermakov’s equa-
tion and Kummer—Schwarz’s equation for which one or other principles of nonlinear
superposition take place.

INTRODUCTION

Fuler [25] (1780), Kummer [34] (1834) and Liouville [37] (1837) set up prob-
lems about reductions of linear ordinary differential equations of second order
(LODE-2) with variable coefficients to LODE-2 of a preassigned form, in other
words, problems of linear equations equivalence. These problems have not only
theoretical, but also practical significance, because a constructive solution of many
natural science and engineering problems depends on the following problem: could
the present equation be transformed to a known form? However, Euler and Kum-
mer have considered transformations of different types. Euler have applied linear
differential transformation of dependent variable, Kummer have applied transfor-
mation of dependent and independent variables. These transformations have a
great significance not only for integration of differential equations. They have
a great significance in investigating such problems of qualitative theory of dif-
ferential equations as oscillating properties, boundedness, stability and solutions
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asymptotic behavior. Already Kummer, with some limitations to equation’s coef-
ficients, has shown, that equivalence problem has always solution for local change
of variables (Kummer-Liouville transformation (KL)). This result is applied in
geometrical (qualitative) theory LODE (see, for example, Arnold, [6]). Kummer’s
problem for global transformations was solved by Bortuvka [1], [2], [3]. This prob-
lem for local transformations was investigated methodically by Berkovich [8], [9],
[10], who paid a special attention to effective finding the transformations. It should
be noted that KL transformation is the most general transformation preserving
linearity and the order of equation, since Stackel-Lie’s theorem (Stackel [46]).
Solution of Kummer’s equivalence problem was the finding of all corresponding
set of transformations KL. And one more: Kummer’s problem inevitably leads
to nonlinear equations (Ermakov’s and Kummer—Schwarz’s equations), for which
one or other nonlinear superposition principle take place. Thus, it is proved that
problems of linear equations transformations could not be solved without using of
nonlinear equations.

According to what has been said there was a great interest in transformation
problems which resulted in creation of an extensive bibliography. However, many
works were forgotten. It is also true for Kummer’s work [34], which Boruvka have
opened for all mathematicians, and it is true for many other works. Between
these forgotten works are works of Euler [25], Imshenetskii [33], in which differen-
tial transformation was applied, reopened by Darboux [21]. This transformation
should be naturally called Euler-Tmshenetskii-Darboux’s transformation (EID).
There was Ermakov’s work [20] in which he introduced and integrated nonlinear
equation for the first time, and it was also forgotten. Later this equation arose
many times in the qualitative theory of differential equations (Lyapunov [32], Bohl
[18], [19], Hamel [36], Yakubovich [48],[49] et al.). However it’s Pinney’s work [43]
that is better known and in this work he had shown explicitly nonlinear superposi-
tion principle which took place in Ermakov’s equation. In Berkovich and Rozov’s
work [7] it is stated for the first time that Ermakov has priority in the mentioned
equation.

In particular this paper is about these works. The mentioned works were not
well known (some of them were even forgotten). They have not an influence on
Boruvka, so he has created algebraic theory of global transformations of LODE-2
independently. However the authors’ opinion is that they must be considered in
the following development of this theory.

The main purposes of this paper are consideration KL and EID transformations,
including finding of their mutual relations, and finding of algorithmic procedures
for equations “reproduction”.

Contents.

In §1 a brief historical review of some works which have any relations with
Kummer’s problem is given. Apparently, their authors had not known about these
relations. In this review, which is not complete, the works, preceding Boruvka’s
work [1], made by Russian and Soviet mathematicians are considered.

In §2 Kummer’s problem, Kummer—Liouville’s transformation and adjoined
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nonlinear equations are considered in detail.

In §3 one way of equations reproduction (related equations construction) is
proposed, which is based on using of basic differential equation; this basic equation
describes KL transformation.

In §4 related equations, that has relation through EID transformation are con-
sidered. Also relation between KL transformation and EID transformation is
noted. Boruvka’s accompanying equation is considered to be an example.

§1. A BRIEF REVIEW OF SOME WORKS, THAT
HAVE RELATIONS WITH KUMMER’S PROBLEM

Kummer’s [34] and Liouville’s [37] works are fundamental in Kummer’s problem.
However these works are cited frequently at present. We shall start our brief (and
incomplete) historical review from Ermakov’s work [24].

Let there is an equation
(1.1) Y +ao(x)y=0, ag(x) € C(I), I = {z|la <z < b}.

