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PERIODIC BOUNDARY VALUE PROBLEM OF A FOURTH
ORDER DIFFERENTIAL INCLUSION
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Dedicated to the memory of Professor Otakar Borivka

ABSTRACT. The paper deals with the periodic boundary value problem (1)
Lyz(t)+a(t)=(t) € F(t,z(¢)), t € J =[a,b], (2) Liz(a) = L;z(b),7 = 0,1,2,3,
where Loz(t) = apz(t), Liz(t) = a;(t)Li—1®(t), 1 = 1,2,3,4, ap(t) = as(t) =
1, a;(t), ¢ = 1,2,3 and a(t) are continuous on J, a(t) > 0, a;(¢t) > 0,:=1,2,
a1(t) = a3(t) - F(t,z) : J x R —{nonempty convex compact subsets of R},
R = (=00, ). The existence of such periodic solution is proven via Ky Fan’s
fixed point theorem.

In this paper we will discuss the periodic boundary value problem

(1) Lyz(t)+ a®)x(t) € F (¢, z(1)), t € [a,b]
(2) Li(x(a) = Li(x(b), i =0,1,2,3
where

Loz(t) = ao(t)x(t), Liz(t) = a;(t) (Li_lx(t))/ ,i1=1,2,3

ap(t) =1, a(t) >0, a;(t) >0, i =1,2, a1(t) = as(t), continuous on [a,b] = J.
F(t,z):J x R— {nonempty convex compact subsets of R}, R= (—00,00).
(4) If BC Rthen | B|=sup{|x|: » € B} and if D is a set, then cf (D) is
the set of all convex closed subsets of D.
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The basic assumptions concerning F'(¢, z) are as follows:
19 F(t,#) is upper semicontinuous on J x R;
2° To each measurable function z(¢) : J — R there exists a measurable selector
v(t) : J — R such that v(t) € F(t,z(t)) a. e. on J. Denote Mz(t) = {the set of
all measurable selectors belonging to z(t)}.

We start with two theorems. The proofs of these theorems are very easy, there-
fore, we shall not present them.

Theorem 1. Let y(t) be a nontrivial solution of the equation

(5) Lay(t) + a(t)y(t) = 0, ¢ € [a, 0]
Then the function
(6) F(y(t)) = Loy(t)Lay(t) — Liy(t)L2y(t)

is strictly decreasing on [a,b]. Ifto is at least a double zero of y(t), then F (y(t)) >
0 fort € [a,to) and F (y(t)) < 0 fort € (to,b]. Thus every nontrivial solution y(t)
of (5) has at most one double zero on [a,b].

From this follows

Theorem 2. The boundary value problem

(7) Lay(t) + a(t)y(t) = 0

(8) Liy(a) = Liy(b), i=10,1,2,3

has only trivial solution y(t) =0, ¢ € [a,b].

Theorem 3. Let the assumptions 1° and 2° be satisfied. Moreover, let exist a
continuous function H(t) > 0, t € [a,b] such that

(9) | F(t,2) |< H(t) for each (t,z) € [a,b] x R

Then the problem (1), (2) has a solution.

Proof. Let C[a,b] be the space of all continuous functions defined on [a, b] with
the supremum norm, i. e. for u(t) € Cla,b] it is [Ju(?)|| = sup{| u(t) |,t € [a, ]}
Let be Y = {u(t) € Cla,b], Liu(a) = Lyu(b), i = 0,1,2,3}. Then to u(t) €
belongs the set of all measurable selectors Mu(t). Let be v(t) € Mu(t). E dently,
v(t) € F(t,u(t)). Then we seek a solution z(¢) of the problem

(10) Laz(t) + a(®)x(t) = v(t)

(11) Lix(a) = Lix(b), i=0,1,2,3
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The problem (7), (8) has only trivial solution (see Theorem 2); therefore, there
exists the Green function G(¢, s) for the problem (7, 8) and

(12) z(t) = /G(t,s)v(s) ds

is a solution of the problem (10), (11). Thus we have the multivalued operator A
defined on the set Y as follows: for u(t) € Y it is

b

(13) Au(t) = {=(t) = /G(t, s)v(s)ds, v(t) € Mu(t)}
Evidently Au(t) C Y and Au(?) is nonempty and it is easy to see that Au(?) is
convex.

We will prove that: A :Y — ¢f(Y); A is upper semicontinuous on Y; AY is
compact.

