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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 229 { 237CLASSICAL DIFFERENTIAL GEOMETRY WITH CHRISTOFFELSYMBOLS OF EHRESMANN """{CONNECTIONSErc�ument Ortac�g_ilAbstract. We give a method based on an idea of O. Veblen which gives explicitformulas for the covariant derivatives of natural objects in terms of the Christo�elsymbols of a symmetric Ehresmann "-connection.IntroductionIt is well known that tensor calculus originated from the works of Ricci, Levi-Civita and Christo�el about 1900. In 1922 O. Veblen proposed a generalizationof covariant di�erentiation (CD) in [17], [18]. The basic idea was to di�erentiatethe components of a natural object (NO) in a�ne normal coordinates and also todi�erentiate the transformation rule of its components from a�ne normal coordi-nates to arbitrary coordinates. By successive di�erentiations, Veblen introducedthe concepts of extensions of tensors, a�ne extensions and a�ne normal tensorsin [17], [18]. Extensions of the metric tensor are independently discovered andused by G. D. Birho� in relation to physics in [1]. However, in order to di�er-entiate higher order NO's covariantly, one needs higher order Christo�el symbols(CS) or an equivalent concept which unfortunately did not exist at the time ofthese works. Consequently, this extension procedure was applied to tensors andclassical CS and bound by tensor calculus, produced further tensors. It seemsthat this approach, overhelmed by local formulas and also lacking a conceptualframework compared to the formalism introduced by E. Cartan the same year in[2], did not attract much attention. Later, through the work of C. Ehresmannabout 1950, the concept of linear connection on the principle frame bundle hasbeen accepted as the modern substitute for CD. Ehresmann de�ned and studiedalso linear connections on higher order frame bundles, generalizing CD to higherorder NO's. Since then, CD of NO's has been studied by several geometers (see,for instance, [3], [14], [7]) and di�erent de�nitions have been proposed which areshown to be equivalent in [7]. Consequently, the foundations of the theory of CDof NO's based on di�erential forms on frame bundles is now well known and we1991 Mathematics Subject Classi�cation : 53A55, 53C05.Key words and phrases: covariant di�erentiation, Christo�el symbols.Received May 20, 1996.



230 Erc�ument Ortac�g_ilrefer the reader to the basic reference [8] for a modern and detailed treatment ofthis subject.In this note we give yet another approach to CD of NO's which is based on thefollowing observation: In the above framework, the main object of study is theLie algebra valued connection form and CS emerge as its components and play asecondary role. Further, CS are now rather intricate objects in higher orders and itis very di�cult to do explicit computations with them, in contrast to the classicalsituation where such computations have paved the way to important discoveries.Therefore one would like to have a framework of CD which incorporates1. A set of CS which are more elementary than the CS of linear connections.2. A method which will enable one to compute the covariant derivative of anyNO explicitly as in tensor calculus.Our purpose in this note is to give such a framework which, we believe, updates[17], [18]. As a remarkable fact, it turns out that the CS which we need are the CSof "-connections, a concept de�ned by Ehresmann in 1956 in [4] and studied furtherin [6], [9], [19], [10]. Naturally, these objects are in one to one correspondence withlinear connections. However, their transformation rule uses nothing but the groupoperation of the jet group, that is, chain rule (see (2) below). We would like toindicate here that the local formulas for prolongations of "-connections are implicitin the formulas for a�ne extensions in [17], [18].Our method, which is algorithmic and can be carried out by a computer, isbased on the idea of di�erentiating the transformation rule of the components of agiven NO from geodesic coordinates to arbitrary coordinates. This idea is due toVeblen where a�ne normal coordinates are used instead of geodesic coordinates([17], [18]). This method enables one to give explicit formulas in terms of thecomponents of the NO and the CS of a given symmetric "-connection.The present framework of CD dwells on the following fundamental idea dueto those who pioneered CD: Let � be a section of a natural bundle E(M ) ! Mof order k and let �� be its components. Then @���xi does not transform as asection of V (E(M )) 