Ermakov’s equation is the equation

(1.2) v + ag(x)v — bov™ =0, by #0

Theorem 1 (Ermakov). 1) General solution of the equation (1.2) can be written
in the form

dx b
(13) V() = e / ) + 2t 1 20
1

where y1(x) is any nontrivial solution of the equation (1.1), and ¢1 # 0, co are
arbitrary constants;

2) in case where ¢; = 0 there are one-parameter solutions families of

dx
(1.4) vz(x) = 2\/—b0yf / y—2 + czyf;
1

3) The solution of nonsingular Cauchy problem for (1.2) with initial conditions
(1.5) v(zo) = vg # 0, v'(20) = vy,
can be written in the form
(1.6) v (x) =y 4 bow™ 2y3,
where y1, y2 Is the equation’s (1.1) base, satisfying to conditions

(1.7) y1(l‘0) = Y10 # 0, yz(l‘o) = Y20, 3/1(900) = 3/10, ylz(l‘o) = 3/20 # 0,
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and wy = y10¥ho — Y20y1o = const # 0 is the equation’s (1.1) Wronskian.

Note. Ermakov’s work [24] presentation can be found in Berkovich works [8],
[10]. The formula (1.4) makes possible to find the solution of the singular Cauchy
problem for (1.2), satisfying the conditions v(#¢) = 0, v'(2¢) = oo. This formula
is absent in [24]. General solution for the equation (1.2) can be written in the form

(Pinney [43])

(1.8) v(r) = \/Ayg + Bysyr + Cyi, —4by = B* —4AC,

where yy, ya2 is the equation’s (1.1) base.
It should be noted, that there are some useful transformations of the Hill’s
equation

dy

(1.9) =

+ p(t)y =0,
in Lyapunov’s work [38], where p(¢) is periodic function of period T'. Also it should

be noted, that [38] was particularly inspired by Joukovskii’s work [50]. Lyapunov
transformation, which leaves an equation in Hill’s equations class, has the form

t

(1.10) it) = O (). 7= [

wi(tr)’

Here w(t) is positive T—periodic function, with continuous second derivative (or, in
more general case, absolutely continuous first derivative). This indicated change
transforms Hill’s (1.9) equation to Hill’s equation

d2y1
(1.11) 72 T Ty =0,
where
(1.12) pi(r) = w?’[dz + pw]t:t(T).

Here p1(7) is periodic function of 7 of period

(1.13) ﬂ:/w%y

Lyapunov had stability criterion of Hill’s equation solution for p(¢) > 0 and he
had used the transformation (1.10) to find stability criterion for those cases when
function p(t) changes its sign in period boundary.
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Further, we shall mention Bohl’s works [18], [19], [20]. In Bohl’s work [18] (see
also [19]) the equation

d?z

(1.14) el + (a4 ¢(t))z = ¥(t), o = const,
was considered, where ¢ and v were continuous periodic functions. Also corre-
sponding homogeneous equation
d?z
(1.15) — +Xz=0, X =a+¢(t)
dt?
was considered. Then the equation (1.14) general solution can be founded easily if
any particular solution of the equation (1.14) and linearly independent solutions
of the equation (1.15) are known.
”However we also could investigate the equation (1.15) with the help of the
following statement.
If X is a function, defined for all £, and function v, defined for all ¢ and satisfying

(1.16) 3 (v + Xv) = ¢, (c = const # 0),

then functions
t

(1.17) vexp(\/:c/ sl vexp(—\/:c/

a a

dt
uZ

)

in case of ¢ < 0, and functions

(1.18) vcos(ﬁc/tj—;), vsin(ﬁc/tj—;)

a a

in case of ¢ > 0, are linearly independent solutions of the equation (1.15)”.

Also Bohl had studied solutions representations for linear equation of second
order in another his work [20].

”Subsequently we shall use the linear equation (1.15) property, which states
that the linear equation (1.15) can be ”integrated”, if the function F'(¢) is known
and this function can be written in the form

(1.19) F(t) = c1u? + couv + csv?,

where u, v are linearly independent solutions; and ¢y, ¢3, c3 are constants not dis-
appearing simultaneously”.

It should be noted, that the function (1.19) is a solution of the selfadjoined
linear equation

(1.20) F" 4 4XF' 42X'F =0, ()=—
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though the equation (1.20) was not written explicitly in [20]. In this work nonho-
mogeneous equation (1.14) was also considered.

Further, we shall consider Elshin’s works. Started in [22], he wrote a whole se-
quence of works in which he had studied the solutions of linear differential equation
of the second order

(1.21) i+ pt)e+qt)r =0

with continuous in interval (finite or infinite) a < ¢ < b coefficients. A brief review
of his investigations of qualitative problems for the equation (1.21) he has given
in the work [23].

Solution of these problems by phase method is realized by means of the studying
of those functions which are determined by characteristic operator

2

(1.22) T10:(p )] = (O = ) +6" +q— T

This operator on all admissible values of © is satisfying conditions:

1) © is continuous on (a,b); 2) © is the function, that © — p/2 has continuous
derivative.

