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CLASSICAL DIFFERENTIAL GEOMETRY WITH CHRISTOFFEL
SYMBOLS OF EHRESMANN e-CONNECTIONS

ERCUMENT ORTACGIL

ABSTRACT. We give a method based on an idea of O. Veblen which gives explicit
formulas for the covariant derivatives of natural objects in terms of the Christoffel
symbols of a symmetric Ehresmann e-connection.

INTRODUCTION

It is well known that tensor calculus originated from the works of Ricci, Levi-
Civita and Christoffel about 1900. In 1922 O. Veblen proposed a generalization
of covariant differentiation (CD) in [17], [18]. The basic idea was to differentiate
the components of a natural object (NO) in affine normal coordinates and also to
differentiate the transformation rule of its components from affine normal coordi-
nates to arbitrary coordinates. By successive differentiations, Veblen introduced
the concepts of extensions of tensors, affine extensions and affine normal tensors
in [17], [18]. Extensions of the metric tensor are independently discovered and
used by G. D. Birhofl in relation to physics in [1]. However, in order to differ-
entiate higher order NO’s covariantly, one needs higher order Christoffel symbols
(CS) or an equivalent concept which unfortunately did not exist at the time of
these works. Consequently, this extension procedure was applied to tensors and
classical CS and bound by tensor calculus, produced further tensors. It seems
that this approach, overhelmed by local formulas and also lacking a conceptual
framework compared to the formalism introduced by E. Cartan the same year in
[2], did not attract much attention. Later, through the work of C. Ehresmann
about 1950, the concept of linear connection on the principle frame bundle has
been accepted as the modern substitute for CD. Ehresmann defined and studied
also linear connections on higher order frame bundles, generalizing CD to higher
order NO’s. Since then, CD of NO’s has been studied by several geometers (see,
for instance, [3], [14], [7]) and different definitions have been proposed which are
shown to be equivalent in [7]. Consequently, the foundations of the theory of CD
of NO’s based on differential forms on frame bundles is now well known and we
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refer the reader to the basic reference [8] for a modern and detailed treatment of
this subject.

In this note we give yet another approach to CD of NO’s which is based on the
following observation: In the above framework, the main object of study is the
Lie algebra valued connection form and CS emerge as its components and play a
secondary role. Further, CS are now rather intricate objects in higher orders and it
1s very difficult to do explicit computations with them, in contrast to the classical
situation where such computations have paved the way to important discoveries.
Therefore one would like to have a framework of CD which incorporates

1. A set of CS which are more elementary than the CS of linear connections.

2. A method which will enable one to compute the covariant derivative of any
NO explicitly as in tensor calculus.

Our purpose in this note 1s to give such a framework which, we believe, updates
[17], [18]. As a remarkable fact, it turns out that the CS which we need are the CS
of e-connections, a concept defined by Ehresmann in 1956 in [4] and studied further
in [6], [9], [19], [10]. Naturally, these objects are in one to one correspondence with
linear connections. However, their transformation rule uses nothing but the group
operation of the jet group, that is, chain rule (see (2) below). We would like to
indicate here that the local formulas for prolongations of e-connections are implicit
in the formulas for affine extensions in [17], [18].

Our method, which is algorithmic and can be carried out by a computer, is
based on the idea of differentiating the transformation rule of the components of a
given NO from geodesic coordinates to arbitrary coordinates. This idea is due to
Veblen where affine normal coordinates are used instead of geodesic coordinates
([17], [18]). This method enables one to give explicit formulas in terms of the
components of the NO and the CS of a given symmetric e-connection.

The present framework of CD dwells on the following fundamental idea due
to those who pioneered CD: Let £ be a section of a natural bundle E(M) - M
of order k and let &% be its components. Then 25;, does not transform as a
section of V(E(M)) ® T*(M) due to the derivatives up to order k& + 1 which
arise from differentiation. One therefore searches for a structure @ on M of order

k+1 and a correcting term y ; (£(z), 7(x)) such that %L; + Y50 (&(w), m(x)) will
transform properly. Consequently, the present framework seems to be the direct
generalization of CD of tensor fields to higher order NO’s. However, it seems to

have some rather peculiar consequences which we will mention at the end of this

note. The relation of the present framework to the formalism of linear connections
remains to be clarified.

