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ON SKEW 2-PROJECTABLE ALMOST
COMPLEX STRUCTURES ON TM

ANTON DEKRET

ABSTRACT. We deal with a (1,1)-tensor field o on the tangent bundle TM pre-
serving vertical vectors and such that Jo = —oJ is a (1,1)-tensor field on M,
where J is the canonical almost tangent structure on TM. A connection I'q on
TM is constructed by «. It is shown that if o is a V B-almost complex structure
on T'M without torsion then 'y is a unique linear symmetric connection such that

a(l'a) =Tq and Vr, (Jo) = 0.

INTRODUCTION

In this paper we assume that all manifolds and maps are infinitely differentiable.

Let F be an almost complex structure on 2m dimensional manifold M. Recall
that F is a (1,1)-tensor field on M such that F'? = —Id, see [9]. 1t is known [5], [9],
that there is not any connection on M, (a linear connection on T'M), which can
be constructed by a natural operators from F only (without auxiliary geometrical
objects).

Let (2%) be a chart on M and (2%, z!) be the induced chart on TM. Let a =
= (aédxj + b;dx‘i) ® 8/0zt + (c‘?dxj + h;dx{) ® d/dz% be a (1,1)-tensor field on
TM. If a preserves the vertical bundle VI'M of vertical vectors on T'M, i.e. if
bi =0, then Ja = dide’ @ 9/0x}, aJ = hidx' @ 0/ (here J = da’ ® 0/0x}
is the canonical morphism on T'M), are semibasic vertical valued forms on TM.
We have shown in [2] that if « is an almost complex structure on T'M preserving
VT M then there is not a connection on T'M which can by constructed by a natural
operator of zero order from a only.

The complete lift of an almost complex structure ' on M is the almost complex
structure F'¢ on T'M, which preserves VT'M and JF¢ = F°J, see [7]. All natural
lifts of F' on T M, see [3], have these properties.
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When we have studied, [2], some natural operators of first order from the (1,1)-
tensor fields o on T'M preserving VT M into connections on T'M we met with an
interesting class of (1,1)-tensor fields o on TM which is very close to the complete
lift F¢ of a (1,1)-tensor field F on M and for which there are connections on 7'M
constructed by « only. In this paper we study this class.

SKEW 2-PROJECTABLE (1,1)-TENSOR FIELDS ON TM

A (1,1)-tensor field a on T'M preserving VT M will be briefly called vertical.

Let us recall that every (1,1)-tensor field A = aé» (z)dzi ©8/0z' on M determines
a semibasic (1,1)-form A = aé»(x)dxj ® d/0zi on TM with values in VT M (v-lift

of A) and a morphism AVIM - VITM, T =2, T = aéx{.

Definition 1. Let A be a regular (1,1)-tensor field on M. A vertical (1,1)-tensor

field o on TM is called skew 2-projectable over A if Ja = A, aJ = —A.

In coordinates, if A = aé»(x)dxj © d/0z" then a skew 2-projectable (1,1)-tensor
over A is of the form

a= aé»(a:)dxj © 0/0x" + [c‘?(x, x1)da! — a;(x)dx{] ©0/0x%,  det aé» #0.

Then « is a VB-(1,1)-tensor field on TM, i.e. «(X) is a linear and projectable
vector field on T'M for any projectable and linear vector field X on T'M, (see [1]),
iff ¢ (=, xl) = c;k(x)x’f

Now the equalities

(1) aZa? = —(5;», céa? - azc‘? =0
are the coordinate conditions for a skew 2-projectable (1,1)-tensor field o over A
to be an almost complex structure (ACS) on TM. If « is overmore V B-tensor
field then the second condition of (1) is
(2) czsaﬁ - aéc?s =0.