The equation (1.21) transformation on all admissible values of ©

(1.23) T = yexp /(G) - g)dﬁ

to

results in equation from which y can be found:
(1.24) ' +20y + J[0;(p,q)]ly = 0,

This equation can be reduced to Lagrangian selfadjoined form

(1.25) (Ky') + Gy =0,
where
(1.26) K[B] = exp(?/@df), GlO;(p, )= JK

For all continuous on (a, b) coefficients p and ¢, and for all admissible values of
O those © for which KG =1 are always exist.
In these conditions the equation (1.21) general integral is

t
Crexp(—% [ pd§) ¢
t

(1.27) T = \/mo cos(/wdf + Cy),

to
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where C) and C5 are arbitrary constants, and variable frequency w(t) = £K~1(0)
can be found from the differential equation

lw" 3 (w\? 1 1
(1.28) ————(—) twi=g— 0 - oy

If w and v are the equation (1.21) solutions fundamental system which has initial
conditions: ug =1, u, =0, vp =0, v) =1, when t = ¢; then the equation (1.28)
general integral is

t

Aexp(— [ pd§)

to

(Au + Bv)? 4 v?’

(1.29) w(t) =

A and B are arbitrary constants.
The following expressions

t
(o exp(—%fpdg) t

(1.30) D) = = ol = [ we

are called an amplitude and a phase respectively, the function w(¢) is called a
variable frequency, and Elshin has noted that they were deduced by Bohl for
the first time.

Some important results in qualitative theory were obtained due to the phase
method. Elshin’s particular approach to this problem was the equation (1.21)
reduction not to canonical form (Jacobi’s form), but to the equation (1.24). The
second specialty of the phase method is transition from the estimate of the equation
roots (zeroes) distances to the phases relations.

We finish our brief review of the works preceding Bortuvka’s work [1] (see also
[2] and the papers [3], [4]), by the indication of Yakubovich’s work [48] (see also
Yakubovich and Starzhinskii’s work [49]). Investigating the equation (1.9) solu-
tions stability he used the following expression for the y;, y» base:

to

t 1

dt . dt
(1.31) Yy = rcos(nﬂ'/r—z), Yo = rsm(nﬂ'/r—z).

0 0

Yakubovich again came to Ermakov’s equation written in the form

(1.32) p(t) =

— 2 n=12,..

Bortvka [1] has developed original and fruitful theory of LODE-2 transforma-
tions apparently from the mentioned works. However the authors suppose that
these works must be considered for the further development of the DE qualitative
theory.
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§2. KUMMER’S PROBLEM

Setting of the problem. Let there are the equations

(2.1) ¥ +ay(x)y +ao(x)y = 0, a1 (x) € CH(I), ap(x) € C(I), T = {x|la < = < b}

(2.2) 4+ bi(t): +bo(t)z = 0, bi(t) € CL(J), bo(t) € C(T), T = {t|a <t < 3}

where I and J are opened (finite or infinite) intervals and there is Kummer—
Liouville’s transformation (KL)

(2.3) y=v(x)z, dt = u(x)de, v,u € C3(I), wv £0, Ve €T = {z|la < = < b}

This transformation is the most general point transformation which preserves
the order and linearity of equation (Stackel [46]).

Kummer’s problem is to find all set of Kummer—Liouville transformations (2.3)
which transform (2.1) to (2.2). LODE-2 global transformations were considered
in Bortivka’s works [1], [2] (see also [3]), as mentioned above. In Berkovich’s works
[8], [9], [10] a special attention paid to the effective finding of KL transformation.

Remark 1. Considering Kummer’s problem we usually restrict ourselves to the
equations (2.1) and (2.2) canonical forms (a; = 0, b = 0). However, not to lose
some admissible transformations, we must take into account the possibilities of

by # 0 (even if a3 = 0) and b; = 0.

Lemma 1. To reduce (2.2) from (2.1) by means of transformation (2.3) it is
necessary and sufficient that factorization through differential operators (noncom-
mutative ones in general case) should take place

/ / /
(2.4) Ly=(D-= % —ru)(D - = - ri(tyu)y =0, D = d/dx,
u v
where r1(t) and ra(t) are satisfying Riccati equations respectively
(2.5) P4 72 4 by (8)ry + bo(t) = 0, g — 15 — by(t)rs + by — bo(t) = 0.
Lemma 1 is proved by means of Mammana’s theorem about factorization exis-
tence (Mammana [39]).
Lemma 2. To reduce (2.2) from (2.1) by means of transformation (2.3) it is
necessary and sufficient that the following formulas should take place
(2.6) v a4 b1(t)u = ay(x),
(2.7) v 4+ a1 4 agv — bo(t)uzv =0.

