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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 311 { 319ANTI-HOLONOMIC JETS AND THE LIE BRACKETMichal KrupkaAbstract. Second order anti-holonomic jets as anti-symmetric parts of sec-ond order semi-holonomic jets are introduced. The anti-holonomic nature ofthe Lie bracket is shown. A general result on universality of the Lie bracketis proved. 1. IntroductionThe concepts of non-holonomic (or iterated) and semi-holonomic jets, �rst in-troduced by Ehresmann in [1], are commonly used in di�erential geometry. Inthis paper, we use the concept of semi-holonomic jet to construct second orderanti-holonomic jets as the anti-symmetric part of second order semi-holonomicjets. Further we introduce three di�erential operators between some holonomic,semi-holonomic, and anti-holonomic jets, namely the prolongation, torsion, andcurvature operators. Finally, using these operators, we show a close relation be-tween the Lie bracket and anti-holonomic jets and prove some universal propertyof the Lie bracket.The de�nition of anti-holonomic jets has many similarities with the de�nitionof di�erence tensor from [3], and of dissym�etrie from [9] (in fact, the manifoldantiJ2(X1; X2) of anti-holonomic jets with source in X1 and target X2 can beidenti�ed with the space J1(X1; X2) �X1�X2 (TX2 
V2 T �X1), where the di�er-ence tensor lie in the second factor of the product). In our approach, we want toemphasize the jet character of this object, namely the fact that anti-holonomic jetscan be composed in a similar way as ordinary jets. This property of anti-holonomicjets is important, for example, when investigating natural di�erential operators ofvector distributions [6].Major part of presented results appeared �rst in the author's work [7]. Moregeneral results, as well as some further examples and applications, are contained in[6]. The result on the Lie bracket appeared �rst in [8]. We note that some results1991 Mathematics Subject Classi�cation: 58A20, 53A55.Key words and phrases: jet, semi-holonomic jet, anti-holonomic jet, velocity, lie bracket, nat-ural di�erential operator.Work supported by Grant No. 201/96/0845 of the Czech Grant Agency, and Grant No. VS96003 (\Global Analysis") of the Czech Ministry of Education.Received May 17, 1997



312 MICHAL KRUPKAof [8] are not correct; however, this have no inuence on the assertions on the Liebracket in [8] (see also [5] for similar results).In this paper, we use standard notions of the jet theory and basic results ofthe theory of natural bundles and operators (namely, the relation between naturaldi�erential operators and some invariant mappings). The reader can �nd them in[10], [4], [2], [7]. 2. Second order semi-holonomic jetsIn this paragraph, we briey recall the standard notion of second order semi-holonomic jets. Let X1, X2 be two manifolds. By a (second order) semi-holonomicjet with source in X1 and target in X2 we understand a 1-jetA = J1xg 2 J1(X1; J1(X1; X2))(1)such that g is a local section of the �bration J1(X1; X2)! X1 andg(x) = J1x(� � g)(2)(� is the target projection, � : J1(X1; X2) ! X2). The point x 2 X1 is calledthe source of A, the point �(g(x)) 2 X2 the target of A. The second order semi-holonomic jets with source in X1 and target in X2 form a closed submanifold ofJ1(X1; J1(X1; X2)) which is denoted by semiJ2(X1; X2) (the standard symbol forthis manifold, introduced in [1], is J2(X1; X2); we prefer, however, using a di�erentone since it is more understandable and admits a generalization to anti{holonomicjets, see Par. 3).There is the canonical inclusion J2(X1; X2)! semiJ2(X1; X2), given byJ2xf �! J1x(J1f):(3)Thus, for f : X1 ! X2, we can write J2xf 2 semiJ2(X1; X2):Semi-holonomic jets A1 2 semiJ2(X1; X2), and A2 2 semiJ2(X2; X3), A1 =J1x1g1, A2 = J1x2g2, are called composable, if the target of A1 is equal to x2. Thecomposition A2 �A1 2 semiJ2(X1; X3) of these jets is de�ned by A2 �A1 = J1x1g3,where g3(x) = g2(�(g1(x)))�g1(x). A semi-holonomic jet J1xg 2 semiJ2(X1; X2) iscalled regular, if the 1-jet g(x) is regular (i.e., if it is of maximal rank). The subsetof semiJ2(X1; X2), consisting of regular jets is dense, and open, and is denoted byregsemiJ2(X1; X2).A semi-holonomic jet A 2 semiJ2x1;x2(X1; X2) is called invertible if there is a jetA�1 2 semiJ2x2;x1(X2; X1) such that A�1 �A = J2x1 idX1 , and A � A�1 = J2x2 idX2 .The jet A is invertible if and only if it is regular and dimX1 = dimX2.One can consider semi-holonomic analogy to all standard jet spaces, such as thespace semiT 2mX = semiJ20 (Rm; X)(4)of semi-holonomic (2;m)-velocities of manifold X, its subspaceregsemiT 2mX;(5)



