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ANTI-HOLONOMIC JETS AND THE LIE BRACKET

MicHAL KRUPKA

ABSTRACT. Second order anti-holonomic jets as anti-symmetric parts of sec-
ond order semi-holonomic jets are introduced. The anti-holonomic nature of
the Lie bracket is shown. A general result on universality of the Lie bracket
is proved.

1. INTRODUCTION

The concepts of non-holonomic (or iterated) and semi-holonomic jets, first in-
troduced by Ehresmann in [1], are commonly used in differential geometry. In
this paper, we use the concept of semi-holonomic jet to construct second order
anti-holonomic jets as the anti-symmetric part of second order semi-holonomic
jets. Further we introduce three differential operators between some holonomic,
semi-holonomic, and anti-holonomic jets, namely the prolongation, torsion, and
curvature operators. Finally, using these operators, we show a close relation be-
tween the Lie bracket and anti-holonomic jets and prove some universal property
of the Lie bracket.

The definition of anti-holonomic jets has many similarities with the definition
of difference tensor from [3], and of dissymétrie from [9] (in fact, the manifold
antiJZ(Xl,Xz) of anti-holonomic jets with source in X; and target X, can be
identified with the space J!(X1, X3) xx,xx, (T X2 ® /\2 T*X1), where the differ-
ence tensor lie in the second factor of the product). In our approach, we want to
emphasize the jet character of this object, namely the fact that anti-holonomic jets
can be composed in a similar way as ordinary jets. This property of anti-holonomic
Jets is important, for example, when investigating natural differential operators of
vector distributions [6].

Major part of presented results appeared first in the author’s work [7]. More
general results, as well as some further examples and applications, are contained in
[6]. The result on the Lie bracket appeared first in [8]. We note that some results
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of [8] are not correct; however, this have no influence on the assertions on the Lie
bracket in [8] (see also [5] for similar results).

In this paper, we use standard notions of the jet theory and basic results of
the theory of natural bundles and operators (namely, the relation between natural
differential operators and some invariant mappings). The reader can find them in

[10], [4], [2], [7].
2. SECOND ORDER SEMI-HOLONOMIC JETS

In this paragraph, we briefly recall the standard notion of second order semi-
holonomic jets. Let X7, X5 be two manifolds. By a (second order) semi-holonomic
jet with source in X; and target in X5 we understand a 1-jet

(1) A=Jlge JHXy, JH X, X2))
such that g is a local section of the fibration J'(X7, X5) — X; and
(2) g(x) = J;(Boyg)

(B is the target projection, 8 : J1(X1, Xs) — X3). The point € X; is called
the source of A, the point 3(g(x)) € X the target of A. The second order semi-
holonomic jets with source in X; and target in X, form a closed submanifold of
JY( X1, JH(X1, X2)) which is denoted by semi J?(X1, X5) (the standard symbol for

this manifold, introduced in [1], is 72()(1 , X2); we prefer, however, using a different
one since it 18 more understandable and admits a generalization to anti-holonomic
jets, see Par. 3).

There is the canonical inclusion J2(X7, X5) — semiJ?(X1, X5), given by

(3) Jif — T (T,

Thus, for f: X; — X5, we can write J2f € semiJ?(X1, X5).

Semi-holonomic jets A; € semiJ?(X1, Xs), and As € semiJ?(X3, X3), A =
Jxllgl, Ay = Jx12g2, are called composable, if the target of A; is equal to x5. The
composition Ay o Ay € semi J?(X1, X3) of these jets is defined by As0 Ay = Jxllgg,
where g3(x) = g2(B(g1(2))) 0g1(x). A semi-holonomic jet Jlg € semiJ?(X1, X5) is
called regular, if the 1-jet g(x) is regular (i.e., if it is of maximal rank). The subset
of semiJ?(X1, X5), consisting of regular jets is dense, and open, and is denoted by
regsemiJ (X1, Xs).

A semi-holonomic jet A € seminzlny(Xl , X) is called invertible if there is a jet
Al e seminZMI(Xz,Xl) such that A=1o A = sz'liXma and Ao A1 = JxZQidXQ.
The jet A is invertible if and only if it is regular and dim X; = dim X5.