This lemma i1s proved through straightforward calculations or by means of
lemma 1.
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Theorem 2. The equation (2.1) can be reduced to (2.2) by means of KL trans-
formation (2.3) if and only if the following conditions take place:

(2.8) () =u(e) M exp(—y @@zt 5 [

(2.9) {t, 2} + Bo(t)t” = Ao(x),
i H 2
where {t,z} = 1+ — 32 (tt—,) is Schwarz’s derivative;
1 1 1 1.
(2.10) Ao(x) = ap — Za% - 50/1, Bo(t) = bo — Zb% — 5[)1

are the equations (2.1), (2.2) semiinvariants, respectively, over the dependent vari-
ables y = A(x)z, z = u(t)é transformations, where A(x), u(t) are arbitrary func-
tions;

(2.11) v 4+ ayv’ + agu — bov ™3 eXp(—Q/ ajdr) =0, by =0,
(2.12) v+ ayv 4 agu—
i i T -2
— bov™3 eXp(—Q/ aydr) (/ bl(t(x))v_zexp(—/ alda:)dx) = 0;
by # 0.

Proof. Having solved (2.6) over v we get (2.8). Then substituting (2.7) by (2.8)
and using the relation u = ', we get (2.9). At least, solving (2.6) over u and
substituting (2.7) by obtained expression, we get (2.11), when b; = 0, or we get
(2.12), when by # 0. O

Lemma 3 (Cayley). 1) {z,t} = —{t,z}z* 2){t(r), 2} = {t, 7}72 + {r,z}.

Lemma 4. The equation (2.9) general solution can be written in the form of the
compositiont =t ool ox, where t(7) is the inversion of some solution 7 = wy(1)
of the equation {r,t} = By(t),

e1 + e

&) = ez + ¢4

is the equation {r,£} = 0 general solution, and £(x) = wo(x) Is some particular
solution of the equation {£,x} = Ao(x), i. e. in the form

1 + cawg()

t) =
wo(t) 3 + cawo(z)’

C1Cq4 — C9C3 ;é 0.

The proof is based on lemma 3.
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Theorem 3. The set of all transformations (2.3), that give us the Kummer prob-
lem solution, is described by the formulas (2.8) and

_ d —2d
(2.18) /exp <_/b1(t)dt) Zdt = citenfexp(=)a x)yl_z ‘
s+ ca [exp(— [aydz)y]*dx

where y; and z; are some particular solutions of the equations (2.1) and (2.2)
respectively.

Proof. The equation (2.1) transformation to (2.2) process can be carried out
through intermediate equations n”(¢) = 0 and ¢’’(r) = 0. During this process
independent variables are making a chain © — & — 7 — . Using the theorem 2
and lemma 4, we get the theorem statement. d

An category approach. It is known that the category theory approach can be
applied to LODE-2. Boruvka [5] is one of the founders of this theory (see also
Neuman [41]). We shall recall some of its notions.

Category — is notion which selects some algebraic properties of collection of mor-
phisms (transformations) of mathematical objects of the same name to each other,
with the condition that morphisms collections contain identity mappings and they
are closed over consecutive fulfilment of mappings.

A category A consists of Ob A class, which elements are called category A
objects, and Mor A class, which elements are called category A morphisms. To
every ordered couple of objects P,@ € Ob A the set Hom(P, @) from Mor A is
associated. If @ € Hom(P, @), then we say, that P is an origin, or domain of
definition, of the & morphism, and @ is an endpoint, or range of values, of the «
morphism. A morphism can be also designated by means of arrows: P — @, or
P-2Q.

The following axioms are true in these conditions:

1. Every morphism « belongs to one and only one set Hom(P, Q).

2. For any two morphisms o« € Hom(P, @) and 2 € Hom(Q, S) the composition
law a0 8 € Hom(P, S) is defined so, that

a) associative law is fulfilled

(@of)oy=aoc(fo7)
for every v € Hom(S,U).

b) There exist such identical morphisms I, € Hom(P, P), I, € Hom(Q, Q),
(which are also called unitary morphisms, or unity elements), that I« = oI, = «v.

Ehresmann’s groupoid. A category A is called Fhresmann’s groupoid, if the
following axiom takes place equally with the above mentioned axioms:
3. For any o € Hom(P, Q) there exists «=! € Hom(@Q, P) so, that

aoa”l! = I, a_loa:Iq.
Brandt’s groupoid. Ehresmann’s groupoid is called Brandt’s groupoid if the

following axiom take place equally with the three above mentioned axioms:

4. Hom(P, Q) # @ for VP, Q.
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Theorem 4. A LODE-2 category (with KL transformations as the morphisms) is
Brandt’s groupoid, moreover KL transformations (2.3) are defined by the formulas
(2.8) and (2.13).