ANTI-HOLONOMIC JETS AND THE LIE BRACKET 313consisting of regular semi-holonomic jets, and the second semi-holonomic di�er-ential group semiL2n = regsemiJ20;0(Rn; Rn):(6)For a mapping f : X1 ! X2, we de�ne a mappingsemiT 2mf : semiT 2mX1 ! semiT 2mX2(7)by semiT 2mf(A) = J2�(A)f �A(8)and obtain a second order bundle functor semiT 2m (over the category Mf ofsmooth manifolds and smooth mappings). Analogously it can be de�ned the func-tor regsemiT 2m (over the category Dn of n-dimensional manifolds and their em-beddings). The type �ber of the functor semiT 2m is the manifold semiT 2n;m =semiJ20;0(Rm; Rn) with the following left action of the group L2n:(g;A)! g �A:(9)For some product chart (U � V; �) on a manifold X1 � X2 , and for somesemi-holonomic jet A = J1x1g 2 semiJ2x1;x2(X1; X2) , we set�i(A) = �i(x1);(10) �s(A) = �s(x2);(11) �sk(A) = �sk(g(x1));(12) �skl(A) = Dl(�sk � g)(x1);(13)where i; k; l = 1; : : : ; n1, s = n1 + 1; : : : ; n1 + n2, n1 = dimX1, and n2 =dimX2, and on the �rst three lines we have the standard induced coordinates onJ1(X1; X2). The system (�i; �s; �sk; �skl) form a coordinate system on semiJ2(X1;X2) over U � V , called induced by (U � V; �).Coordinate expression of the composition of semi-holonomic jets is the following.Let (U � V � W;�) be a product chart on a manifold X1 � X2 � X3, A1 2semiJ2x1;x2(X1; X2), A2 2 semiJ2x2;x3(X2; X3). Then�uk(A2 �A1) = �us (A2)�sk(A1);(14) �uk1k2(A2 �A1) = �us1s2(A2)�s1k1(A1)�s2k2(A1) + �us (A2)�sk1k2(A1)(15)(k; k1; k2 = 1; : : : ; n1, s; s1; s2 = n1 + 1; : : : ; n1 + n2, u = n1 + n2 + 1; : : : ; n1 +n2 + n3, n1 = dimX1, n2 = dimX2, and n3 = dimX3). Especially, for g 2 L2n,and A 2 semiT 2n;m from (9) it follows�sk(g �A) = ast(g)�tk(A);(16) �sk1k2(g �A) = ast1t2(g)�t1k1 (A)�t2k2(A) + ast (g)�tk1k2(A):(17)((ast ; ast1t2) are the �rst canonical coordinates of L2n).In the induced coordinates, the inclusion (3) is given by the canonical inclusion.



314 MICHAL KRUPKA3. Second order anti-holonomic jetsIn this paragraph, we introduce the notion of second order anti-holonomic jet.Let X1, and X2 be two manifolds. We introduce an equivalence � on the man-ifold semiJ2(X1; X2) by means of coordinates as follows: For elements A; �A 2semiJ2(X1; X2) we set A � �A if A and �A have the same source x1 and target x2and if for some product chart (U � V; �) at (x1; x2) the anti-symmetric parts of�skl(A) and �skl( �A) are equal:�skl(A) � �slk(A) = �skl( �A) � �slk( �A):(18)Evidently, this condition does not depend on the choice of the chart �.There evidently exists the quotient space semiJ2(X1; X2)= � with the canonicalsmooth structure (such that the quotient projection is a submersion). It is calledthe manifold of second order anti-holonomic jets with source in X1 and target inX2 and denoted by the symbol antiJ2(X1; X2). The canonical projectionsemiJ2(X1; X2)! antiJ2(X1; X2)(19)will be denoted by Tors and called the torsion mapping.The notions of source, and target of anti-holonomic jet, composition of anti-holonomic jets, as well as of the regular and inverse anti-holonomic jet are de�nedby means of representatives.The inclusion (3) leads to the mapping J2(X1; X2)! antiJ2(X1; X2). One caneasily obtain that this mapping is factored through the canonical projectionJ2(X1; X2)! J1(X1; X2)(20)and get an inclusion J1(X1; X2)! antiJ2(X1; X2):(21)Thus, for f : X1 ! X2 we can write J1xf 2 antiJ2(X1; X2).We shall use anti-holonomic counter-parts of many standard jet spaces. We set,for example antiT 2mX = antiJ20 (Rm; X):(22)This space is called the space of anti-holonomic (2;m)-velocities of manifold X.Further we have its subspace regantiT 2mX, consisting of regular anti-holonomicjets, and the second anti-holonomic di�erential groupantiL2n = regantiJ20;0(Rn; Rn):(23)Analogously as in the previous paragraph we can de�ne bundle functors antiT 2m,and reg antiT 2m. The type �ber of the functor antiT 2m is the manifold antiT 2n;m =antiJ20;0(Rm; Rn) with the following canonical left action of the group L1n:(g;A)! g �A:(24)



