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ON SOLUTIONS OF DIFFERENTIAL EQUATIONS
WITH “COMMON ZERO” AT INFINITY

ARPAD ELBERT AND JAROMIR VOSMANSKY

Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. The zeros cg(v) of the solution z(¢, v) of the differential equation 2’/ +
q(t,v)z = 0 are investigated when tli)rgo q(t,v) = 1, [ )q(t,v) — 1|dt < oo and
q(¢,v) has some monotonicity properties as t — co. The notion cx(v) is introduced
also for k real, too. We are particularly interested in solutions z(¢, ) which are
“close” to the functions sin ¢, cost when ¢ is large.

We derive a formula for dck(v)/dv and apply the result to Bessel differential
equation, where we introduce new pair of linearly independent solutions replacing
the usual pair Jy (t), Y, (¢). We show the concavity of cx(v) for |v| > % and also for
lv] < % under the restriction ¢ (v) > T2 (1 — 2v).

1. Introduction.

Almost 50 years ago O. Borivka introduced the function ¢1(¢), known as the
first dispersion which can be defined as the first right zero of a solution of the
second order differential equation

(1.1) 2+ q(t)z=0

vanishing at ¢. This function is studied in [1] and is connected to the transforma-

tion theory of (1.1). The method, using similar transformation as in [1] is used

e.g. in [6] to study distribution of zeros and certain quantities, connected to zeros.
In case when the coefficient ¢(¢) in (1.1) involves some parameter v the solutions

depend on the parameter and the zeros can be considered also as functions of this

parameter (see e.g. [5]). Up to now the ususal approach was to fix one finite zero

of a solution for all ¥ € J. Our aim here is to “send” this fixed zero to infinity.
This paper is concerned with the differential equation

d
(12) Z//+Q(tay)’2:0a tEI:(OaOO)a VEJa /:E
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which is oscillatory at infinity but not oscillatory at ¢ = 0. There is defined also
the zero ¢, (v) for any real & as a function of a parameter v and derived some its
general properties.

Then application is made to the Bessel differential equations, namely the con-
cavity of ¢,(v) is proved almost for all v and ¢ > 0 and certain new properties of
Bessel function are derived.

The function f(¢) is said to be of class M, (0, 00), briefly M, or monotonic of
order n on (0, 00), if it possess n (n > 0) continuous derivatives satisfying

(1.3) (=1 fD)y >0 for t>0 and i=0,1,...,n

2. Preliminary results.
Consider the family of differential equations (1.2) where we assume

(2.1) tlim q(t,v) =1, / lq(t,v)— 1] dt < o0 for v e J.
Let

(2.2) ¢ € My (orq€ Ms) and q(t,v1) —q(t,v2) € My for vy > vs.

Let # = 2(t,v), y = y(t,v) denote a pair of solutions of (1.2) such that their
Wronskian
w(z,y):=xy —2'y=1 forall vel.

It is known (see e.g. [5], [6]) that the function v(t) := 2?4+ y* complies with the
so called Mammana identity
1" 1 12 2
(2.3) M) = v"v— v + 2qv° = 2
which is the first integral of the Appel equation
(2.4) A(v) == 0" +4¢v" 4+ 2¢'v = 0.

From [6], [7], [2] follows that the assumptions (2.1) and (2.2) imply the existence
of certain exceptional unique solution (principal solution) v = v(¢, v) of (2.4) such
that v € My, (or v/ € My), [v(t,v1) — v(t,v2)] € My for v1 > vs and

e 1
(2.5) lim v(t,v) =1, / |1 — ——|dt < .

t—00 U(t,l/)

Consider now the set of solutions z(¢,v) of (1.2) having common zero at t = ¢g
for all v € J. Such solution can be expressed (see e.g. in [6], [7]) as

(2.6) z(t,v) = const \/v(t,v) sin(/ ( L ds)

v(s,v)
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with some const# 0. From this it is clear that the zero of this solution z(¢, ) next
to ¢g occurs where the relation

t
1
/ ds=m
] U(S’V)

holds. This will be the first zero ¢1(v). The notion of the second zero es(v), the
third zero e3(v) and so on, as a function of v is natural. We can extend this notion
of ep(v) with k = 0,1,... to ¢ (v) (see [8]) for & € R by the relation

ex(v)
(2.7) / ds = KT.

v(s,v)

The notion of noninteger k as index was introduced for the Bessel functions in [3],
[4].

