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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 315 { 321COMMUTATIVITY OF ASSOCIATIVE RINGS THROUGH ASTREB'S CLASSIFICATIONMohammad AshrafAbstract. Letm � 0; r � 0; s � 0; q � 0 be �xed integers. Suppose thatRis an associative ring with unity 1 in which for each x; y 2 R thereexist polynomials f(X) 2 X2ZZ[X]; g(X); h(X) 2 XZZ[X] such thatf1�g(yxm)g[x; xry � xsf(yxm)xq]f1�h(yxm)g = 0. Then R is commu-tative. Further, result is extended to the case when the integral exponents inthe above property depend on the choice of x and y. Finally, commutativityof one sided s-unital ring is also obtained when R satis�es some related ringproperties. 1. IntroductionThroughout the present paper R will denote an associative ring. The sym-bol [x; y] will denote the commutator xy � yx. As usual, ZZ[X] is the totality ofpolynomials in X with coe�cients in ZZ, the ring of integers. A ring R is calledleft (resp. right) s-unital if x 2 Rx (resp. x 2 xR) for all x 2 R. A ring R iscalled s-unital if and only if x 2 Rx \ xR for all x 2 R. Consider the followingring properties:(H) For each x; y 2 R there exists a polynomial f(X) 2 ZZ [X] such that[x� x2f(x); y] = 0.(CH) For each x; y 2 R, there exist polynomials f(X); g(X) 2 ZZ [X] such that[x� x2f(x); y � y2g(y)] = 0.(P1) For each x; y 2 R there exist polynomials f(X) 2 X2ZZ [X] and g(X);h(X) 2 XZZ [X] such that f1�g(yxm)g[x; xry�xsf(yxm)xq ]f1�h(yxm)g=0, where m � 0; r � 0; s � 0; q � 0 are �xed integers.(P�1) For each x; y 2 R there exist integers m = m(x; y) � 0, r = r(x; y) � 0,s = s(x; y) � 0, q = q(x; y) � 0 and polynomials f(X) 2 X2ZZ [X],1991 Mathematics Subject Classi�cation: 16U80.Key words and phrases: factorsubring, s-unital ring, commutativity, commutator, associativering.Received February 27, 1996



316 MOHAMMAD ASHRAFg(X); h(X) 2 XZZ [X] such thatf1� g(yxm)g[x; xry � xsf(yxm)xq]f1� h(yxm)g = 0.(P2) For each x; y 2 R there exist polynomials f(X) 2 X2ZZ [X] and g(X);h(X) 2 XZZ [X] such that f1�g(yxm)g[x; yxr�xsf(yxm)xq]f1�h(yxm)g =0, where m � 0; r � 0; s � 0; q � 0 are �xed integers.(P�2) For each x; y 2 R there exist integers m = m(x; y) � 0, r = r(x; y) � 0,s = s(x; y) � 0, q = q(x; y) � 0 and polynomials f(X) 2 X2ZZ [X],g(X); h(X) 2 XZZ [X] such thatf1� g(yxm)g[x; yxr � xsf(yxm)xq]f1� h(yxm)g = 0.The famous Jacobson's \xn(x) = x theorem" was generalized by Herstein[6] (signi�ed as Theorem H in sequel), who proved that a ring satisfying the prop-erty (H) must be commutative. It is natural to consider the related properties[xy � p(xy); x] = 0 and [xy � q(yx); x] = 0 for some p(X); q(X) 2 X2ZZ[X]depending on ring's elements x; y. Putcha and Yaqub [13] established that if foreach x; y 2 R there exists a polynomial f(X) 2 X2ZZ [X] such that xy � f(xy)is central, then R2 must be central. Recently, Bell et al.(cf. [3] and [4]) ob-tained the commutativity of rings with unity 1 satisfying identities of the form[xy � p(xy); x] = 0 or [xy � q(yx); x] = 0, where the underlying polynomialsp(X); q(X) 2 X2ZZ [X], are considered to be �xed. Inspired by these works, theauthor [2] obtained commutativity of rings with unity 1 satisfying the property[xmy � xpf(xmy)xq ; x] = 0, where the polynomial f(X) 2 X2ZZ [X] depends onthe pairs x; y 2 R and m � 0; p � 0; q � 0 are �xed integers. Thus, a naturalquestion arises: what can we say about the commutativity of ring R, if the under-lying condition is replaced by [xmy�xpf(yxm)xq; x] = 0? In the present paper, wenot only answer this question, but also we establish rather a more general resultby proving that a ring with unity 1 satisfying either of the properties (P1) or (P2)is commutative. Further, results are obtained for one sided s-unital rings. Thus,we generalize considerably many well-known commutativity theorems to mentiona few [3, Theorem 2], [11, Theorem 1], [12, Theorem 2], [14, Theorem], [15, Theo-rem A], [16, Theorem], [17, Theorem] and [19, Theorem] etc.2. Some Preliminary ResultsWe begin by considering the following types of rings.(i) � GF (p) GF (p)0 GF (p) � ; p a prime.(i)l � GF (p) GF (p)0 0 � ; p a prime.(i)r � 0 GF (p)0 GF (p) � ; p a prime.(ii) M�(K) = �� � �0 �(�) �=�; � 2 K� ; where K is a �nite�eld with a non-trivial automorphism �:



COMMUTATIVITY OF ASSOCIATIVE RINGS 317(iii) A non-commutative division ring.(iv) S = < 1 > +T , T a non-commutative radial subring of S.(v) S = < 1 > +T , T a non-commutative subring of S such thatT [T; T ] = [T; T ]T = 0.Recently Streb [18] classi�ed non-commutative rings, which has been used ef-fectively as a tool, to obtain a number of commutativity theorems (cf. [2], [9], [10],[11] and [12] etc.). From the proof of [18, Corollary 1] it can be easily, observedthat if R is a non-commutative ring with unity 1, then there exists a factorsubringof R, which is of type (i), (ii), (iii), (iv) or (v). This observation gives the fol-lowing result, which plays the key role in our subsequent study (cf. [11, Lemma1]).Lemma 1. Let P be a ring property which is inherited by factorsubring. If norings of type (i), (ii), (iii), (iv) or (v) satisfy P, then every ring with unity 1 satis-fying P is commutative.For easy reference, we state the following known results which are essentiallyproved in [9, Corollary 1] and [12, Lemma 1] respectively.Lemma 2. Suppose that a ring R with unity 1 satis�es (CH). If R is non-commutative, then there exists a factrosubring of R which is of type (i) or (ii).Lemma 3. Let R be a left (resp. right) s-unital not a right (resp. left) s-unital,then R has a factorsubring of type (i)l (resp. (i)r).3. Main ResultsWe being with the following theorem.Theorem 1. Let R be a ring with unity 1 satisfying either of the properties (P1)or (P2), then R is commutative (and conversely).In order to develop the proof of the above theorem, �rst we prove the follow-ing lemma.Lemma 4. Let R be a division ring satisfying either of the properties (P1) or(P2). Then R is commutative.Proof. Suppose that R satis�es the property (P1). Let u be a unit in R. Then foreach y 2 R, there exist polynomials f(X) 2 X2ZZ[X] and g(X); h(X) 2 XZZ [X]such that0 = f1� g(yu�mum)g[u; uryu�m � usf(yu�mum)uq]f1� h(yu�mum)g= f1� g(y)g[u; uryu�m � usf(y)uq ]f1� h(y)g :



318 MOHAMMAD ASHRAFThis implies that either y�yg(y) = 0; y�yh(y) = 0 or [u; uryu�m�usf(y)uq ] = 0.In the �rst two cases R is commutative by Theorem H. Hence, we assume that fora unit u 2 R and arbitrary y 2 R, [u; uryu�m �usf(y)uq ] = 0, which implies that(1) ur[u; y] = us[u; f(y)]uq+m :Further, choose polynomial f1(X) 2 X2ZZ [X] such that u�r[u�1; y] =u�s[u�1; f1(y)]u�(q+m). This yields that(2) us[u; y]uq+m = ur[u; f1(y)] :In view of (1), there exists a polynomial f2(X) 2 X2ZZ [X] such that ur[u; f1(y)] =us[u; f2(f1(y))]uq+m . Thus, if f3(X) = f2(f1(X)) 2 X2ZZ [X], then we have(3) ur [u; f1(y)] = us[u; f3(y)]uq+m :Comparing equations (2) and (3), we arrive at us[u; y]uq+m = us[u; f3(y)]uq+m .But, since u is a unit in R and hence [u; y�f3(y)] = 0 for some f3(X) 2 X2ZZ [X].Again using Theorem H, we see that R is commutative.Using similar techniques with necessary variations, we get the required re-sult, if R satis�es the property (P2). We are now well-equipped to prove our maintheorem.Proof of Theorem 1. Suppose that R satis�es the property (P1). In view ofLemma 1, it su�ces to show that R can not be of type (i), (ii), (iii), (iv) or (v).First consider the ring of type (i). Then in (GF (p))2, p a prime, we see thatfor each f(X) 2 X2ZZ [X], g(X); h(X) 2 XZZ [X],f1� g(e12em11)g[e11; er11e12 � es11f(e12em11)eq11]f1� h(e12em11)g = e12 6= 0 ;a contradiction. Hence no rings of type (i) satisfy (P1).Now, consider the ring M�(K), a ring of type (ii), and choosex = � � 00 �(�) � ; (� 6= �(�)) ; y = � 0 10 0 � : Then for each f(X) 2X2ZZ [X], g(X); h(X) 2 XZZ [X], we see thatf1� g(yxm)g[x; xry � xsf(yxm)xq ]f1� h(yxm)g = �r(�� �(�))e12 6= 0 :Hence, R can not be of type (ii).Further, let R be a ring of type (iii). Then by Lemma 4, R is commutative,a contradiction.