Let be u(t) € Y, ((t) € Au(t). Then

b

()= /G(t, s)v(s)ds, v(t) € Mu(t), v(t) € F(t,u(t))

a

and
| oft) |<] F(t,u(t) |< H(t) respecting (9)

and

<o1s [ 16w HE)ds < Gl [ Hds = K

where ||G(t, 5)|| = max(q 5)x[a,0] | G(t,5) | on [a,b] x [a,b]. Furthermore,

b b

(@I [ 16 1o s < [lcie sl ds = &

a

where ||G'(t, s)|| = max(, sx[a,p] | Gi(t,5). We note that G(t,s) and Gi(t,s) are
continuous on [a,b] x [a,b]. Thus we have that the elements ((t) € Au(t) as
well as the elements ((¢) € AY are uniformly bounded and equicontinuous on
[a,b]. Therefore, the sets Au(t), u(t) € Y as well as the set AY are compact in the
topology of Cla, b]. Thus it is easy to see that Au(t) € cf(Y).

Let wi(t) € Y, ¢ = 1,2, ... and let the sequence {u;(¢)} converge to u(t) in Cla, b].
Furthermore, let z;(t) € Au;(t) C AY. The set AY being compact, there exists
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a subsequence {z;,;(t)} of {#;(t)} which converges to a function z(t) € AY in the
topology of Cla, b]. We have

z(t) = /G(t,s)vi(s) ds, vi(s) € Mu;(t), t € [a,b]

Respecting (9) we get

50 <116 [ s = K

Denote by Li[a, b] the set of all measurable functions f defined on [a, b] such that

17l = UGN 156) ] ds <o

We see that the sequence {v;(¢)} is bounded in the space Ly [a,b]. Let {Ey}, Ep C
[a,b] be a decreasing sequence of the sets such that (),._, Fy, = @. Then we have

ling oo | NG 8)lis) ds 1< i GO )] | vi(s) | ds

m En

< |G, s)|[limm—co [ H(s)ds =0
B,

Therefore, (see [1], Th. 1V.8.9) it is possible to choose a subsequence {v;;} of
{vi(t)} which weakly converges to some v(t) € L;[a,b].

Evidently {u;;} converges to u(t) in Cla,b]. For v;; € F(t,u;,(t),j =1,2,...
using the assumption 1°, to a given € > 0 and ¢ € [a, b] there exists N = N(t,¢)
such that for any é; > N we have F'(t,u;;(t)) C O(F (t,u(t)), where O (F (¢, u(t))
is the e-neighbourhood of the set F'(¢, u(?)).

Consider now the sequence {v;;(t)}, i; > N. Then (see [1], Corollary V.3.14)
it is possible to construct such convex combinations from v;;, i#; > N, denoted
by gm(t), m = 1,2, ... that the sequence {gm(¢)} converges to v(?) in L,[a,b]. By
Riesz theorem we get the existence of a subsequence {gm,(t)} of {gm(¢)} which
converges to v(t) a. e. on [a,b]. From the convexity of O(F(¢,u(t)) and from the
fact that v;; € O(F'(¢, u(t)) it follows that g, (1) € O(F' (¢, u(t)), i =1,2,... and
consequently v(t) € O.(F(t,u(t)). For € — 0 we get v(t) € F(t,u(t)). We note
that in our considerations ¢ was a fixed point of [a, b].

Thus we have that the function

z(t) = /G(t,s)v(s) ds

is well defined and z(¢) € Au(?), t € [a,b]. Furthermore, it follows from the weak
convergence of v;,(t) to v(t) in Ly[a,b] that the subsequence {z;,(¢)} of {z(t)}
converges to z(t) a. e. on [a,b]. The functions z;,(t) belong to the compact set
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AY'. Therefore, there exists a subsequence of the sequence {z;,(t)} which converges
to a function Z(¢) in the topology of Cf[a,b]. This means that z(t) = z(t) € Au(t)
a. e. on [a,b]. This finishes the proof of the upper semicontinuity of the operator
AonY.

Using the similar considerations as in the proof of the upper semicontinuity of
A on Y, made for the case that z;(t) € Au(t) and {z;(t)} converges to z(?) in
Cla, b] gives us that z(t) € Au(t). Tt means that Au(t) is closed. Thus we have
proven that Au(?) is compact and A maps Y into ¢f(Y").

Finally, the use of Ky Fan’s theorem finishes the proof that A has a fixed point
in Y, i. e. there exists u(t) € Y such that u(t) € Au(t).
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