A FRAMEWORK FOR COVARIANT DIFFERENTIATION OF NATURAL OBJECTS

We will start by briefly recalling the definition of e-connections and their CS.
Let ﬁk(M) — M be the coframe bundle of M of order k. The elements of ﬁk(M)
are k-jets of local diffeomorphisms with source in M and target at the origin of R™
and ﬁk(M) is a left principal bundle with group GL;(n,R). A dual e-connection r
is a GLi(n,R) invariant section of ﬁk(M) — ]Sl(M), where we regard GLi(n,R)
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as a subgroup of G Ly (n,R) by the canonical injection GL1 (n,R) — (GLi(n,R),0).
If«', 2% ,...,2;, ;, arelocal coordinates on Pk( ), then T is locally determined
by its CS Fjle(x) T (z), which we will also denote by I:L(x), 2 < |p| <k,

Ji---Jk
and by the formulas

(1) ~;1 ]S_xafjl ]S() 2<s<k.

It is easy to show that I:L(a:) transform by

oyt Parey ~ ox’ ok 2t
P<3xj) (5 F]1]2( )a~~~arj1...jk(l’))‘(8—yja~~~,m)

(2) (6Z F;1]2( ) le ]k(y))

where o denotes the group operation of G Lg(n,R) and p denotes the projec-
tion GLi(n,R) — GLi(n,R) ([10]). Note that F;k transform as classical CS.

If 2*(M) — M denotes the associated bundle of ﬁk(M) with respect to the right
action determined by (2), then a e-connection becomes a section of this bundle.
Similarly we can define (M) — M as an associated bundle of the frame bundle
ﬁk(M) — M ([9], [19]). Using the same notation for bundles and their sheaves of

local sections, we have a map (M) — £%(M) which is locally given by

-1
(3) (62 F;1]2"' le ]k) (6Z F;1]2"' le ]k)

where fL denote the CS of T' € g%(M) and ( )~! denotes the inversion in the
jet group. If re g8(M) and Te g%(M) are related by (3), we will denote them
by (T',T) and call (T',T) an associated pair of symmetric e-connections. Clearly
I and T' can be defined also without the assumption of symmetry using the same
transformation rules. ) )

88 yl . 88 xl

For simplicity of notation, now let ! = i 9uie and o}, = W
where v = (j1, ..., Js)-

The main result of this note depends on the following simple

Lemma. Let (V;y') be a coordinate system with p € V and let (f,f) be an
associated pair of symmetric e-connections of order m with CS ff,(y) and ff,(y)
on V. Then there exists a coordinate system (U;x') around p such that at the
point p we have

: 6y ) g i _
i. 37_6 and T () =T, (x)=0.

ii. Ff,(y) = A}, and Ff,(y) =0l

Proof. Let (z%) be the standard coordinates in R", ° the coordinates of p and
q any point in R™. Take any map f : R" — M such that f(¢) = p and
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d ) 52 ) am ) . .
(S50 T, gl ) = 6T 0 T )
Then f restricts to a local diffeomorphism near p and defines a coordinate system
(U; 2') around p.
Both statements are now immediate from (2) and (3). O

We will call (U;z') in the above Lemma a (p)-geodesic coordinate system in-
duced by (V;4?).

The above Lemma shows the conceptual simplicity of the present CS: Pointwise
(but not necessarily locally) they are derivatives in a suitable coordinate system.

Now let E(M) — M be a natural bundle of order k. For simplicity, we will
assume that the fiber space of E(M) can be covered by a single coordinate system
€91 < B < n, which we fix once and for all. Let £ € E(M) and suppose that its
components transform as

(4) €% = [P, X)) 1< v <k

(xi,é’ﬁ;ui,(bﬁ) denote the local coordinates on the tangent bundle
T(E(M)) = M, we have

£ = J(e", M)
(5) T(E(M) { A= p g

g = ULEN 45 | SITEN N

where bv denotes (b, j1,...js). If we let u* = 0 in (5), we get the transformation
rules of the coordinates (z',67;¢”) of the vertical bundle V(E(M)) — E(M).
Therefore, if (2¢, &7, (/)f) denote the local coordinates on V(E(M))@T™ (M), where
T*(M) is pulled back over E(M), we obtain