Differentiating (2.7) with respect to v, we get

(2.8) ce(v) = - exv) = =Q(ex(v), v),
where

Y ou(s,v)/ov
(29) Q(t,l/)— —U(t,l/) ‘/cD st
3. Differential equation for the function Q(¢,v).

Lemma 3.1. Let v(t,v) complies with the Mammana identity (2.3) and let the
function ¢(t,v) be continuously differentiable with respect to v. Then the function
Q(t,v) defined in (2.9) is a solution of the inhomogeneous third order differential
equation

(3.1) AQ) =22 q(t,v)

where the operator A is defined in (2.4).

Proof. In the sequel we make use of the abbreviation v, = v, (¢,v) = do(t,v)/ov.
Differentiating Q(¢,v) in (2.9) with respect to ¢, we obtain

/
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hence

(3.2) / (v"v, + vl — vl + 4qu,v).

By our assumption M(v) = 2 which implies A(v) = 0. Differentiating (2.3) with
respect to v, we have

0
ov

hence the value of A(Q@) in (3.2) is reduced to (3.1), which proves Lemma 3.1. O

—M(v) = vlv+v"v, — V', + 2,07 +4quv, =0,

Consider the following pair #, y of solutions of (1.2):

ds
v(s)

(33) o= ieos [ 5 = vasnl [

Direct calculation shows that their Wronskian

w(z,y) = z(t,v)y (t,v)—2'(t,v)yt,v)=1.

Differentiation with respect to v gives

e ]
e[ [ i [ )

).

Ty —

(3.4)

hence by (2.9)

(3.5) ‘ vy

Ty  Yu

= —u(t, 1/)/ ZZE::: Z; ds = Q(t,v),

which is in accordance with [5], where the function ¢(v) is defined as a zero of the
linear combination cos o (¢, v) + sin a y(¢, v) with fixed o.

Let us check what happens if in the representation (3.3) ¢y varies. We observe
that ¢p may tend to 0 if the integral f+0 ds/v is convergent. But this is equivalent
to the fact that the solutions of (1.2) are not oscillatory at ¢ = 0, and indeed, we
have this assumption. In case ¢y = 0 the pair of solutions in (3.3) becomes

(3.6)  wolt,v)= \/Wcos(/o %)’ yo(t,v) = \/WSHI(/O U(ds )

$,v)
and correspondingly

vy(s,v)

(3.7) Qo(t,v) = —u(t, 1/)/0 02(5: ” ds
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However, ¢g can not be replaced by oo in (3.3) because the integral foo ds/v is
divergent. Owing to our choice of v(¢, v) as principal one, by (2.5) we can use the
fact that the integral [ (1 — 1/v)ds is convergent (see [7]). Let N(v) and ¢(t,v)
be defined by

(3.8) N@%:AM<L—J%J)ﬁ,gﬁ@d:t+zw<l—aéz)®,

then

(3.9) (A b _ )= Nw).

v(s,v)

Let us introduce the new pair of solutions of (1.2)
(3.10) C(t,v) = Vv cosp(t,v), S(t,v) = Vusinp(t,v).

From here it is clear that the zeros of C'(¢,v) and the ones of cost will be asymp-
totically equal when ¢t — oco. The same observation is true for the zeros of S(¢,v)

and the function sint, too. Owing to (3.8) we have 6—w = ft (v, /v?) ds, hence
| C S| “ v,(s,v)
(3.11) QW”%W%C %A_v@ml Pl

Let us mention that the convergence of the integral ftoo vy (s, v) /v (s, v)ds fol-
lows from [7].
The relation between the pairs of the solutions z¢(¢,v), yo(t,v) and C(¢,v),
S(t,v) can be established by making use of (3.9):
zo(t,v) = cos(N(v))C(t,v)+sin(N(v)) S(t,v),

(3.12) Yo(t,v) = cos(N(v)) S(t,v) —sin(N(v)) C(t,v),

or equivalently

(3.13) C(t,v) = cos(N(v)) zo(t,v) — sin(N(v)) yo(t, v),
' S(t,v) =sin(N(v)) xo(t,v) + cos(N(v)) yo(t, v).
In the same way we find from (3.6), (3.11)