The transition from the A equation to B equation can be written in the form
AfG(S)h™' =B

where f is some transformation which transfers the (2.1) equation to z = 0 equa-
tion; G(S) is the set of all transformations which transfer the (1) = 0 equation
to the (" (1) = 0 equation; h is some transformation which transfers the (2.2)
equation to the ("'(7) = 0 equation, and h~! is inverse transformation to h.

Reduction to the equations with the constant coefficients. We shall con-
sider as the preassigned equation the equation with the constant coefficients

where by is real constant, and b; can be either real or pure imaginary constant.

Lemma 5. The (2.1) equation, reducible to (2.14) by means of KL transforma-
tion, can be factorized:
a) through the noncommutative operators of the Ist order:

(2.15) Ly=(D-2 - L —r)(D— & — ru)y =0,
Uu v

b) through the commutative operators of the Ist order:

1 1 v’ 1 v’
(2.16) u—LyE(—D— — —r) (=D —— —r)y =0,

U uv U uv

where 11, rs are the roots of the characteristic equation
(2.17) 4 byr 4+ by = 0.

The proof is following from lemma 1.

Theorem 5. The (2.1) equation can be reduced to (2.14) by means of KL trans-
formation and the following conditions take place at the same time:
a) The (2.1) equation allows a one-parameter Lie group with generator

_li v 0

(2.18) X = wor + Ey%;

b) u(x) is satisfying to the equations

1 N 2 1
(2.19) 1w 3 (“—) — J6u” = Ao(x), 6= b} by,

U
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" 13

+ 62—2 + 4Agu’ — 2A4%u = 0;

u'u

(2.20) u" 46

U

¢) the multiplier v and the kernel v of the KL transformation are related through
the formulas

(2.21) v(z) = |u(x)|_1/2exp(—%/al(l‘)dl‘—i— %bl/udl‘);

(2.22) v+ a1 v’ + agv — boulv = 0;

d) v is satisfying one of the following nonlinear equations
xr

(2.23) v+ ayv’ + agv — bgv 3 eXp(—Q/ arde) =0, by =0,

Lo

(2.24) v 4+ a1v + agv—

ks T T -2
—bov_SeXp(—Q/ ajdxz) (bl/ v_zexp(—/ aldx)dx) = 0;

e) the function

(2.25) R(x) = exp(—/aldx)u_l
is the equation (2.1) resolvent and satisfies the equation

(2.26) R” +3a1R" + (4ag + ) + 2a3) R’ + (2a} 4 4aga;)R = 0.

Proof. The one-parametric group (G with the generator (2.18) existence follows
directly from the (2.1) reducibility to autonomous form (2.14) (see Berkovich [9],
[10]). Tt can be checked by mere calculation that (2.20) can be reduced to (2.26) by
means of (2.25). The latter fact can be easily checked up by the following method.
Tt is known that the equation (2.26) general solution can be presented in the form
Yy = c1y? + coyrys + cay?, where yi, yo are linear independent solutions of the
(2.1) equation, and ¢, ¢2, c3 are arbitrary constants. Because of (2.1) reducibility
to (2.14) we have

(2.27) y1,2(z) =| u |_1/2 exp(—%/aldx + %g/udx),

whence y1y» = u~'exp(— [ a1dz), and its coincidence with (2.25).
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The symmetries of the linear equation of the 2nd order

Definition 1. We shall say that the (2.1) equation allows Lie one-parameter
group of symmetries:

(2.28) r1 = f(z,y;a), 11 = ¢(x,y;a), ais a parameter

if the (2.28) transformations are the group and the (2.1) equation is invariant to

the (2.28).

The Lie algebra for the (2.1) equation has dimension equals to eight, corre-
sponding to Lie group SL(3,R), and has the generators

/
Xlzli-kv— i Xzzvi:yli, Xg:Xl/udx;
y dy dy
d

0
X, :Xz/udx:yz—, Xs=2x,, Xg=2x, =y,
v v 0y

dy
X — 2 Y oy Yo
7=([ ude) Xl—l—(; udr)Xa, Xg = - uda:)Xl—l—(;) X,

as a base, where u(x) is satisfying to Kummer-Schwarz’s equation of 2nd order

and v(z) — is satisfying to the formula

(o) = Ju() " exp(— [ a(ayiz)

In the work (Samokhin [44]) Lie algebra generators are represented in other
form.

Kummer’s problem turned out to be connected with adjoined nonlinear equa-
tions, for which some or other principle of nonlinear superposition takes place.

