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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 167 { 171PERIODIC BOUNDARY VALUE PROBLEM OF A FOURTHORDER DIFFERENTIAL INCLUSIONMarko �SvecDedicated to the memory of Professor Otakar Bor�uvkaAbstract. The paper deals with the periodic boundary value problem (1)L4x(t)+a(t)x(t)2 F (t; x(t)), t 2 J = [a; b], (2) Lix(a) = Lix(b), i = 0;1;2;3,where L0x(t) = a0x(t), Lix(t) = ai(t)Li�1x(t), i = 1;2; 3;4, a0(t) = a4(t) =1, ai(t), i = 1;2; 3 and a(t) are continuous on J , a(t) � 0, ai(t) > 0, i = 1;2,a1(t) = a3(t) � F (t; x) : J � R !fnonempty convex compact subsets of Rg,R = (�1;1). The existence of such periodic solution is proven via Ky Fan's�xed point theorem.In this paper we will discuss the periodic boundary value problemL4x(t) + a(t)x(t) 2 F (t; x(t)) ; t 2 [a; b](1) Li(x(a) = Li(x(b); i = 0; 1; 2; 3(2)where L0x(t) = ao(t)x(t); Lix(t) = ai(t) (Li�1x(t))0 ; i = 1; 2; 3L4x(t) = �a1(t)�a2(t) �a1(t) (a0(t)x(t))0�0�0�0(3) a0(t) = 1; a(t) � 0; ai(t) > 0; i = 1; 2; a1(t) = a3(t); continuous on [a; b] = J:F (t; x) : J � R! fnonempty convex compact subsets of Rg; R = (�1;1):(4) If B � R then j B j= supfj x j : x 2 Bg and if D is a set, then cf (D) isthe set of all convex closed subsets of D.1991 Mathematics Subject Classi�cation: 34B15, 34C25, 47H15.Key words and phrases: nonlinear boundary value problem, di�erential inclusion, measurableselector, Ky Fan's �xed point theorem.



168 MARKO �SVECThe basic assumptions concerning F (t; x) are as follows:1o F (t; x) is upper semicontinuous on J � R;2o To each measurable function z(t) : J ! R there exists a measurable selectorv(t) : J ! R such that v(t) 2 F (t; z(t)) a. e. on J . Denote Mz(t) = fthe set ofall measurable selectors belonging to z(t)g.We start with two theorems. The proofs of these theorems are very easy, there-fore, we shall not present them.Theorem 1. Let y(t) be a nontrivial solution of the equationL4y(t) + a(t)y(t) = 0; t 2 [a; b](5)Then the function F (y(t)) = L0y(t)L3y(t) � L1y(t)L2y(t)(6)is strictly decreasing on [a; b]. If t0 is at least a double zero of y(t), then F (y(t)) >0 for t 2 [a; t0) and F (y(t)) < 0 for t 2 (t0; b]. Thus every nontrivial solution y(t)of (5) has at most one double zero on [a; b].From this followsTheorem 2. The boundary value problemL4y(t) + a(t)y(t) = 0(7) Liy(a) = Liy(b); i = 0; 1; 2; 3(8)has only trivial solution y(t) � 0; t 2 [a; b].Theorem 3. Let the assumptions 1o and 2o be satis�ed. Moreover, let exist acontinuous function H(t) > 0; t 2 [a; b] such thatj F (t; z) j� H(t) for each (t; z) 2 [a; b] � R(9)Then the problem (1), (2) has a solution.Proof. Let C[a; b] be the space of all continuous functions de�ned on [a; b] withthe supremum norm, i. e. for u(t) 2 C[a; b] it is ku(t)k = supfj u(t) j; t 2 [a; b]g.Let be Y = fu(t) 2 C[a; b]; Liu(a) = Liu(b); i = 0; 1; 2; 3g. Then to u(t) 2 Ybelongs the set of all measurable selectors Mu(t). Let be v(t) 2Mu(t). Evidently,v(t) 2 F (t; u(t)). Then we seek a solution x(t) of the problemL4x(t) + a(t)x(t) = v(t)(10) Lix(a) = Lix(b); i = 0; 1; 2; 3(11)