£ =12(E%X)
(6) V(E(M)) @ T*(M) go = af (€, /\)(/)
J aep @ Oy

Now let £ be a section of F(M) — M. We then have
(7) £ (y) = F2(7 (), \)

n (U;2') N (V;4y). Differentiation of (7) gives

0(y) _ Of*(E(x), N) 067 0" Of*(E(2),A) o O
dy 0P oxt oy ore oy

(8)

Exactly as in tensor calculus, we now want to eliminate the second term on the
RHS of (8), which involves derivatives up to order k+1, by means of some structure
on M of order k£ + 1. For this purpose, we choose an associated symmetric pair
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(f, f) of order k + 1, some p € U NV and assume that (y') in (8) is an arbitrary
coordinate system and (z!) is a p-geodesic coordinate system induced by (y').
After evaluating all expressions in (8) at p, we substitute £°(z) = f?(¢7(y), O'L)
into the second expression on the RHS of (8). In view of the Lemma, we now

substitute X = of =}, Al = fiu ol = f;, 2 < || < k4 1 into the resulting

expression and rewrite (8) in the formu -
(Y _ oa S wmoy  OF(E(x),A) 0€° ()

where the expression Of 1is explicitly known. Now the form of ©f shows that

0% (&(x),I'(=),I(x)) = 0. Comparing (9) and (6), we see that the differential

expressions

oe” ~
(10) o —e(e(e) T(w). T(2))

transform from the induced geodesic coordinates (z') to (y') by the transition
rules of V(E(M))®@T* (M) at p. Now let (y') and (') be two arbitrary coordinate
systems around p and (zf) and (w?) be (p)-geodesic coordinate systems induced
by (z') and (y') respectively. Writing (y'; p) — (2%;p) — (w';p) — (2%; p) with the
obvious meaning, the above argument shows that the first and the third arrows
are induced by the transition rules of the bundle V(E(M)) @ T* (M) and it is easy

to check that this is also the case with the middle arrow. However note that g—;";
need not be (5}: in general. Consequently, the composition (y';p) — (2%;p) is also
induced by the transition rules of V(E(M)) @ T*(M). To recapitulate the above

arguments, we now state

Proposition. Let E(M) — M be a natural bundle of order k given by (4) and
let (T, T') be an associated pair of symmetric e-connections of order k + 1. Then
there exists a first order differential operator

(11) E(M) X V(E(M)) @ T*(M)
£ — 0 - 07 (e(a), F(2), T(@)

The above argument shows that the unwanted terms on the RHS of (8) directly
give us the correcting term on the LHS of (9), if we use e-connections. In particular,
we see that the present framework is valid only for NO’s because CS enter our
framework through the derivatives in (4) in view of the Lemma and have no
meaning otherwise.

In (11) we regard V(E(M)) @ T*(M) as a bundle over M which may not be a
vector bundle, that is, % in (8) may involve &. Note that Proposition forces the
form of ©F to be the same in all coordinates (see [15], Corollary 4.3). If we assume
that the action given by (4) is a polynomial in &, then 05 will be a polynomial in {
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of the same degree. Also, since l:f, and l:f, are related by (3), one can express V in
terms of only FZ or fl , that is, one may differentiate covariantly only with respect
to some T or T However since inversion in G Liy1(n,R) is rather complicated
on computational level for large k, it seems more convenient to leave fi,, ff, as
they are in (9). Further, there seems to be no a priori reason, other than some
conventions, to prefer one among T and f, in fact, one among A, and ¢’ in (4).
For k = 2, we have f;q = —f;,q which is immediate from (3).
Not surprisingly, we now have
Corollary. Let (M) =TFI(M), the (p, q)-tensor bundle ofM and & € E(M). If
1 . .
o then 2220, B (¢(0), T(@))

is identical with the classical covariant derivative of &.

we denote the common value F]k = —F]k by I

We will omit the rather straightforward verification of the Corollary. Clearly,
the (p, ¢)-tensor in the Corollary may have any relative weight.