Definition 2 (Schneider, Winternitz [45]). We shall say that for ODE
F(x’ y’ y/’ A ’y(n)) = 0

nonlinear superposition principle is true if its general solution can be repre-
sented in the form of nonlinear function

a) of particular solutions of nonlinear equation;

b) of arbitrary constants;

¢) of particular solutions of adjoined linear equation.
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Lemma 7. The Kummer-Schwarz’s equation (2.19) has the following general
solution which depends from é:

WM (z) = Flarys + Biyt) " Haays + Boyn) ™Y, 61 = (a1fs — as61)? > 0;
ul®(x) = F(Ay3 + Byrya + Cyi) ™", &2 = B? —4AC < 0;
uP(x) = Fays + By1) %, 63 =0.
Also there are special cases:
W (z) = Flays + By) " yrti= 1,2 6, = o
uz) = Fy7?, 85 = 0.

Here y» = 1 [ Fy?de, F = e~ Ja1dr and y,,y, form the base for the (2.1)
equation.

The (2.22) equation, which has the basic role in KL transformation theory, will
be called B-equation.

Lemma 8. B - equation (2.22) has general solution

3+ ¥
08)2) = (192 + S1th) 2ﬁ(a2y2 + Bayr)” 2V, 6y > 0;
2Ay2 + By
=/ Ay2 + Byayy + CyP ex arctani), 4 < 0
o =5 1 V=

(=
blyl o
P( ) 63 = 0;

o3
Via,2) = = (ay2 + By ) ex (s + By1)

4 izl

vgi)z):(a@ﬂ‘i'ﬁyl)% 2yt T =0t >0, i=1,2

Y
01y = v exp (& 1y2)’ b =0

where y1, y2 form the base for the (2.1) equation.
If a; = 0, then B-equation has the form

v + (ag(z) — bouz(x))v =0.
If, in addition, by = 0, then B-equation corresponds to Ermakov’s equation
(2.29) v + ag(x)v — bov™3 =0,
and the (2.19) equation has the form

. 2 u 4\ u ou” = dolL).
Corollary. General solutions for the (2.29) and (2.30) equations have the forms
Uz(@ =1y + coyiys + cays,  —4bg = ¢ — 4eqes,

(2.31) w(x) = (c1yi + cayrys + csy3) ™, —4bo = ¢3 — deyes,
respectively, where yi, y2 is the base of the equation y'' + ag(x)y = 0.
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§3. SECOND ORDER RELATED LINEAR DIFFERENTIAL EQUATIONS
CONNECTED BY KUMMER-LIOUVILLE’S TRANSFORMATION

It was mentioned in §2 that constructive investigation of LODE-2 can be real-
1zed very effectively by means of the KL transformations and in many important
cases the equation can be integrated in quadrature or special functions by means
of this transformation. How the bilateral sequences of linear equations (related
equations families) can be constructed from one generative equation is shown in
this paragraph.

The following two equations:

(3.1) ¥ +ai(2)y +ao(x)y =0, a1(x) € CHI), ao(x) € C(I), I = {z]a < x < b},

(3.2) y! + a1y) + aoyr — boulyr =0

will be called the related equations. (They correspond to the equations (2.1) and
(2.22)). They are indirectly connected with each other by means of KL transfor-
mation.

The procedure for related equations construction will be called basic procedure
(B-procedure).

3.1 Basic procedure and related linear differential equations
of 2nd order.
Let us consider an equation:

(ao) v’ +ao(z)y = 0.

Theorem 6 (Berkovich [10], [11]). The equation (ay) induces the following equa-
tions sequence

(ax) Yy + apyr = 0,

%

_ 2

ay = ag — g bosuy,
s=1

bos = const #0, ap = ap—1 — bOkuz,
where us(x) is satisfying to the following sequence of the KS-2 equations:
a3 (w1
-4 — = (U_z) - Zésuz = Qas5—1,
s = b%, — dby,

is discriminant of the characteristic equation:

7“? :l: blsrs —|— bOs = 0
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Then linear independent solutions yi(1,2) have the form:
Yk(1,2) = |uk|_1/2exp(:|:(1/2b1k/ukdx), bir £ 0,

yer = |up 77, yo = |uk|_1/2/ukdl‘, bir =0
This equations sequence (ay) can be written in the form

k

yk + [ap — ZbOS (as1y2s—1 + Bs1yas—1)" (a52y2s—1 + 5523/15—1)_2]:% =0,
s=1

where Y15, yas are the base of the equation ¥ +asys = 0, (51852 — a520851)% = 5.

Theorem 7. The equation (ay) induces the following equations sequence (as),
s =k —1,0, where

E : _ 0,2
s = ap — b_m —my Gs—1 = as — bs —3)

m=s+1

Um = (al—mylm—l + 6£my2m—1)_1(az_mylm—1 + ﬁzmyZm—l)_l
b?n = _bo == V ma 6—m it —mﬁzm - az—mﬁim)z = (bl—m)z - 4b0—m

and Yim—1,Yam—1 form the base of the equation (am—1).