 T �(M ) due to the derivatives up to order k + 1 whicharise from di�erentiation. One therefore searches for a structure � on M of orderk + 1 and a correcting term P�i (�(x); �(x)) such that ���@xi +P�i (�(x); �(x)) willtransform properly. Consequently, the present framework seems to be the directgeneralization of CD of tensor �elds to higher order NO's. However, it seems tohave some rather peculiar consequences which we will mention at the end of thisnote. The relation of the present framework to the formalism of linear connectionsremains to be clari�ed.A framework for covariant differentiation of natural objectsWe will start by brie
y recalling the de�nition of "-connections and their CS.Let eP k(M )!M be the coframe bundle of M of order k. The elements of eP k(M )are k-jets of local di�eomorphisms with source inM and target at the origin of Rnand eP k(M ) is a left principal bundle with group GL1(n;R). A dual "-connection e�is a GL1(n;R) invariant section of eP k(M )! eP 1(M ), where we regard GL1(n;R)



CHRISTOFFEL SYMBOLS 231as a subgroup ofGLk(n;R) by the canonical injectionGL1(n;R)! (GL1(n;R); 0).If xi; exij1; : : : ; exij1:::jk are local coordinates on eP k(M ), then e� is locally determinedby its CS e�j1j2(x); : : : ; e�ij1:::jk(x), which we will also denote by e�i�(x), 2 � j�j � k,and by the formulas(1) exij1:::js = exiae�aj1:::js(x) 2 � s � k :It is easy to show that e�i�(x) transform byp� @yi@xj� � (�ij ; e�ij1j2(x); : : : ; e�j1:::jk(x)) ��@xi@yj ; : : : ; @kxi@yj1 : : : @yjk �= (�ij ; e�ij1j2(y); : : : ; e�ij1:::jk(y))(2)where � denotes the group operation of GLk(n;R) and p denotes the projec-tion GLk(n;R) ! GL1(n;R) ([10]). Note that e�ijk transform as classical CS.If e"k(M )!M denotes the associated bundle of eP k(M ) with respect to the rightaction determined by (2), then a "-connection becomes a section of this bundle.Similarly we can de�ne b"k(M )!M as an associated bundle of the frame bundlebP k(M )!M ([9], [19]). Using the same notation for bundles and their sheaves oflocal sections, we have a map e"k(M )! b"k(M ) which is locally given by(3) ��ij ; b�ij1j2 ; : : : ; b�ij1:::jk� = ��ij ; e�ij1j2 ; : : : ; e�ij1:::jk��1where b�i� denote the CS of b� 2 b"k(M ) and ( )�1 denotes the inversion in thejet group. If e� 2 e"k(M ) and b� 2 b"k(M ) are related by (3), we will denote themby (e�; b�) and call (e�; b�) an associated pair of symmetric "-connections. Clearlye� and b� can be de�ned also without the assumption of symmetry using the sametransformation rules.For simplicity of notation, now let �i� = @syi@xj1 : : : @xjs and �i� = @sxi@yj1 : : :@yjswhere � = (j1; : : : ; js).The main result of this note depends on the following simpleLemma. Let (V ; yi) be a coordinate system with p 2 V and let (b�; e�) be anassociated pair of symmetric "-connections of order m with CS b�i�(y) and e�i�(y)on V . Then there exists a coordinate system (U ;xi) around p such that at thepoint p we havei. @yi@xj = �ij and b�i�(x) = e�i�(x) = 0 .ii. b�i�(y) = �i� and e�i�(y) = �i� .Proof. Let (xi) be the standard coordinates in Rn, �yi the coordinates of p andq any point in Rn. Take any map f : Rn ! M such that f(q) = p and