COMMUTATIVITY OF ASSOCIATIVE RINGS 319Assume that R is a ring of type (iv). Then a careful scrutiny of the proof ofLemma 4 shows that, for a unit u 2 R and arbitrary y 2 R, there exist polyno-mials f3(X) 2 X2ZZ[X], g(X); h(X) 2 XZZ [X] such that either y � yg(y) = 0,y� yh(y) = 0 or [u; y� f3(y)] = 0. Let a; b 2 T . Then 1+ a is a unit and thereexist f3(X) 2 X2ZZ [X], g(X), h(X) 2 XZZ [X] such that either b � bg(b) = 0,b� bh(b) = 0 or [1+a; b�f3(b)] = 0. Hence, by Theorem H T is commutative,a contradiction.Finally, suppose that R is a ring of type (v). Then for each a; b 2 T , thereexist polynomials f(X) 2 X2ZZ[X], g(X), h(X) 2 XZZ [X] such that0 = f1� g(b(1 + a)m)g[1 + a; (1 + a)rb� (1 + a)sf(b(1 + a)m)(1 + a)q]f1� h(b(1 + a)m)g= f1� h(b(1 + a)m)g[1 + a; (1 + a)rb]f1� h(b(1 + a)m)g= f1� h(b(1 + a)m)g[1 + a; b]f1� h(b(1 + a)m)g= [a; b]This is a contradiction, and R can not be of type (v).Now, let R satisfy the property (P2). If R is of type (i), then there existpolynomials f(X) 2 X2ZZ [X], g(X), h(X) 2 XZZ [X] such thatf1� g(e12em22)g[e22; e12er22 � es22f(e12em22)eq22]f1� h(e12em22)g = �e12 6= 0 :Accordingly, no rings of type (i) satisfy the property (P2). Using similar argu-ments as above, one can show that no rings of type (ii), (iii), (iv) or (v) satisfythe property (P2) and by Lemma 1, we get the required result.Corollary 1. Let r � 0; s � 0; q � 0 be �xed integers and let R be a ring withunity 1. If for each x; y 2 R there exists a polynomial f(X) 2 X2ZZ[X] such that[xry � xsf(y)xq ; x] = 0, then R is commutative.Remark 1. If the integral exponents m; r; s; q in the properties (P1) and (P2) areallowed to vary with the pair of elements x; y 2 R, i.e. R satis�es either of theproperties (P�1) or (P�2), then a careful scrutiny of the proof of Theorem 1 showsthat R has no factorsubring of type (i) or (ii). Thus, in addition, if R satis�es theproperty (CH), then in view of Lemma 2, we get the following.Theorem 2. Let R be a ring with unity 1 satisfying either of the properties (P�1)or (P�2). Moreover, if R satis�es the property (CH), then R is commutative (andconversely).Remark 2. The non-commutative ring of 3�3 strictly upper triangular matricesover a ring satis�es the property [xry � xsf(yxm)xq; x] = 0, and hence rules outthe possible generalization of the above theorems for arbitrary rings. However, wecan prove commutativity results for one sided s-unital rings, if R satis�es some



320 MOHAMMAD ASHRAFrelated ring properties.Theorem 3. Let R be a left (resp. right) s-unital ring in which for each x; y 2 Rthere exists a polynomial f(X) 2 X2ZZ [X] such that [xry � xsf(yxm)xq; x] = 0(resp. [yxr � xsf(yxm)xq ; x] = 0), where m � 0, r � 0, s � 0, q � 0 are �xedintegers. Then R is commutative (and conversely).Proof. If R is a left (resp. right) s-unital ring satisfying [xry � xsf(yxm)xq ; x] =0 (resp. [yxr � xsf(yxm)xq; x] = 0), then a careful scrutiny of the proof ofTheorem 1 shows that no rings of type (i)l (resp. (i)r) satisfy the property[xry � xsf(yxm)xq; x] = 0 (resp. [yxr � xsf(yxm)xq; x] = 0). Hence, by Lemma3, R is right (resp. left) s-unital. Thus, in both the cases R is s-unital and in viewof Proposition 1 of [7], we can assume that R has unity 1, and commutativity