ANTI-HOLONOMIC JETS AND THE LIE BRACKET 315For some product chart (U � V; �) on X1 � X2, the induced coordinates onantiJ2(X1; X2) form the system (�i; �s; �sk; �skl), where �skl = ��slk , and for A 2semiJ2(X1; X2) it holds�skl(Tors(A)) = �skl(A) � �slk(A):(25)For A1 2 antiJ2x1;x2(X1; X2), A2 2 antiJ2x2;x3(X2; X3) we have�uk(A2 �A1) = �us (A2)�sk(A1);(26) �uk1k2(A2 �A1) = �us1s2(A2)�s1k1(A1)�s2k2(A1) + �us (A2)�sk1k2(A1)(27)(ranges of the indices as above).In the induced coordinates the inclusion (21) is the canonical inclusion(�i; �s; �sk)! (�i; �s; �sk; 0):(28) 4. Lie bracket as an anti-holonomic jetConsider an n-dimensional manifold X. The bundle T 1mX is in a canonical dif-feomorphism with the bundle Lm TX. Thus, sections of T 1mX can be consideredas m-tuples of vector �elds. We shall construct the Lie bracket as a part of a com-position of some operators between semi-holonomic and anti-holonomic velocities.In the �rst step we de�ne an operator Prol : T 1m ! semiT 2m. For a section : X ! T 1mX we de�ne a section Prol : X ! semiT 2mX by(Prol)(x0) = J10h;(29)where h(x) = (�h(x))�J1xtr�x (tr�x is the translation y ! y�x), and J10�h = (x0).We obtain a �rst order di�erential operator Prol : T 1m ! semiT 2m, called the (semi-holonomic) prolongation of �elds of velocities.The associated mapping of type �bers p : T 1nT 1n;m ! semiT 2n;m (whereT 1n;m = J10;0(Rm; Rn)(30)is the type �ber of T 1m andsemiT 2n;m = semiJ20;0(Rm; Rn)(31)is the type �ber of semiT 2m) has in the canonical coordinates (i.e., in the coordi-nates, induced by the canonical coordinates on Rm, and Rn) the form�sk(p(A)) = �sk(A);(32) �skl(p(A)) = �sk;t(A)�tl (A)(33)(ranges of the indices as above).In the second step we apply the torsion mapping Tors to the elements ofsemiT 2mX. Thus, we get a zero order di�erential operator Tors : semiT 2m ! antiT 2m,



316 MICHAL KRUPKAcalled torsion operator. The associated mapping of type �bers t : semiT 2n;m !antiT 2n;m has, according to (25) in the canonical coordinates the form�sk(t(A)) = �sk(A);(34) �skl(t(A)) = �skl(A) � �slk(A):(35)Finally, we de�ne a �rst order operator Curv : T 1m ! antiT 2m as the compositionCurv = Tors �Prol. This operator is called the curvature of �elds of velocities, or,using the identi�cation of T 1mX and Lm TX, the curvature of m-tuples of vector�elds.From the above expressions it follows, that the associated mapping of type �bersc = t � p : T 1nT 1n;m ! antiT 2n;m has in the canonical coordinates the form�sk(c(A)) = �sk(A);(36) �skl(c(A)) = �sk;t(A)�tl (A) � �sl;t(A)�tk(A):(37)As we shall see, the similarity of the second expression with the coordinate expres-sion of the Lie bracket is not accident.We show, that sections of the bundle antiT 2mX ! X can be considered ascollections of vector �elds over X.Theorem 4.1. Let M = 12m(m � 1): The bundle functors T 1m � T 1M and antiT 2mare isomorphic.Proof. Let us de�ne a chart on the manifold T 1n;M in the following way. Consideran index a 2 f1; : : : ;Mg as a multi-index, consisting of two indices k1; k2 2f1; : : : ;mg, k1 < k2, sorted in some �xed order, and write the canonical coordinatefunctions (�sa) on T 1n;M as follows:(�sa) = (�sk1k2):(38)Now the action of L1n on the type �ber T 1n;m � T 1n;M of the functor T 1m � T 1M hasin the canonical coordinates the form�sk(g �A) = ast (g)�tk(A);(39) �sk1k2(g �A) = ast (g)�tk1k2(A):(40)This is exactly the coordinate expression of the action (24). Thus we have provedthat the type �bers T 1n;m � T 1n;M and antiT 2n;m are isomorphic, which proves thetheorem. �From the above theorem and from (36,37) it follows that the curvature of anm-tuple of vector �elds can be divided to two parts: the vector �elds themselves(36) and all their Lie brackets (37). Note, however, that in this approach we losethe anti-holonomic nature of the curvature.