232 Erc�ument Ortac�g_il�@f i@xj (q); @2f i@xj1@xj2 (q); : : : ; @mf i@xj1 : : : @xjm (q)� = (�ij ; e�ij1j2(�y); : : : ; e�j1:::jm(�y)).Then f restricts to a local di�eomorphism near p and de�nes a coordinate system(U ;xi) around p.Both statements are now immediate from (2) and (3). �We will call (U ;xi) in the above Lemma a (p)-geodesic coordinate system in-duced by (V ; yi).The above Lemma shows the conceptual simplicity of the present CS: Pointwise(but not necessarily locally) they are derivatives in a suitable coordinate system.Now let E(M ) ! M be a natural bundle of order k. For simplicity, we willassume that the �ber space of E(M ) can be covered by a single coordinate system��, 1 � � � n, which we �x once and for all. Let � 2 E(M ) and suppose that itscomponents transform as(4) ��� = f�(�� ; �i�) 1 � j�j � kIf (xi; ��;�i; ��) denote the local coordinates on the tangent bundleT (E(M ))!M , we have(5) T (E(M )) 8>><>>: ��� = f�(�� ; �i�)��i = �a @yi@xa��� = @f�(�;�)@�� �� + @f�(�;�)@�a� �ab��bwhere b� denotes (b; j1; : : : js). If we let �i = 0 in (5), we get the transformationrules of the coordinates (xi; ��;��) of the vertical bundle V (E(M )) ! E(M ).Therefore, if (xi; ��; ��j ) denote the local coordinates on V (E(M ))
T �(M ), whereT �(M ) is pulled back over E(M ), we obtain(6) V (E(M ))
 T �(M ) 8<: ��� = f�(��; �i�)���j = @f�(�; �)@�� ��a @xa@yjNow let � be a section of E(M )!M . We then have(7) ��(y) = f�(��(x); �i�)on (U ;xi) \ (V ; yi). Di�erentiation of (7) gives(8) @��(y)@yj = @f�(�(x); �)@�� @��@xa @xa@yj + @f�(�(x); �)@�a� �ab� @xb@yjExactly as in tensor calculus, we now want to eliminate the second term on theRHS of (8), which involves derivatives up to order k+1, by means of some structureon M of order k + 1. For this purpose, we choose an associated symmetric pair



CHRISTOFFEL SYMBOLS 233(e�; b�) of order k + 1, some p 2 U \ V and assume that (yi) in (8) is an arbitrarycoordinate system and (xi) is a p-geodesic coordinate system induced by (yi).After evaluating all expressions in (8) at p, we substitute ��(x) = f�(�
 (y); �i�)into the second expression on the RHS of (8). In view of the Lemma, we nowsubstitute �ij = �ij = �ij , �i� = b�i�, �i� = e�i�, 2 � j�j � k + 1 into the resultingexpression and rewrite (8) in the form(9) @��(y)@yj � ��j (�(y); b�(y); e�(y)) = @f�(�(x); �)@�� @��(x)@xjwhere the expression ��j is explicitly known. Now the form of ��j shows that��j (�(x); b�(x); e�(x)) = 0. Comparing (9) and (6), we see that the di�erentialexpressions(10) @��@xj ���j (�(x); b�(x); e�(x))transform from the induced geodesic coordinates (xi) to (yi) by the transitionrules of V (E(M ))
T �(M ) at p. Now let (yi) and (zi) be two arbitrary coordinatesystems around p and (xi) and (wi) be (p)-geodesic coordinate systems inducedby (xi) and (yi) respectively. Writing (yi; p)! (xi; p)! (wi; p)! (zi; p) with theobvious meaning, the above argument shows that the �rst and the third arrowsare induced by the transition rules of the bundle V (E(M ))
T �(M ) and it is easyto check that this is also the case with the middle arrow. However note that @wi@xjneed not be �ij in general. Consequently, the composition (yi; p)! (zi; p) is alsoinduced by the transition rules of V (E(M )) 
 T �(M ). To recapitulate the abovearguments, we now stateProposition. Let E(M ) ! M be a natural bundle of order k given by (4) andlet (b�; e�) be an associated pair of symmetric "-connections of order k + 1. Thenthere exists a �rst order di�erential operatorE(M ) r�! V (E(M ))
 T �(M )(11) �� �! @��@xj ���j (�(x); b�(x); e�(x))The above argument shows that the unwanted terms on the RHS of (8) directlygive us the correcting term on the LHS of (9), if we use "-connections. In particular,we see that the present framework is valid only for NO's because CS enter ourframework through the derivatives in (4) in view of the Lemma and have nomeaning otherwise.In (11) we regard V (E(M ))
 T �(M ) as a bundle over M which may not be avector bundle, that is, @f�@�� in (8) may involve �. Note that Proposition forces theform of ��j to be the same in all coordinates (see [15], Corollary 4.3). If we assumethat the action given by (4) is a polynomial in �, then ��j will be a polynomial in �



234 Erc�ument Ortac�g_ilof the same degree. Also, since b�i� and e�i� are related by (3), one can express r interms of only b�i� or e�i� , that is, one may di�erentiate covariantly only with respectto some b� or e�. However, since inversion in GLk+1(n;R) is rather complicatedon computational level for large k, it seems more convenient to leave b�i� , e�i� asthey are in (9). Further, there seems to be no a priori reason, other than someconventions, to prefer one among e� and b�, in fact, one among �i� and �i� in (4).For k = 2, we have e�ipq = �b�ipq which is immediate from (3).Not surprisingly, we now haveCorollary. Let E(M ) = T pq (M ), the (p; q)-tensor bundle of M and � 2 E(M ). Ifwe denote the commonvalue e�ijk = �b�ijk by �ijk, then @�i1:::ipj1:::jq@xm ��m; i1:::ipj1:::jq(�(x);�(x))is identical with the classical covariant derivative of �.We will omit the rather straightforward veri�cation of the Corollary. Clearly,the (p; q)-tensor in the Corollary may have any relative weight.We will now clarify the geometric meaning of r. Let � 2 E(M ), u 2 E(M ) (asa point), Xp 2 Tp(M ) and suppose that �(p) = u. Choosing a coordinate system(U ;xi) around p, we have Xp = Xip @@xi ���p and ��(Xp) = Xap @@xa ���u +Xap @��@xa @@�� ���u.We de�ne a tangent vector X�u at u by(12) X�u = Xap @@xa ���u +Xap��a (�; e�; b�) @@�� ���uwhich lifts Xp and obtain(13) ��(Xp) �X�u = Xap @��@xa ���u �Xap��a (�; e�; b�) @@�� ���u(13) together with the Proposition shows that the de�nition of X�u does notdepend on local coordinates and we obtain the �rst order operatorTp(M )� E(M ) �! V (E(M ))(14) Xp � � �! rXp(�)where rXp(�)(p) = ��(Xp) �X�u.This construction goes further within the framework of linear connections: AsXp ranges over Tp(M ), the collection X�u gives a horizontal space Hu at u, thatis, a connection on E(M ) �! M . In particular, if E(M ) �! M is the (semi-holonomic) (co)frame bundle P k(M ) �! M , then it is not di�cult to show thatfHu;u 2 P k(M )g is invariant under the action of the whole group GLk(n;R).Note that this fact is nontrivial in the present framework because e� and b� areby de�nition only GL1(n;R) invariant. This remarkable fact is due to the semidi-rect product structure GLk(n;R) = GL1(n;R)nBk(n;R) and Bk(n;R) invarianceturns out to be the consequence of GL1(n;R) invariance, a fact already hinted by



CHRISTOFFEL SYMBOLS 235the de�nition of the CS of an "-connection. Thus the de�nition of a linear connec-tion on the principle (co)frame bundle turns out to be a theorem in the presentelementary framework which also does not dwell on the concepts of associatedbundles and associated connections.The formalism of linear connections goes however further: One now de�nesthe glk(n;R) valued connection 1-form ! which annihilates fHu;u 2 P k(M )gand de�nes the CS ��i� of ! as the components of !, claiming that they are theChristo�el symbols. It turns out that ��ijk = e�ijk = �b�ijk, which seems to bea mere sign convention but actually comes from inversion and ��i� are now veryintricate objects for j�j � 3. We see therefore that this latter construction is notessential for CD of NO's, even though it is fundamental for other purposes. Itis very interesting to observe that torsion and curvature are now rede�ned, thelatter also on an arbitrary principal bundle, using the canonical form � and theconnection form ! whereas these concepts originate in CD of tensor �elds whichare �rst order NO's.We will now brie
y clarify the geometric meaning of the second operator inthe three term di�erential sequence constructed in [11]. Let e� 2 e"k+1(M ) and�k+1k : e"k+1(M ) �! e"k(M ) be the projection. In particular, we can di�erentiate�k+1k (e�) covariantly with respect to e� which gives an operator(15) e"k+1(M ) eD�! V (e"k(M )) 
 T �(M )for k � 2. The order of jets on the RHS of (15) is one less than the one on LHS, butthis problem can be easily remedied by choosing the top order CS arbitrarily andpassing to some suitable quotient space. It is shown in [11] that eD(e�) = 0 if andonly if e�i� vanish identically in some local coordinate system. Consequently, (15)extends one step to the left giving an exact sequence. As an interesting observation,note that (15) involves 1-forms and not 2-forms. The same construction works outalso with b�.As a remarkable fact, the local formulas which de�ne bD are implicit in the worksof Veblen. See, for instance, [16], p. 192, [17], p. 568, [18], p.102. These formulasare derived from the