One can consider semi-holonomic analogy to all standard jet spaces, such as the
space

(4) semiT? X = semiJZ(R™, X)
of semi-holonomic (2, m)-velocities of manifold X, its subspace

(5) regsemil2 X,
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consisting of regular semi-holonomic jets, and the second semi-holonomic differ-
ential group

(6) semil? = regsemijgyo(R", R™).

For a mapping f : X1 — X5, we define a mapping

(7) semiT? f : semiT2 X, — semiT% X5
by
(8) semiT? f(A) = JE(A)f oA

and obtain a second order bundle functor semiTZ (over the category Mf of
smooth manifolds and smooth mappings). Analogously it can be defined the func-
tor regsemil? (over the category D, of n-dimensional manifolds and their em-
beddings). The type fiber of the functor semiT? is the manifold semiTﬁym =
semiJg o(R™, R") with the following left action of the group L3:

(9) (g,A) > go A.

For some product chart (U x V,x) on a manifold X; x X5 , and for some
semi-holonomic jet A = J; g € semiJ? , (X1, X3) , we set

(10) XA = X'(x),

(11) X(A) = x(x2),

(12) Xk(4) = xilglz)),
(13) Xe(A) = Di(xg o 9)(x1),

where ¢,k,l = 1,... ,n1, s = ni+1,...,n1 +n9, ngy = dimXy, and ny, =
dim X5, and on the first three lines we have the standard induced coordinates on
JY(X1, X3). The system (X', x*, X3, x§;) form a coordinate system on semiJ?( X1,
Xs) over U x V, called induced by (U x V,x).

Coordinate expression of the composition of semi-holonomic jets is the following.
Let (U x V x W,x) be a product chart on a manifold X; x Xy x X3, A; €
seminzlny(Xl,Xz), As € semiJﬁMa(Xz,Xg). Then

(14) Xi(A2o A1) = X (A2)xi (A1),
(15) X (A2 0 A1) = x4, (A2)xgt (A)xG2 (A1) + X5 (A2) Xk, (A1)
(k’,k’l,k’zzl, ...,n1,5,51,52:n1—|—1, ...,n1+n2, u:n1+n2+1, ...,77,1—1—

ng + n3, n1 = dim Xy, ny = dim X», and n3 = dim X3). Especially, for ¢ € L2,
and A € semiT? , from (9) it follows

(16) Xilg-4) = a(g)xk(4),

(17) Xk (90 A4) = ade, (9008 (X2 (A) + 6 (9) Xy, (A)-

((af,a; ;) are the first canonical coordinates of L2).
In the induced coordinates, the inclusion (3) is given by the canonical inclusion.
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3. SECOND ORDER ANTI-HOLONOMIC JETS

In this paragraph, we introduce the notion of second order anti-holonomic jet.
Let X1, and X3 be two manifolds. We introduce an equivalence ~ on the man-
ifold semiJ?(Xy, X3) by means of coordinates as follows: For elements A, A €
semiJZ(Xl,Xz) we set A ~ A if A and A have the same source z; and target x
and if for some product chart (U x V,x) at (x1,22) the anti-symmetric parts of
x5, (A) and 3, (A) are equal:
(18) Xei(A) = X3k (A) = x5 (A) — xix (A).
Evidently, this condition does not depend on the choice of the chart y.

There evidently exists the quotient space semiJ?(X;, X2)/ ~ with the canonical
smooth structure (such that the quotient projection is a submersion). It is called
the manifold of second order anti-holonomic jets with source in Xy and target in
X5 and denoted by the symbol antiJ?(X;, X5). The canonical projection

(19) semiJ?( X1, Xo) — antiJ? (X1, Xo)

will be denoted by Tors and called the torsion mapping.

The notions of source, and target of anti-holonomic jet, composition of anti-
holonomic jets, as well as of the regular and inverse anti-holonomic jet are defined
by means of representatives.

The inclusion (3) leads to the mapping J*(X1, X5) — antiJ?(X1, X3). One can
easily obtain that this mapping is factored through the canonical projection

(20) JAHX1, Xo) = JHX1, Xo)
and get an inclusion
(21) JHX 1, Xo) — antiJ? (X, Xo).

Thus, for f: X; — X5 we can write J! f € antiJ?(X1, X5).
We shall use anti-holonomic counter-parts of many standard jet spaces. We set,
for example

(22) antiT2 X = antiJZ (R™, X).