We want to constructe connections from a skew 2-projectable (1,1)-tensor fields.
A connection T on ppy : TM — M can be consider as a (1,1)-tensor field hr on
TM (horizontal form of T') such that Tpas - hr = Tpar, hr(v) = 0 for any vertical
vector v € VI'M |, where T f denotes the tangent prolongation of a map f. Then
hr(T(TM)) = HT is the so-called horizontal subbundle of T'. In coordinates hr =
=ds' ©0/0x" + F;dxj ® )0z} and (2%, 2t dz' dz}) € HT if and only if dz} =
F;dxj, where F;(l‘, x1) are the local functions of T'. A connection T' is linear if Ap
is V B-(1,1)-tensor field on TM, i.e. if F; = F;k(x)x’f Reader is refered to [6] in
the case of general connections on fibre bundles.
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Remember that a semispray S is a vector field on TM such that J(S) = V,
where V' = 218/8z! is the Liouville field the flows of which are the homotheties
on individual fibres of T'M .

Let a be a general skew 2-projectable (1,1)-tensor fields on TM over a (1,1)-
tensor field A on M and S = 2{9/dz' + n'(z,2,)d/0=] be a semispray on TM.

Calculating the Lie derivative Lga and using the denotations % = fj, ;—;— =
1

we get
Lsa = [(a;kx’f - cé»)dxj + 2a§»dx{] © 0/0x" + [(E;dx] + F;dx{) ©8/0xt] .

Let Y = £0/0x" +~10/0x%, € # 0, be an arbitrary not vertical vector field on
T M. Then the vector field

Lsa(Y) = [(a;kx’f - c;)gj + 2a§'yj]3/3xi + K'0/0x}
is a vertical field on T'M if and only if

2a%y) = (ch — ab2f)el, Qe iff
. 1. ; ] i
(3) V= gl - ael)e, aaf=d)
We have proved

Proposition 1. If « is a skew 2-projectable (1,1)-tensor fields on TM over a
(1,1)-tensor field A then there is a unique connection T'y, on T'M the horizontal
subbundle HT',, of which is spanned on the vectors Y for which Lsa(Y) € VT M,
where S is an arbitrary semispray S on T M.

Remark 1. Let us emphesize that the connection I'y, is independent of the choice
of the semispray 5.
According to the formula (3) the functions

> 7 1~i s s
(3) L = 5%(%’ - ajkxlf)

are the local functions of T',. If o is a V B-(1,1)-tensor field then
F; = 552(‘3% - ajk)l‘lf )

1.e. the connection I',, 1s linear.

Recall that every connection I' determines a unique semispray Sp = ztd/ox +
—|—F§» z90/0z} which is I-horizontal. It will be called the semispray of T.
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Proposition 2. Let « be a skew 2-projectable (1,1)-tensor field over A. Then
the semispray Sr, of the connection I'y is just the semispray S on T'M for which
the Lie derivative [a(S), S] is vertical.

Proof. Let S = z3/dx" + b°9/0x! be an arbitrary semispray. Then

[a(S),S] = [(c; a]kxl)xl 2a’; b]]ﬁ/ﬁx + B'0/0x}

is vertical if and only if
b = 552(‘3; - ajkl‘lf)l‘{
ie iff S =5r,.
The Frolicher-Nijenhuis bracket [, J] will be called the torsion of «. We say
that a is symmetric if is without torsion, i.e. if [a, J] = 0.
In the case of a connection T', o = [hr,J] = F;kldl‘j A dzh @ )0z is the
torsion of the connection T'.

Lemma 1. Let T'y, be the connection determined by a skew 2-projectable (1,1)-
tensor field @ on T'M over A. Then

1——
™, = —§A—1[a,J] .

Proof. By direct calculation:

[hr,,J] = §di(cjkl - ajk)dxj AdeF @ 0/0x8

(4) [, J] = (cfle + aé»k)dxj ANde® @ 00z .
It completes our proof.

Corollary. The connection I'y, is without torsion if and only if « i1s without
torsion.

Let T' be an arbitrary connection ont 7'M with the local functions F; Let HT
be the horizontal subbundle of T'. Let o be a skew 2-projectable (1,1)-tensor field
over A. Then «(HT) is the horizontal subbundle of the other connection «o(T').
We deduce its local equations.