(3.14) Q1(t,v) — Qolt,v) = v(t, V)d];]—lfy)

Since by (3.11) we have lim;—, o Q1(¢,v) = 0, we obtain from (2.5), (3.14)

dN(v)
dv

(3.15) = —tl_i}r& Qo(t,v).
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4. Application to the Bessel differential equation.
The transformed Bessel differential equation which is relevant to (1.2) has the
form

2_1/4
(4.1) Z”—|—<1—Vt72/)2:0 t>0

and a principal pair of its solutions is y/Zt J, (1), /5 Y, (t), where J, (1), Y, (1)

are the standard Bessel functions of order v (see [9]). The function v(¢,v) given

by

7t

(4.2) v(t,v) = 5

[75(t) + Y, ()]
is the principal solution of the corresponding Appel equation (see [6]) and the
Nicholson formula ([9], p. 444)

4t [
(4.3) v(t,v) = —/ Ky (2tsinhs)cosh(2vs) ds
T Jo

provides an efficient tool for the investigations.

In particular, for v = 1/2 we have the pair of solutions sin¢ and — cos ¢, accord-
ingly and v(¢,1/2) = 1.

The differential equation (4.1) is singular but not oscillatory at t = 0 — except
v = +1/2 when there is no singularity at all — and lim;_o4 J,()/Y,(t) = 0,
lim; o4 Y, (t) = —oo, which imply the representation in the spirit of (3.6)

7t 7t
TY,,(t), yo(t,v) = EJ,,(t).

By (3.6) the function Qg(t,v) in (3.7) is

(4.4) zo(t,v) = —

tm
2
hence by the Watson formula [9, p. 445]

Qo(t, I/) =

(4.5) Qolt,v) = -2t /Oo Ko(2tsinh s) e™2"* ds.
0

Making use of the integral ([9, p. 388])

(4.6) /OOO Ko(u)ut~tdu = 2“—2r2(g),

we obtain by (4.5)

(4.7) tlim Qo(t,v) = —/ Ko(u)du = 5 v eR
— 00 0

which will be the main ingradient in proving the next theorem.
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Theorem 4.1. In the case of Bessel differential equation (4.1) the function N(v)
defined by (3.8) has the form

(4.8) N = 2l - 3).

Proof. By the definition of N(v) in (3.8) and by (4.3) we find N(—v) = N(v),
i.e. N(v) is even function of v. Hence it will be sufficient to consider the case
v>0.

From (3.15), (4.7) we have N'(v) = /2, hence N(v) = wv/2 + const. Partic-
ularly, for v = 1/2 it is v(¢,1/2) = 1, hence in (3.8) we find N(1/2) = 0 which
supplies the value of constant for N(v). d

In possesion of the formula (4.8), the formulas (3.13), (4.4) suggest the following
pair of solutions of the Bessel differential equation:

. T 1 T
- 5u(0) = —sin( 20— DIVlt) + cos( v = )LD

Cu(t) = = cos(S(v = %))Yy(t) —sin(Z (v = ) (0.

For noninteger v we have also

sin V-l'zﬂﬂu]y (t) + sin V_Tl/zﬂ'J_,,(t)

SV t) = B ’

®) sinvw

Co(f) = cos V+21/27TJ,,(t)—cos V_Tl/zﬂ'J_,,(t)
v(t) = - sin v ’

It is not difficult to check that S_,(¢) = S,(t), C_,(t) = C,(¢). This symme-
try with respect to v is reflected a little also by (4.3) where clearly the relation
v(t,—v) = v(t,v) holds.

Now we are going to investigate the zero ¢,(v) of the linear combination
cosa S, (t) + sina Cy(t). By the above mentioned symmetry we have that the
function e, (v) is even function and it exists for —vy(k) < v < vp(k) with some
vo(k). By (3.8) we have the impicite equation for ¢, (v):

e 1
cx(V) + /CK(V)(l — G, V))ds = K.