ofR follows by Theorem 1.Following is an immediate consequence of the above theorem:Corollary 2. Let m � 0; r � 0; s � 0; q � 0 be �xed integers. If R is a left (resp.right) s-unital ring in which for every x; y 2 R there exists an integer t = t(x; y) > 1such that [xry � xs(yxm)txq; x] = 0 (resp. [yxr � xs(yxm)txq; x] = 0). Then R iscommutative (and conversely).Using similar arguments as used to get Theorem 2, we can prove the following:Theorem 4. Let R be a left (resp. right) s-unital ring in which for every x; y 2 Rthere exist integers m = m(x; y) � 0, r = r(x; y) � 0, s = s(x; y) � 0, q =q(x; y) � 0 and a polynomial f(X) 2 X2ZZ[X] such that [xry�xsf(yxm)xq; x] = 0(resp. [yxr�xsf(yxm)xq ; x] = 0). Moreover, ifR satis�es the property (CH). ThenR is commutative (and conversely).References[1] Abujabal, H. A. S., Ashraf, M., Some commutativity theorems through a Streb's classi�-cation, Note Mat. 14, No.1 (1994) (to appear).[2] Ashraf, M.,On commutativity of one sided s-unital rings with some polynomial constraints,Indian J. Pure and Appl. Math. 25 (1994), 963-967.[3] Bell, H. E., Quadri, M. A., Khan, M. A., Two commutativity theorems for rings, Rad.Mat. 3 (1994), 255-260.[4] Bell, H. E., Quadri, M. A., Ashraf, M., Commutativity of rings with some commutatorconstraints, Rad. Mat. 5 (1989), 223-230.[5] Chacron, M., A commutativity theorem for rings, Proc. Amer. Math. Soc., 59 (1976),211-216.[6] Herstein, I. N., Two remakrs on commutativity of rings, Canad. J. Math. 7 (1955), 411-412.[7] Hirano, Y., Kobayashi, Y., Tominaga, H., Some polynomial identities and commutativityof s-unital rings, Math. J. Okayama Univ. 24 (1982), 7-13.[8] Jacobson, N., Structure theory of algebraic algebras of bounded degree, Ann. Math. 46(1945), 695-707.



COMMUTATIVITY OF ASSOCIATIVE RINGS 321[9] Komatsu, H., Tominaga, H., Chacron's conditions and commutativity theorems, Math. J.Okayama Univ. 31 (1989), 101-120.[10] Komatsu, H., Tominaga,H., Some commutativity theorems for left s-unital rings, ResultateMath. 15 (1989), 335-342.[11] Komatsu, H., Tominaga, H., Some commutativity conditions for rings with unity, ResultateMath. 19 (1991), 83-88.[12] Komatsu, H., Nishinaka, T., Tominaga, H., On commutativity of rings, Rad. Math. 6(1990), 303-311.[13] Putcha, M. S., Yaqub, A., Rings satisfying polynomial constraints, J. Math. Soc., Japan25 (1973), 115-124.[14] Quadri, M. A., Ashraf, M., Khan, M. A., A commutativity condition for semiprime ring-II,Bull. Austral. Math. Soc. 33 (1986), 71-73.[15] Quadri, M. A., Ashraf, M., Commutativity of generalized Boolean rings, Publ. Math.(Debrecen) 35 (1988), 73-75.[16] Quadri, M. A., Khan, M. A., Asma Ali, A commutativity theorem for rings with unity,Soochow J. Math. 15 (1989), 217-227.[17] Searcoid, M. O., MacHale, D., Two elementary generalizations for Boolean rings, Amer.Math. Monthly 93 (1986), 121-122.[18] Streb, W., Zur struktur nichtkommutativer Ringe, Math. J. Okayama Univ. 31 (1989),135-140.[19] Tominaga, H., Yaqub, A., Commutativity theorems for rings with constraints involving acommutative subset, Resultate Math. 11 (1987), 186-192.Department of MathematicsAligarh Muslim UniversityAligarh-202 002, INDIA
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