Let hr = dz'©9/0z* —|—F§» dz? ©0/dx% be the horizontal form of I'. Then ahp =
= aé»dxj ® /=" + (c; - azf";)dl‘j ©® 0/0z} and so

hory = de' © 8/0x" + (¢t —a Fk)a da? © /0«
is the horizontal form of the connection a(T), i.e. its local functions are f;» =

= (¢, — ajI'¥)as. Then a connection I' is invariant under a, i.e. a(HT) = HT if
and only 1f

(5) cé» = Fiaj + aiFj )

Remember that if a skew 2-projectable (1,1)-tensor field o over A is an almost
complex structure on T'M then A is an AC'S on M.
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Proposition 3. If a skew 2-projectable (1,1)-tensor field over A is an almost
complex structure on TM then o(HT,) = HT .

Proof. The relation (1) imply

(6) af = —af, c,dl = alcl, ciy, @t = alcly,, algal = —a,al, .
Then using (3) and (6) for the local functions of the connection T' = «(T,) we
get

. 1 1 . . .
T = [el, — ai 5t (e — a )i = 5 (el + alyah)ay = 53k (e5 — ajuat)

2

ie. a(Ty) =Tq.

In [2], Prop. 9, we have proved the following assertion. If F' is a connection on
TM and A, H are semibasic (1,1)-forms on TM with values in VT'M then there
exists a unique vertical (1,1)-tensor field a(T', A, H) such that o (HT) C HT and
Ja=A, aJ = H. In coordinates

a(T, A H) = a‘?dxj ©0/dx" + [(FZa? — hZF?)dxj + h;dx{] @ 0/0x! .

Moreover if a, h are almost complex structures on VT M then (T, A, H) is also
an AC'S on T'M. This assertion can be reread in the skew 2-projectable case as
follows.

Proposition 4. Let A be a regular (1,1)-tensor field on M and T be a connection
on TM. Then there is a unique skew 2-projectable (1,1)-tensor field a(T', A, —A)
over A such that o(HT) = HT. Moreover, if A is an AC'S on M then a(T', A, —A)
is also an AC'S on TM. IfT is linear then (T, A, —A) is a VB-field. If T is

without torsion then «(T', A, —A) is also without torsion.
As a consequence of Proposition 3 and 4 we can write

Proposition 5. Let o« be an AC'S on T'M skew 2-projectable over an AC'S A on
M. Then a(T'y, A, —A) = a.

Remark 2. Let us recall that every connection I' on T'M determines such an
almost complex structure o on T'M that o«J = hp, ahr = —J but « is not
vertical.

Consider the (1,1)-tensor field A = a}(z)dz? @ 9/dx" on M as a vector bundle
morphism A : TM — TM. Then the tangent map TA : T(TM) — T(TM) has
the following coordinate form

, 7 = aj(e)

; = i kg i Qg ]
, dz| = aj;eide? + ajday
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Let T, dit = F;(x,xl)dxj be a connection on TM. Let u = (z,u1) €
T:M, X = (z,dz) € Ty,M. Then T'(X) = (xﬂuﬁ,dxﬁf?(x,uﬁdxﬂ is the T-
lift of X at u € T, M. Then TA(TX) = (a:i,a;u{,dxi, [azju’f + aiF?(r,ul)]dl‘j)
and

TATX) - hp(TATX)) =
= (a:i, aéu{, 0, [af@ju’f + aify(x, ul)]dxj—F§(x, aiui)dd;j) =
= (2", [azju’f + aiF?(r, uy)]da’ — F;»(J:t, atu)dz?l) € Ty M .

We get amap VA :TpyM - Ty M, X - TA(TX) — hp(TA(TX)) which is the

classical covariant derivative in the case of a linear connection T,
vha = (af,;julf + aiF?ku’f - F;taZu’f)dxj ©0/0x" .

Then
(7) azj + aiF?k - F;taz =0
is the coordinate condition for V' A to vanish.

Proposition 6. Let o be a skew 2-projectable V B-(1,1)-tensor field without tor-
sion over a (1,1)-tensor field A on M. Let a(T'y) = T'y. Then A is constant
with respect to the covariant derivative according to the linear connection Iy, i.e.