Here the left hand side expression is a stricly increasing function of ¢ = ¢, (v) > 0

for fixed v, therefore by (3.8), (4.8)

T 1

ﬁﬁ>/()oo(1—%)d5:N(V)— 2(|V|_§)

$,v)

which implies that vo(k) = 25—1—% and ¢, (v) is defined on —(2x+ %) <V < 2k+ %,
moreover ¢,(v) exists only for k > —%.
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Another observation can be made also. In case & > 0 ¢, (v) is defined also at
v = % and recalling the fact that v(Z, %) = 1 we obtain the relation cn(%) = Kk,
too.

On the other hand, by making use of the asymptotic expansions of the functions

Jy(t) and Y, (¢) for large values of ¢ from [9, p.199], we may obtain

1 — 412
8rxm

Due to the symmetry ¢, (v) = ¢x(—v), we can restrict our investigations to the
interval [0, vo(&)).

By (2.8), (3.11) we have de/dv = —Q1(c,v), and by (3.14), (4.8) Q1(t,v) =
Qo(t,v)+ Fv(t,v), and making use of the Watson formula (4.5) and the Nicholson
formula (4.3) we get

cx(V) = km + + (—3) as K — 00.
K

Qi1(t,v) = 2t/ Ko (2tsinhs)sinh(2vs) ds
0
which gives the (nonlinear) differential equation for the zero ¢ = ¢, (v)

d (o)
e —26/ Ky(2csinh t)sinh 2vt dt.
0

4.1 =2 =
(4.10) ¢=—

On the behaviour of the function ¢, (v) we have got the following results.

Theorem 4.2. The zero function ¢, (v) is defined on (—%—2/@, 2/@—1—%) for k > —%,
it is symmetric with respect to v = 0, L.e. ¢,(—v) = ¢, (v), moreover it is concave
if [v| > % and also in the case when ¢, (v) > 7v*(1 — 2|v|) for -4 <v < L.
2
e

Proof. First we calculate the function e =c
v

1.

= — 26// Ky (2esinh)sinh 2t dt — 2c/ K{(2csinht)2¢'sinht - sinh 2v ¢t —
0 0
— 2c/ Ky(2esinht)cosh2vt - 2t dt.
0

Integrating by parts in the second term on the right hand side, we obtain

inh ¢
S . sinh 2vt dt =

2¢ / K{(2csinht)2ccosht
0

cos
= [2¢'Ko(2¢csinh t)tanht - sinh 2v ] —
e 1
—26// Ky(2esinht) [Tsinh 2vt + 2vtanht - cosh 21/15] dt
0

cosh?

hence

(4.11)

o tanh?t - tanh 20t — 2v tanh ¢
= —2/ Ky(2¢sinh )¢ cosh 2v¢ [c/ an i vran
0

t

+ 26] dt.
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Since Ko(u) > 0 for u > 0, we have ¢’ < 0 for v > 0, moreover for v > 1/2
tanh?¢ - tanh 2v¢ — 2vtanht = tanht [tanht - tanh 20t — 20] < 0,

hence ¢/(v) < 0 for v > 1/2. An inspection at (4.11) shows that ¢’ < 0 if ¥ = 0,
too. On the interval (0,1/2) we need more sophisticated investigation. First we
derive a lower bound for ¢/(v). Due to the convexity of the function sinh¢ for ¢ > 0
we have

sinh 2 ¢ < sinh ¢
2v 1
hence by (4.10) and [9, p. 388] for 0 < v < £

< cosht,

(4.12)  d(v) > —21// Ko(2esinht)2ccosht dt = —21// Ko(u)du = —mv.
0 0

Then we are going to show the relation

tanh?t - tanh 20t — 2vtanht
2v (1 —2w)t

1
<1 for t>0, 0<I/<§,

or equivalently — using the notation v = 2v —

(4.13) ¢(t,7) = v(1 =)t —tanh?*¢ -tanhyt +~ytanh ¢t > 0 fort >0, 0<y<1.