3.2 Examples.
We shall consider the sequence (we shall call it 0 - sequence), which is induced
by the equation y”” = 0 (with support ag = 0) by means of B - procedure.

Example 1. Liouville equation:

Y’ +d(ax? 4+ bx 4+ )"y = 0.

It corresponds to the basic equation v" — bgu?v = 0, where d = —bg, u = (ax? +
br +¢)~1
Example 2
1 m(m + 1) 1 @ -m m+1 1
— |+ = = T=-— ——.
y [ 5 toa|y=0, o1t T SR

This equation has the general solution

m

= T[M cosh T4 Nsinh x—]
al al
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Example 3.

4x2 254

This equation has the general solution

1 1
y”+<_+—)y=0, S = aloge + 4.

1 1
Yy = \/ES(MCOSE + N sin E)

The following two examples which belong to Ince’s equations class also belong
to Schrodinger’s equations class:

Example 4.

2 2

Y’ + m?y + d(asin® max + bsin mz cos ma + ¢ cos? mx) "%y = 0.

Example 5.
y" —m?y + d(asinh? mx 4 bsinh ma cosh ma 4 ¢ cosh? ma) =%y = 0.

Examples 4 and 5 belong to bilateral (0) - sequence

(=m? + d(asinh 2ma 4 b cosh 2ma + ¢)™?) — (—=m?) — (0)
(0) — (m?) — (m? + d(asin 2mz + b cos 2ma + ¢)~2).
Example 6.
The following equation
v =1 (@) + (%) + bor F (a1 ® 4 1) (a® + B2) " ]y = 0,
where f(z) arather arbitrary function, F' = exp(— [ fdx), ® = [ F?dz, is induced
by the equation (—f?(z) — f'(z)).

Solutions of all mentioned examples are given in details in Berkovich [10], [11].

§4. SECOND ORDER RELATED LINEAR DIFFERENTIAL EQUATIONS
CONNECTED WITH EULER-IMSHENETSKII-DARBOUX’S TRANSFORMATION

We shall consider known method of integrable equations reproduction. This
method is based on differential transformation which is often called Darboux
transformation but correctly it should be called Euler-Imshenetskii-Darboux’s
transformation [25], [33], [21]. Also the connection between the KL and EID
transformation will be indicated.

4.1 Euler problem and Euler—Imshenetskii—-Darboux’s transformation
for canonical linear equation of second order.
Let we have the equation

(4.1) y' 4 ao(x)y = 0, ao(x) € C(I)
By means of EID transformation
(4.2) z = Bx)y + alx)y, Bx), a(x) € C*I)

reduce (4.1) to the preassigned form
(4.3) 2" +bo(x)z =0, bo(z) € C(I).
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Theorem 8 (Euler, Imshenetskii, Darboux).
The equation (4.1) induces the following equations sequence

(4.4) Y +aryr =0,
where
k
(4.5) ay :ao—i—QZO/S_l,
s=1

and as_1 is satisfying Riccati equation
(4.6) o ol dagy = A,

or, denoting

(47) As—1 = (ln gs—l)/ = =

we shall get

k k ~; ’
(4.8) ap=ao+2» (Infs_1) =as+2) (h) :
:1

where ys_1 Is the equation’s
(49) yg/_l + (as—l - A)ys—l = Oa
eigenfunction corresponding to eigenvalue A = A;_;.

4.2 Euler problem and Euler-Imshenetskii-Darboux’s transformation
for complete linear equations of second order.
Let we have the equation

(4.11) Y’ +ai(x)y 4 ao(x)y =0, a; € CH(I), ao(x) € C(I)
To reduce it to a preassigned form

(4.13) 2 4 by (2)2 4 bo(z)z = 0, by(x) € CHIT), bo(z) € C(I)
by means of EID transformation, which is written in the form

(4.12) z=PB(x)y — a(x)y, B(z), a(r) € C’Z(I)

In other words
a) to find (4.12) by means of assigned (4.11) and (4.13).
The mentioned problem has others formulations:
b) to find (4.13) by means of assigned (4.11), (4.12);
¢) to find (4.11) by means of assigned (4.12), (4.13).
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Theorem 9 (Heading [32], Whiting [47]). For transformation (4.11) to (4.13) by
means of transformation (4.12) it is necessary and sufficient that the formula

(4.14) oB—af +a 4 af?+ aaf =K exp(/(a1 — by)dx)

takes place, where K is an integration constant. The expression (4.14) is the first
integral of the equations system