ANTI-HOLONOMIC JETS AND THE LIE BRACKET 3175. Universality of the Lie bracketIn this paragraph, we shall show universality (in a sense) of the operator Curv(and hence of the Lie bracket), using similar properties of the operators Prol, andTors. In all this paragraph, we shall concentrate only to regular velocities (andconsider our operators restricted to sections of appropriate bundles) and supposem � n.We shall often use actions of the kernel K2;1n of the projection L2n ! L1n on sometype �bers. As it is discussed in [2], or [7], these actions are related to the problemof universality of our operators. Dn will denote the category of n-dimensionalmanifolds and their embeddings, FM the category of �bered manifolds and theirsmooth, projectable mappings.Theorem 5.1. Any �rst order natural di�erential operatorD : regT 1m ! F;(41)where F : Dn ! FM is a �rst order bundle functor, is a composition of thesemi-holonomic prolongation operator Prol, and some zero order operatorD0 : regsemiT 2m ! F:(42)The operator D0 is unique.Proof. In this proof, we shall use indices with the following ranges: s; t = f1; : : : ;ng; i; j; k; l = f1; : : : ;mg; �; � = fn�m+ 1; : : : ; ng.It is su�cient to show that the type �ber representation p : T 1nT 1n;m ! semiT 2n;mof the operator Prol is a surjective submersion whose �bers are subsets of the orbitsof the group K2;1n .Surjectivity of p follows easily from (32,33). In the second component (33), p isa surjective linear mapping, i.e., a submersion.Now, let us prove the second statement. If g 2 K2;1n , then we have�sk(g �A) = �sk(A);(43) �sk;u(g �A) = astu(g)�tk(A) + �sk;u(A)(44)(these equations follow from the equations of prolonged actions of di�erentialgroups. See, for example [4], [2], or [7]).Let A; �A 2 T 1nT 1n;m be elements such that p(A) = p( �A). Then, according to(32,33), �sk( �A)� �sk(A) = 0;(45) (�sk;t( �A) � �sk;t(A))�tl (A) = 0:(46)Without loss of generality, we shall suppose that the matrix (�lk(A)) = (�lk( �A))is regular. Denote by (�kl ) its inverse. Then from (46) it easily follows that theexpressionHslj = ((�sk;j( �A)� �sk;j(A)) � (�sl;�( �A)� �sl;�(A))�lj��k (A))�kl(47)



318 MICHAL KRUPKAsatis�es Hslj = Hsjl. Thus, there exists an element g 2 K2;1n such thatas��(g) = 0;(48) asl� (g) = as�l(g) = (�sk;�( �A)� �sk;�(A))�kl ;(49) aslj(g) = Hslj:(50)Direct computation gives �A = g �A. �Theorem 5.2. Any zero order natural di�erential operatorD : regsemiT 2m ! F;(51)where F : Dn ! FM is a �rst order bundle functor, is a composition of the torsionoperator Tors, and some zero order operatorD0 : regantiT 2m ! F:(52)The operator D0 is unique.Proof. It is su�cient to show that the equivalence �, induced by the left actionof the group K2;1n on regsemiT 2n;m, and the equivalence � from Par. 3 coincide.Since regantiT 2m is a �rst order bundle functor, then we have ���.Let A; �A 2 regsemiT 2n;m be elements such that t( �A) = t(A): We shall �ndg 2 K2;1n , satisfying �A = g �A, which, according to (16,17), means�sk( �A) = �sk(A);(53) �sk1k2( �A) = ast1t2(g)�t1k1 (A)�t2k2(A) + �sk1k2(A):(54)Denote by (�ks) a left inverse to the matrix (�sk( �A)) = (�sk(A)).From (34,35) we have �sk( �A) = �sk(A);(55) �sk1k2( �A)� �sk2k1( �A) = �sk1k2(A)� �sk2k1(A):(56)From (56) it follows that we can take g 2 K2;1n such thatast1t2(g) = (�sk1k2( �A)� �sk1k2(A))�k1t1 �k2t2 :(57)Now we have �A = g �A: �Theorem 5.3. Any �rst order natural di�erential operatorD : regT 1m ! F;(58)where F : Dn ! FM is a �rst order bundle functor, is a composition of thecurvature operator Curv, and some zero order operatorD0 : regantiT 2m ! F:(59)The operator D0 is unique.Proof. Follows from Theorem 5.1 and Theorem 5.2. �
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