VA=0.
Proof. According to (4) the field « is without torsion iff
(8) Chj + G = i+ U -

For the coordinate functions F; = %éi(cjk — ajk)x’f of the connection T'y the

condition (5) for a(T'y) = Ty reads
(9) ap (o, — afy)aj = chp + ajy -

Using the equalities (8) and (9) the left side of the condition (7) in the case of the
connection F.O‘ gives guccesgively a;j —|—a§F§k — F}taz = %j + % (c;k — a}k) - %Eﬂs (c3—
—aj)a), = aj; + %(Cfcj —ag;) — %aé(cfj —aj;)aj, = %(Cfcj +ay;) — %(Cfcj +a;;) = 0.
The proof is finished.

Proposition 7. Let o be a skew 2-projectable V B-(1,1)-tensor field without tor-
sion over a (1,1)-tensor field A on M. Let T' be such a symmetric linear connection

on TM that a(T') = T. Then V'(A) = 0 if and only if I = T,.
Proof. The equality (5) reads
cé»k = Fikaj + aifjk , le. F;sa,‘z = CZj - aifjk as ;k = Zj :
Putting it in the condition (7) we get
azj + aiF?k + ai T CZj =0, 1ie Qaiij = CZj — azj .
Then according to (8) F;k = %éi(cjk — aj), i.e. I' =Ty, Then Proposition 6
completes our proof.

Remark 3. Proposition 7 can be reread as follows. Let I' be a symmetric linear
connection and A be a regular (1,1)-tensor field on M. Let a(T', A,—A) be the
(1,1)-tensor field in the sence of Proposition 4. Then T', = T iff V'A = 0.
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Proposition 8. Let o be a V B-almost complex structure skew 2-projectable
without torsion over a (1,1)-tensor field A on TM. Then T is a unique linear
symmetric connection such that VA = 0.

Proof. By Proposition 3 a(T',) = I'y. As the connection T, is linear and sym-
metric (Lemma 1) then Proposition 7 completes our proof.

Corollary. In the case of a V B-almost complex structure on T'M skew 2-project-
able without torsion over a (1,1)-tensor field A on M there is a unique linear
symmetric connection I' such that a(T') = T', VI'A = 0. This connection is just
the connection I',. Consequently A is an integrable almost complex structure on

M, see [9].

Remark 4. Let I' be a connection on T'M. There is the vertical prolongation VT
of T which is a connection on VI'M — M, see [7] in the general case of a fibre
bundle. In the induced local chart (2%, z%,0,%") on VI'M its horizontal subbundle
HVT is determined by the equations

dy' = Uy nfda? | daf = Iida?

Analogously to the Proposition 6 it i1s easy to show that if « is a skew 2-
projectable (1,1)-tensor field on TM without torsion such that a(T'y) = T then
Ta(HVT,) C HVT,.

By direct calculation in the case of a skew 2-projectable (1,1)-tensor field o we
obtain for the Nijenhuis tensor [« o]

1 . . . .
5[0[, o] = (al,af + aZa?s)dx] Adz® @ 0/0x'+

suts
(10) + {(ciua; + ciulc;* + ciays - aia;s)dl‘j Adx’+
+ (aia?s + aéua? + aic?jl - ciula;*)dx{ Adx®} @ 8/dx .

This formula and the well known condition for A to be an integrable almost
complex structure, see for example [9], give

Proposition 9. The Nijenhuis tensor [« o] of a skew 2-projectable (1,1)-tensor
field o over a (1,1)-tensor field A on M is a vertical tangent valued if and only if
[A, A] = 0, i.e. in the case when o is moreover an AC'S iff A is an integrable AC'S.

Proposition 10. Let o be an almost complex structure on T'M skew 2-project-
able and symmetric over an integrable almost complex structure A on M. Then
the Nijenhuis tensor [«, «] is a semibasic vertical valued 2-form on TM .