(4.15) " +b1a’ + (bg — ag)a + Blagy + aghy — agay) + 2a1 8 =0,

(416) 6// —|— (bl — 2&1)6/ —|— (bo — ap —|— Cl% — a1b1 — Clll)ﬁ —|— (Cll — bl)oz — 20/ = 0

4.3 About relation between KL and EID transformations.

Theorem 10. For the equation (4.11) transformation to itself

(4.17) 2 +ar(z)z +ag(z)z =0, ai(z) € Cl(I), ap(z) € C(I)

by means of EID transformation (4.12) it is necessary and sufficient that
(4.18) Bx) = uH(z), a(z) =vv ut,

where u(x) and v(x) are the kernel and multiplier of the KL transformation, re-
spectively, which transforms (4.11) to an equation with constant coefficients.

4.4 Amplitudes. Let y;,ys is the equation (ag) base, w is its Wronskian. The
functions

(419) v = 1/y% +y§’ v = /y/12+y/22’

are called the first and the second amplitudes of the yi,y> base. The functions
v(#), vi(x) are satisfying to nonlinear equations of the second order

2

1" we
(4.20) v 4+ ag(z)v — 5= 0,
/ 2.2
(4.21) vy — a—ovll + ag(x)vy — v :0 =0.
ap vy

Let apply EID transformation to the equation (4.1)

(4.12%) z=B(x)y.
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Then the equation (4.14) (the first integral) has the form

/
(4.14%) af? =K exp(/ a—odx),
ao

whence # can be assumed equal to unit. Integration constant K can also be
assumed equal to unit. The equation (4.1) is transformed into the equation

/
(4.22) o Qo +agz = 0.
ap

The equation (4.22) can be transformed to
é—i—wZC:O, w = const .
by means of KL transformation
z=wv(x)¢, dt = uy(x)de,
where

1 al
o=lu 7 e (< [ =B} = 1772 Tl

0

Corresponding to (2.15) the equation (4.22) factorization has the form

v af v
(D——l——o—rzaovfz) (D——l—rlaovfz)zzo, 2 —w? =0.

v1

Uncovering factorization, due to differential analogy of Vieta’s theorem, we get

/ / / / /

v a v v

1 0 -2 1 -2 1 -2
— + — + r2a0v; — 4+ riagvy © | — | — +riagv; = ag.
v1 ap v1 v1

The equation (4.21) for vy follows from the latest formula.
Using the substitution

1 /

(4.23) Z = exp (—— / —a—odx) Y = +/|ag|Y
2 ap

in the (4.22) equation we get the equation

(4.24) Y 4 (ap+ =20~ 290y g

which, according to Boravka [1], we call the accompanying equation.
The accompanying equation (4.24) solution has the form

/

¥

Vol

Y =
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Let the equation (4.1) be assigned in the form (ag) by means of the ”support”
ap. Then the accompanying equation can be assigned in the form (@), where the
support a; has the form

R 1a? 3 (a)\*
al(x):ao(x)—i———o—Z(i) ,

2&0

or more concisely

aj(x) = ap(e) + {/ ap(o)do,x}, xg €1

where the symbol {, } designates Schwarz’s derivative of [ ag(c)do, which is cal-
to
culated at the point z.
The following theorem displays the relation between (ag) and (ay).

Theorem 11 (Borivka [1]). For any integral of the equation (ay), the function
Y(z) = ¥/ (x) : \/|ao(z)| is an integral of the equation (a1); conversely, for any
integral Y of the equation (d1) the function Y+/|ag(x)| is the derivative y' of

exactly one integral y of the equation (ag).

CONCLUSION

Kummer—Liouville’s transformation are also applied in investigations of lin-
ear differential equations of the order n > 2 (see Laguerre [35], Halphen [29],
Forsyth [26], Berkovich [10], [12]), including global transformations (see Birkhoff
[17], Gregus [28] and especially Neuman [42], who has developed Boruvka’s ap-
proach). KL transformation is also applied in investigation of nonlinear equations
(see, for example, Berkovich [13], Berkovich and Rozov [14], [15], [16], Hanon
[31]). Tt is a very extensive and poorly investigated theme. But consideration of
mentioned theme is not the subject of this paper. Kummer’s problem has been
applied a new in investigations of Sturm-Liouville’s and Hill’s equations (Lazutkin
and Pankratova [36]), and also in investigations of nonlinear equations (Gelfand,
Dikii [27]), including Korteveg—de Vries’s periodical problem investigation (see.,
for example, Marchenko [40]).

Application of linear differential transformation to higher order equations was
initiated by ITmshenetskii [33] and has been waiting for its further development.

It should be noted in conclusion that the first author work was partially financed

by RFBR, the grant 96-01-01997.
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