¢ 0?
Fix the value ¢ and calculate 3_¢’ 3—f’ we obtain
Ty
d¢
— = (1 — 27)t — tanh?t tanht
Oy ( 7) A osh i +tanht,
. inhyt
(4.14) 90 _ _op |1~ ttann2e. S0 l
Oy cosh3+t
) sinh u 3 3 2
Observing that max — 5 = rl?gé({tanhu — tanh® u} = Orélxaé(l{x —a’} = 33
we define the value ¢g by the relation o
totanh?tg = %
2
2
We find tq = 2.650426 ... and from (4.14) g—f <Qfor 0<t<ty,0<y <1 On
v

the other hand ¢(¢,0) = 0, ¢(f,1) = tanh¢ — tanh3¢ > 0, hence the concavity of
é(t,7) with respect to v proves the relation (4.13) for 0 <t <tp, 0 <y < 1.
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Our another observation is concerned with the function tanh u/u. Since

d? (tanhu) _ S

du? U cosh? u

where

sinh 2u — 2u — 2u? tanh u i (2u) 2i41 Qtanhu

(4.15) S(u) = . 2t ) -

u
i=1
and S(u) is increasing function of « for u > 0, S(0) < 0, lim S(u) = oo, there ex-
ists unique u* € (0, 00) where S(u*) = 0. Numerically we get «* = .919937668 . . ..
For our purpose it will be also important the value vy = 1.6140830. .., where the
tangent of the curve tanh u/u goes through (0;1). Let the function 7(u) be defined
by the relation

tanh u
T(u) = U
14 & 1) 0 <u<u

U1

u > U

Then 7(u) is convex function and tanh u/u > 7(u) for w > 0. Since 7(0) = 1, the
convexity of 7(u) implies the relation

(4.16) I—y+97@) > 7(4t) fort>0, 0<y<1.

Let (¢, ) be defined as

i tanh~t  tanht
1/)(t,'y):¢(’7):1—7—tanh2tM—|— an t>1.
7t 7t t
tanh ¢ tanh ¢
Particularly we have ¥(¢,0) = 1 — tanh?t + an >0, ¥(t,1) = an (1—

tanh?¢) > 0. We find that ¢ (¢,7) > (1 — y)¥(t,0) + v ¢(¢,1) if and only if the

tanh ¢ tanh~¢

aI; > an th holds. By definition of 7(u) and (4.16) this
v

inequality holds if v > wu;, and we have got

inequality 1 — v+~

(4.17) P(t,y) >0 if vyt > uy.

Let w = v t, hence v = u/t, and we have ¥(t,v) = U(t, u):

tanhu  tanht
. +

\I!(t,u)zl—%—tanhzt .

t>1ty, u<t.

Let ug = tanhty = .990074.... Then we have ug > uv* and

hzttanhu n tanht — u

(4.18) W(t,u)=1-—tan >0 for w <tanhty = uop.

U i
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Finally, it remains the case ug < u < uy, t > 9. By calculation we find

O?W(t, u) B S(u) tanh? ¢

Hu?  cosh?u

where S(u) is the same as in (4.15). Since u* is the unique zero of S(u) and
ug > u*, we realize that ¥(¢, u) is concave function on ug < u < uy for any fixed
t and the inequalities (¢, ug) > 0, ¥(¢,u1) > 0 have been established in (4.17),
(4.18), consequently W(t,u) > 0 also on [ug, u;], which completes the proof of
(1.13).

Summing up our results, we get ¢’ < 0 if 2¢ 4+ 2v(1 — 2v)¢’ > 0 according to
(4.11) and this inequality holds if we assume ¢ > 7v?(1 — 2v) when we make use
of the inequality (4.12).

Remark. For any fixed x > —% ¢ = ¢, (v) represents certain curve in the (v, ¢)
plane (¢, (v) is here the zero of linear combination of (4.9) so the common zero at
infinity is considered).

Let us calculate h%l %c,@(l/). We have
c— +

%cn(y) = —Q1(ck,v), where Qi(t,v)

is in general case given in (3.11).
For the Bessel functions we have for v(¢, v) deefined by (4.2) and any v > 0

[} , d
1m/)“@”@:—mm=z
=0y f,  v3(s,v) dv 2
Frobenius method shows (it follows also from the well known properties of the
Bessel functions)

co for |v|>1
. _ _1
tl—l>%1+ v(t,v)=< 1 for [|v]=3
0 for |v|<i
0
oo for |v|> 4%
tlir(? Qi(t,y)=% /2 for |v|=1%
=04
0 for |v|< %
and
+oo for v< —%
d —o0  for v>1
lim —ec,(v) = 2 1
en—04 dv :F7T/2 for v = :l:g

0 for |v|< %
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