Proof. By Proposition 9 [«, o] is vertical valued. Using the equalities (1) and (4)
where [, J] = 0 we get for (10):

Bjs = Ayl + Ay s + AyCsjy = Csu @5 = au(csjl — Cjs,y + ;s — asj) =0 )

le. [o,a] = H}sdxj Adx® © 9/0x! is semibasic and vertical valued.
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Corollary. If a is a symmetric V B-almost complex structure skew 2-projectable
over A then [«, «] is a semibasic vertical valued 2-form on TM .

Remark 5. Let us recall the complete lift I'® of a connection I on T'M | see for ex-
ample [8]. If hp = dxi®3/3xi+F§ (z,21)dz? ®9/9z! is the horizontal form of a con-
nection I' then 1%y -i9-T'hr iz T4 = dxi®3/3xi+dxﬁ®3/3xﬁ+F§(a:, &)dri®0d/9E +
—|—[(F;k(x,€)x’f + F;kl(x,g)nk)dxj + F;(x,é’)dx‘ﬂ © d/0n' is the horizontal form of
the connection T'® on pryr @ T(TM) — TM, where i1 and ¢2 are the canonical
involutions on TTM and TT(TM), i1(x,z1,€,n) = (x,&,21,n). If T is linear and
without torsion then also I'° is linear and without torsion. In the case of a sym-
metric V B-almost complex structure a skew 2-projectable over an AC'S A on M
the connection I'y, is linear and symmetric then the complete lift I'¢, is also linear
and symmetric. This means that there is on T'M such an AC'S which determines
a connection on TM, i.e. linear connection on prayr : T(TM) — TM without
auxiliary geometrical objects. Remember that in the case of an ACS on M such
a connection has not to exist. We will comment this situation in detail. Let
F:TM — TM bean ACSon M and I' = hp : TTM — TTM be a linear con-
nection. Let f: M — N be alocal diffeomorphism. Recall that Fias, Fiyv or Tar, Iy
are f-related if Fx - Tf =Tf -Fyyor Uy -TTf =TTf Ty By [4] there is not any
linear connection I' which can be constructed from an AC'S F only by a natural
operator ® which means that if Fpr, Fiy are f-related then also ®(Far), ®(Fy) are
f-related. Certainly in the case of a symmetric V B-almost complex structure a
skew 2-projectable over an AC'S A on M the operator ® : « — I'¢ is ” M-natural”,
ie. ifay - TTf =TT f ap then also ®(an) TTTf =TTTf ®(ap). But ®isnot
7T M-natural” because if f : T'M — TN is an arbitrary local diffeomorphism then
Tf-ap-Tf! need not be an V B-almost complex structure on 7T'N. Readers are
kindly refered to [7] for more detail information on theory of natural operations.

Example. Let A = aé»(x)dxj ® d/dz" be a regular (1,1)-tensor field on M. Let
A= aé» dzd @ 0/0x! be the semibasic VT M-valued (1,1)-form on TM determined
by A. Let S = 210/0x" + n'(x,x1)0/0x% be a semispray. Then the Lie derivative

a=LsA= —aé»dxj @ 8/0x" + [(a;kx’f - nzla";)dl‘j + aé»dx{] © 0/0x}
is a skew 2-projectable (1,1)-tensor field & on TM over —A. If S is a spray, i.e.
Ly S =8, then LgA is a V B-form.

Recall, see [4], that the Lie derivative LgJ determines the connection T's with
the local functions F; = %77;1 .

As F} = —%éé(?ajkx’f — 77121@?) are the local functions of the connection I'y 7
then it is easy to see, that

It A=1d then I'; = =1T'.
™ M rsa s
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We will discuss the conditions for LA to be an ACS on T'M. In this case the
second equation of (1) reads

78 7 s __ 7 k
agn;, — s, &5 = —Qajkxl .

The map y — Ay—yA is singular and so the last equation has not to be solvable.
Therefore if A is an AC'S on M then such a semispray S that LgA is an AC'S on
TM has not to exist.

If Ais an AC'S on M and I's is the connection determined by a semispray S
then by the Proposition 4 «(T'g, A, —A) is an AC'S on TM.
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