This space is called the space of anti-holonomic (2, m)-velocities of manifold X.
Further we have its subspace regantiT? X, consisting of regular anti-holonomic
jets, and the second anti-holonomic differential group

(23) antil? = regantijgyo(R”, R™).

Analogously as in the previous paragraph we can define bundle functors anti72,
and reganti 7. The type fiber of the functor antiT?, is the manifold anti Tﬁym =
anti JOZVO(R’”, R™) with the following canonical left action of the group L} :

(24) (g,A) > go A.
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For some product chart (U x V,x) on X; x Xa, the induced coordinates on

anti J?( X1, Xo) form the system (X7, x*, x5, x§;), where x3, = —x;,, and for A4 €
semi J?(X1, X3) it holds
(25) Xier(Tors(A)) = x5 (A) — X3 (A4).
For A; € antinzlym(Xl,Xz), As € antiJﬁMa(Xz,Xg) we have
(26) Xe(AzoAr) = X (Az)xi(Ar),
(27) X (A2 0 Ar) = x4, (A2)xgt (A)xG2 (A1) + X5 (A2) Xk, (A1)

(ranges of the indices as above).
In the induced coordinates the inclusion (21) is the canonical inclusion

(28) (o X)) = (1 X 0).

4. LIE BRACKET AS AN ANTI-HOLONOMIC JET

Consider an n-dimensional manifold X. The bundle T}, X is in a canonical dif-
feomorphism with the bundle @™ T'X. Thus, sections of T}, X can be considered
as m-tuples of vector fields. We shall construct the Lie bracket as a part of a com-
position of some operators between semi-holonomic and anti-holonomic velocities.

In the first step we define an operator Prol : T} — semiT?. For a section
v : X — T} X we define a section Proly : X — semiT? X by

(29) (Proly) (o) = Jih,
where h(x) = v(h(x))oJ tr_, (tr_, is the translation y — y—=z), and J} h = v(20).
We obtain a first order differential operator Prol : T}, — semiT? , called the (semi-

holonomic) prolongation of fields of velocities.
The associated mapping of type fibers p : TﬁTéym — semiTﬁym (where

(30) Tom = Joo(R™, R")
is the type fiber of T, and
(31) semiTﬁym = semiJOZVO(Rm, R™)

is the type fiber of semiT}3) has in the canonical coordinates (i.e., in the coordi-
nates, induced by the canonical coordinates on R™, and R") the form

(32) k(p(4) = xi(4),
Mp(A) = xi(A)xi(A4)

(ranges of the indices as above).

—_
o
<o

=

>

In the second step we apply the torsion mapping Tors to the elements of
semiT}? X . Thus, we get a zero order differential operator Tors : semiT?, — antiT2,
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called torsion operator. The associated mapping of type fibers ¢ : semiTﬁym —
antiTﬁym has, according to (25) in the canonical coordinates the form

(34) XR(A) = xi(4),

(35) R(EA) = xgl(A) = xik (A)-

>

Finally, we define a first order operator Curv : T}, — anti7? as the composition
Curv = Tors o Prol. This operator is called the curvature of fields of velocities, or,
using the identification of 7)1, X and @™ T X, the curvature of m-tuples of vector
fields.

From the above expressions it follows, that the associated mapping of type fibers
c=top: TﬁTéym — antiTﬁym has in the canonical coordinates the form

(36) xk(e(4) = xi(4),
(37) Xii(e(4)) X (A (A) = X7 (A)xi (A).

As we shall see, the similarity of the second expression with the coordinate expres-
sion of the Lie bracket is not accident.

We show, that sections of the bundle anti72X — X can be considered as
collections of vector fields over X.

Theorem 4.1. Let M = 1m(m — 1). The bundle functors T, & T}y, and antiT}
are 1somorphic.