We will now clarify the geometric meaning of V. Let £ € E(M), u € E(M) (as
a point), X, € T,(M) and suppose that &(p) = u. Choosing a coordinate system

. B
(U;2) around p, we have X, = X} 3% , and &(X,) = Xi5% XS e ag,j

We define a tangent vector X at u by

0 ~ 0
* _ ya ayf -
(12) Xu - XP 8$a + X 6 (g F) 8€@ “
which lifts X, and obtain
(13) 605 - X; = X 08| xrepe B D)L

(13) together with the Proposition shows that the definition of X* does not
depend on local coordinates and we obtain the first order operator

(14) T, (M) x E(M) — V(E(M))
Xp X € — vXp(g)

where Vx, (€)(p) = & (Xp) — X

This construction goes further within the framework of linear connections: As
X, ranges over T,(M), the collection X gives a horizontal space H, at u, that
is, a connection on EF(M) — M. In particular, if E(M) — M is the (semi-
holonomic) (co)frame bundle P*(M) — M, then it is not difficult to show that
{H,;u € P*(M)} is invariant under the action of the whole group GLg(n,R).
Note that this fact is nontrivial in the present framework because T and T are
by definition only G Li(n,R) invariant. This remarkable fact is due to the semidi-
rect product structure GLg(n,R) = GLi(n,R) x Bi(n,R) and By (n, R)invariance
turns out to be the consequence of GLi(n,R) invariance, a fact already hinted by
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the definition of the CS of an e-connection. Thus the definition of a linear connec-
tion on the principle (co)frame bundle turns out to be a theorem in the present
elementary framework which also does not dwell on the concepts of associated
bundles and associated connections.

The formalism of linear connections goes however further: One now defines
the gli(n,R) valued connection 1-form w which annihilates {H,;u € P*(M)}
and defines the CS f; of w as the components of w, claiming that they are the
Christoffel symbols. It turns out that f;k = f;k = —f;k, which seems to be
a mere sign convention but actually comes from inversion and I, are now very
intricate objects for |v| > 3. We see therefore that this latter construction is not
essential for CD of NO’s, even though it is fundamental for other purposes. It
is very interesting to observe that torsion and curvature are now redefined, the
latter also on an arbitrary principal bundle, using the canonical form © and the
connection form w whereas these concepts originate in CD of tensor fields which
are first order NO’s.

We will now briefly clarify the geometric meaning of the second operator in
the three term differential sequence constructed in [11]. Let I' € &% (M) and
71',@"'1 : &+L(M) — (M) be the projection. In particular, we can differentiate
ﬂZ"'l(f) covariantly with respect to T which gives an operator

(15) M) s V(E (M) @ T (M)

for k > 2. The order of jets on the RHS of (15) is one less than the one on LHS, but
this problem can be easily remedied by choosing the top order CS arbitrarily and
passing to some suitable quotient space. It is shown in [11] that ﬁ(f) = 0 if and
only if ff, vanish identically in some local coordinate system. Consequently, (15)
extends one step to the left giving an exact sequence. As an interesting observation,
note that (15) involves 1-forms and not 2-forms. The same construction works out

A~

also with I'.

As a remarkable fact, the local formulas which define D are implicit in the works
of Veblen. See, for instance, [16], p. 192, [17], p. 568, [18], p.102. These formulas
are derived from the equation of a geodesic by successive differentiations. See,
for instance, [16], p.192, [17], p.560 and [5], p.52. Further, inversion is effectively
used in these works as can be seen from [17], p.555. However, no distinction is
made between [ and T in their extended tensorial forms and as a very interesting

observation, it is always I' which appears in these formulas whereas the classical
CS and the curvature tensor arise from I

As already indicated above, the above arguments imply the following rather
peculiar consequences.

1. The classical CS seem to be the CS of e-connections and not the CS of linear
connections. It is interesting to compare this statement to some assertions in [12],
[13] about the origin of CS. However, it is worth noting here that higher order CS,
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be they of e-connections or linear connections, and the present framework of CD
do not exist in [12], [13].

2. Classical CD is related to inversion in the jet group as indicated in [10] and
therefore to the pseudogroup of local diffeomorphisms on the base manifold.

3. In order to differentiate NO’s covariantly, one does not need G Ly (n,R) invari-
ance of linear connections (at least in the “torsion-free” case), but only GL;(n,R)
invariance of ¢-connections.

Finally, we would like to indicate that the above conclusions are by no means
intended to be final verdicts, but to point out certain mathematical queeries which
beg for further clarification.
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