BOUNDARY VALUE PROBLEM OF A DIFFERENTIAL INCLUSION 169The problem (7), (8) has only trivial solution (see Theorem 2); therefore, thereexists the Green function G(t; s) for the problem (7, 8) andx(t) = bZa G(t; s)v(s) ds(12)is a solution of the problem (10), (11). Thus we have the multivalued operator Ade�ned on the set Y as follows: for u(t) 2 Y it isAu(t) = fx(t) = bZa G(t; s)v(s) ds; v(t) 2Mu(t)g(13)Evidently Au(t) � Y and Au(t) is nonempty and it is easy to see that Au(t) isconvex.We will prove that: A : Y ! cf(Y ); A is upper semicontinuous on Y ; AY iscompact.Let be u(t) 2 Y; �(t) 2 Au(t). Then�(t) = bZa G(t; s)v(s) ds; v(t) 2Mu(t); v(t) 2 F (t; u(t))and j v(t) j�j F (t; u(t) j� H(t) respecting (9)and j �(t) j� bZa j G(t; s) j H(s) ds � kG(t; s)k bZa H(s) ds = Kwhere kG(t; s)k = max[a;b]�[a;b] j G(t; s) j on [a; b] � [a; b]. Furthermore,j � 0(t) j� bZa j G0t(t; s) j j v(s) j ds � bZa kG0t(t; s)kH(s) ds = K1where kG0(t; s)k = max[a;b]�[a;b] j G0t(t; s). We note that G(t; s) and G0t(t; s) arecontinuous on [a; b] � [a; b]. Thus we have that the elements �(t) 2 Au(t) aswell as the elements �(t) 2 AY are uniformly bounded and equicontinuous on[a; b]. Therefore, the sets Au(t); u(t) 2 Y as well as the set AY are compact in thetopology of C[a; b]. Thus it is easy to see that Au(t) 2 cf(Y ).Let ui(t) 2 Y; i = 1; 2; ::: and let the sequence fui(t)g converge to u(t) in C[a; b].Furthermore, let zi(t) 2 Aui(t) � AY . The set AY being compact, there exists



170 MARKO �SVECa subsequence fzij (t)g of fzi(t)g which converges to a function z(t) 2 AY in thetopology of C[a; b]. We havezi(t) = bZa G(t; s)vi(s) ds; vi(s) 2Mui(t); t 2 [a; b]Respecting (9) we getj zi(t) j� kG(t; s)k bZa H(s) ds = KDenote by L1[a; b] the set of all measurable functions f de�ned on [a; b] such thatkfk1 = bZa kG(t; s)k j f(s) j ds <1We see that the sequence fvi(t)g is bounded in the space L1 [a; b]. Let fEmg; Em �[a; b] be a decreasing sequence of the sets such that T1m=1 Em = �. Then we havelimm!1 j REm kG(t; s)kvi(s) ds j� limm!1 kG(t; s)k REm j vi(s) j ds� kG(t; s)klimm!1 REm H(s) ds = 0Therefore, (see [1], Th. IV.8.9) it is possible to choose a subsequence fvijg offvi(t)g which weakly converges to some v(t) 2 L1[a; b].Evidently fuijg converges to u(t) in C[a; b]. For vij 2 F (t; uij(t); j = 1; 2; :::using the assumption 1o, to a given � > 0 and t 2 [a; b] there exists N = N (t; �)such that for any ij � N we have F (t; uij(t)) � O�(F (t; u(t)), where O�(F (t; u(t))is the �-neighbourhood of the set F (t; u(t)).Consider now the sequence fvij (t)g; ij � N . Then (see [1], Corollary V.3.14)it is possible to construct such convex combinations from vij ; ij � N , denotedby gm(t); m = 1; 2; ::: that the sequence fgm(t)g converges to v(t) in L1[a; b]. ByRiesz theorem we get the existence of a subsequence fgmi(t)g of fgm(t)g whichconverges to v(t) a. e. on [a; b]. From the convexity of O�(F (t; u(t)) and from thefact that vij 2 O�(F (t; u(t)) it follows that gmi(t) 2 O�(F (t; u(t)); i = 1; 2; ::: andconsequently v(t) 2 �O�(F (t; u(t)). For � ! 0 we get v(t) 2 F (t; u(t)). We notethat in our considerations t was a �xed point of [a; b].Thus we have that the functionz(t) = bZa G(t; s)v(s) dsis well de�ned and z(t) 2 Au(t); t 2 [a; b]. Furthermore, it follows from the weakconvergence of vij (t) to v(t) in L1[a; b] that the subsequence fzij (t)g of fzi(t)gconverges to z(t) a. e. on [a; b]. The functions zij (t) belong to the compact set



BOUNDARY VALUE PROBLEM OF A DIFFERENTIAL INCLUSION 171AY . Therefore, there exists a subsequence of the sequence fzij (t)gwhich convergesto a function �z(t) in the topology of C[a; b]. This means that �z(t) = z(t) 2 Au(t)a. e. on [a; b]. This �nishes the proof of the upper semicontinuity of the operatorA on Y .Using the similar considerations as in the proof of the upper semicontinuity ofA on Y , made for the case that zi(t) 2 Au(t) and fzi(t)g converges to z(t) inC[a; b] gives us that z(t) 2 Au(t). It means that Au(t) is closed. Thus we haveproven that Au(t) is compact and A maps Y into cf(Y ).Finally, the use of Ky Fan's theorem �nishes the proof that A has a �xed pointin Y , i. e. there exists u(t) 2 Y such that u(t) 2 Au(t).References[1] Y. Kitamura, On nonoscillatory solutions of functional di�erential equations with a generaldeviating argument, Hiroshima Math. J. 8 (1978), 49-62.Department of Mathematical AnalysisComenius UniversityMlynsk�a dolina842 15 Bratislava, SLOVAKIA
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