Proof. Let us define a chart on the manifold Té,M in the following way. Consider
an index a € {1,...,M} as a multi-index, consisting of two indices ki, ks €
{1, ..., m}, k1 < ko, sorted in some fixed order, and write the canonical coordinate
functions (x3) on Té,M as follows:

(38) (Xa) = (Xiiko)-

Now the action of L. on the type fiber Tﬁym X Té,M of the functor T}, @ T3, has
in the canonical coordinates the form

(39) Xilg-4) = a
(40) Xk, (9-A) = a

This is exactly the coordinate expression of the action (24). Thus we have proved
that the type fibers Tﬁym x T}, and antiTﬁym are isomorphic, which proves the
theorem. 7 d

From the above theorem and from (36,37) it follows that the curvature of an
m-tuple of vector fields can be divided to two parts: the vector fields themselves
(36) and all their Lie brackets (37). Note, however, that in this approach we lose
the anti-holonomic nature of the curvature.
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5. UNIVERSALITY OF THE LIE BRACKET

In this paragraph, we shall show universality (in a sense) of the operator Curv
(and hence of the Lie bracket), using similar properties of the operators Prol, and
Tors. In all this paragraph, we shall concentrate only to regular velocities (and
consider our operators restricted to sections of appropriate bundles) and suppose
m < n.

We shall often use actions of the kernel K> of the projection L2 — L} on some
type fibers. As it is discussed in [2], or [7], these actions are related to the problem
of universality of our operators. D, will denote the category of n-dimensional
manifolds and their embeddings, F M the category of fibered manifolds and their
smooth, projectable mappings.

Theorem 5.1. Any first order natural differential operator
(41) D :regTy — F,

where F' : D, — FM is a first order bundle functor, is a composition of the
semi-holonomic prolongation operator Prol, and some zero order operator

(42) Dq : regsemiT? — F.
The operator Dq is unique.

Proof. In this proof, we shall use indices with the following ranges: s, ¢ = {1, ... |
n} i, g, kI=A{1,... m}poov={n—m+1,... n}.

It 1s sufficient to show that the type fiber representation p : TﬁTﬁym — semiTﬁym
of the operator Prol 1s a surjective submersion whose fibers are subsets of the orbits
of the group K21

Surjectivity of p follows easily from (32,33). In the second component (33), p is
a surjective linear mapping, i.e., a submersion.

Now, let us prove the second statement. If ¢ € K21, then we have

(43) Xilg-A) = xi(4),
(44) Xewlg - A) = ag (90X (A) + x5 (4)
(these equations follow from the equations of prolonged actions of differential

groups. See, for example [4], [2], or [7]). B
Let A, A € TIT} = be elements such that p(4) = p(A). Then, according to

(32,33), e
(45) Xi(A) = xi(4) = 0,
(46) (Xi e (A) = xa ()X (A) =

Without loss of generality, we shall suppose that the matrix (x(A4)) = (x4 (4))
is regular. Denote by (xf) its inverse. Then from (46) it easily follows that the
expression

(47) Hi; = (x5 (A) = x5 (A)) = (5 (A) = X7 5 (A)R5xT (A)) T

)
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satisfies Hj; = H3). Thus, there exists an element g € K2! such that

(48) ag,(9) = 0,

(49) a, (9) = ai(9) = (G, (A) = x5 (A)kT,

(50) alsj (g) = Hfj

Direct computation gives A =g - A. a

Theorem 5.2. Any zero order natural differential operator
(51) D : regsemiT? — F,

where ' : D,, — F M is a first order bundle functor, is a composition of the torsion
operator Tors, and some zero order operator

(52) Dy : regantiTy — F.
The operator Dq is unique.

Proof. It is sufficient to show that the equivalence &, induced by the left action
of the group K2'! on regsemiTﬁym, and the equivalence ~ from Par. 3 coincide.
Since regantiT? is a first order bundle functor, then we have & C ~.

Let A, A € regsemil}?,, be elements such that ¢{(4) = #(A). We shall find
g € K2 satisfying A = g - A, which, according to (16,17), means

(53) XA = xi(4),
(54) Xk (A) = af,, (90X (AN (A) + X7k, (A).

Denote by (k¥) a left inverse to the matrix (y5(A)) = (x5 (4)).
From (34,35) we have

(55) i Xi(A) = xil4),

(56) Xk (A) = Xy (A) = Xiyha (A) = Xk, (4).

From (56) it follows that we can take ¢ € K2 such that

(57) 0,1, (9) = (ks (A) = Xy, (A))R] RE2.

Now we have A = ¢ - A. a

Theorem 5.3. Any first order natural differential operator
(58) D :regTt — F,

where F' : D, — FM is a first order bundle functor, is a composition of the
curvature operator Curv, and some zero order operator

(59) Dy : regantiT — F.
The operator Dq is unique.

Proof. Follows from Theorem 5.1 and Theorem 5.2. O
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