equation of a geodesic by successive di�erentiations. See,for instance, [16], p.192, [17], p.560 and [5], p.52. Further, inversion is e�ectivelyused in these works as can be seen from [17], p.555. However, no distinction ismade between e� and b� in their extended tensorial forms and as a very interestingobservation, it is always b� which appears in these formulas whereas the classicalCS and the curvature tensor arise from e�.As already indicated above, the above arguments imply the following ratherpeculiar consequences.1. The classical CS seem to be the CS of "-connections and not the CS of linearconnections. It is interesting to compare this statement to some assertions in [12],[13] about the origin of CS. However, it is worth noting here that higher order CS,



236 Erc�ument Ortac�g_ilbe they of "-connections or linear connections, and the present framework of CDdo not exist in [12], [13].2. Classical CD is related to inversion in the jet group as indicated in [10] andtherefore to the pseudogroup of local di�eomorphisms on the base manifold.3. In order to di�erentiate NO's covariantly, one does not need GLk(n;R) invari-ance of linear connections (at least in the \torsion-free" case), but only GL1(n;R)invariance of "-connections.Finally, we would like to indicate that the above conclusions are by no meansintended to be �nal verdicts, but to point out certain mathematical queeries whichbeg for further clari�cation.Acknowledgement. I would like to express my thanks to Ender Abado�glu forhis lenghty computations in relation to this work and to my colleagues and dearfriends Prof. Alp Eden and Prof. Colin Christopher for helping me to clarify someof these concepts by listening to me patiently.References[1] Birkhof, G. D., Relativity and Modern Physics, Harvard Press, 1923.[2] Cartan, E., Sur une g�en�eralisation de la notion de courbure de Riemann et les espaces �atorsion, C.R. Acad. Sci. Paris 174, 1922, p. 522.[3] Crittenden, R., Covariant di�erentiation, Quart. J. Math. Oxford Ser. 13, 1962, 285-298.[4] Ehresmann, C., Sur les connexions d'ordre superieur, Atti del V� Congresso del Unione Mat.Ital., 1955, 344-346.[5] Eisenhart, L. P., Riemannian Geometry, Princeton Univ. Press, 1926.[6] Guillemin, V., The integrability problem for G-structures, Trans. A.M.S., 116, 1965, 544-560.[7] Kol�a�r, I., On the absolute di�erentiation of geometric object �elds, Annales Polonici Math-ematici, 1973, 293-304.[8] Kol�a�r, I., Michor, P., Slov�ak, J., Natural Operations in Di�erential Geometry, Springer-Ver-lag, Berlin, Heidelberg, 1993.[9] Libermann, P., Connexions d'ordre superieur et tenseurs de structure, Atti del ConvegnoInternazionale di Geometria Di�erenziale, Bologna, 1967.[10] Orta�cgil, E., Some remarks on the Christo�el symbols of Ehresmann "-connections, 3rdMeeting on Current Ideas in Mechanics and Related Fields, Segovia (Spain), June 19-23,1995, Extracta Mathematicae Vol. II, Num. 1, 172{180 (1996).[11] Orta�cgil, E., On a di�erential sequence in geometry, Turkish Journal of Mathematics, 20(1996), 473{479.[12] Pommaret, J. F., Lie Pseudogroups and Mechanics, Gordon and Breach, London, New York,1988.[13] Pommaret, J. F., Partial Di�erential Equations and Group Theory, Kluwer Academic Pub-lishers, Dordrecht, Boston, London, 1994.[14] Szybiak, A., Covariant di�erentiation of geometric objects, Rozprawy Mat. 56, Warszawa,1967.[15] Terng, L., Natural vector bundles and natural di�erential operators, American Journal ofMath., 100, 1978, 775-828.[16] Veblen, O., Normal coordinates for the geometry of paths, Proc. N.A.S., Vol. 8, 1922, p. 192.



CHRISTOFFEL SYMBOLS 237[17] Veblen, O., Thomas, T. Y., The geometry of paths, Transaction of A.M.S., Vol. 25, 1923,551-608.[18] Veblen, O., Invariants of Quadratic Di�erential Forms, Cambridge Tract 24, UniversityPress, Cambridge, 1927.[19] Yuen, P. C., Higher order frames and linear connections, Cahiers de Topologie et GeometrieDi�. 13 (3), 1971, 333-370.Bogazici UniversityMathematics DepartmentBebekIstanbul 80815, T�urk_iyeE-mail: ortacgil@boun.edu.tr
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