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LOWER-DIMENSIONAL DECOMPOSITIONS USING COMPLEX
VARIABLES

WOLFGANG TUTSCHKE

ABSTRACT. The purpose of the present paper is to represent non-holomorphic
functions depending on one or several complex variables by holomorphic and
anti-holomorphic functions depending on only one complex variable. Simi-
larly as in the case of functions of real variables, the obtained criteria can
also be interpreted as conditions for the solvability of functional equations.

1. STATEMENT OF THE PROBLEM

A function h = h(z,y) depending on two real variables x and y can be repre-
sented in the form

(1) h(z,y) = fi(@)gx(y)

where the f; and the ¢gi depend only on one real variable  and y resp. if and
only if the determinant

h o 8,h  Oh ... 9'h
Oyh 8,0,k 029,k ... OO,k
Dph=| .y .y !
Oh 9,0nh 9290k ... Oronh

vanishes identically. A complete and correct version of this statement was first
given by F. Neuman in his papers [7, 8], while the survey article [10] written
by F. Neuman and Th. M. Rassias contains historical comments and sketches
present trends. The present state of the the theory of decomposition (including
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the decomposition of matrix valued functions and decompositions in more than
two variables) is summarized in Th. M. Rassias’s and J. Simsa’s book [11].

Using the concept of partial complex derivatives, in the sequel we are going to
discuss some contributions of Complex Analysis to the problem under considera-
tion.

2. THE BASIC LEMMAS

Suppose z and ¢ are complex variables and the function h = h(z, () is defined in
the bicylinder €, x Q¢ where 2, and €; are domains in the z- and in the {-plane
resp. Suppose, further, that & depends holomorphically on both complex variables.
Define the determinant DgCh by replacing the differentiations with respect to z
and y in Dy, h by the ordinary complex differentiations with respect to z and ¢
resp. Then the following statement is true:

Lemma 1. In Q, x Q¢ the function h = h(z,{) can be represented in the form
(2) h(z,0) = fu(2)ax()
k=1

with linearly independent fi and gy, (defined in Q, and Q. resp.) if and only if
DIh =0 and D7 h # 0.

This statement can be proved by repeating the arguments of F. Neuman’s proof
of Theorem 1 in his paper [8]. One has to take into consideration, only, that one
has to solve an ordinary differential equation in the complex domain of order n
instead of an ordinary differential equation in one real variable. Asin the real case,
its solutions are linear combinations of n linearly independent solutions (see, for
instance, H. Herold’s book [5]) whose coefficients depend of the second variable.

Introduce complex differentiations d, and dz by

9. = —(0,—idy)

N = N —

0 = (Op + 10y)

where z = x + iy. Suppose h = h(z,y) = h(z) is a (real or complex valued)
function depending n times continuously differentiable on z and y defined in the
domain 2 of the z = « + iy-plane without necessarily being holomorphic in z.
Applying F. Neuman’s arguments to D2 h instead to D, h, one gets the following
statement:

Lemma 2. Suppose D2 h =0 and szz_lh # 0 in the domain Q of the complex
plane. Then h satisfies an (ordinary) differential equation of order n with respect
to the operator 0, in Q0 whose cocfficients are holomophic functions in £2.
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Indeed, the derivatives with respect to Z of the coefficients of the linear com-
binations mentioned above have to vanish identically, i.e., these coefficients are
holomorphic.

Remark 1. Concerning all possible representations of form (1) the same statement
can be made as in the case of real variables (see F. Neuman’s papers [7, 8]).

Remark 2. In view of Hartogs’s Continuity Theorem (cf., for instance, L. Hor-
mander’s book [6]) a function A = k(z, () is a holomorphic function in (z, () if only
h is partially holomorphic in z and in { as well. In view of the complex version
of the Weyl Lemma (see, for instance, I. N. Vekua’s book [17] or the booklet [14])
for the holomorphy in one complex variable it is sufficient that the function is
integrable with respect to the variable under consideration and that the Cauchy-
Riemann system is satisfied in the distributional sense.

3. PRELIMINARIES FROM COMPLEX ANALYSIS

In order to solve the differential equation of Lemma 2, one needs a certain
amount of Complex Analysis going beyond solving ordinary differential equations
in the complex domain. Note, first, that the differential operator 0, appearing in
the differential equation of Lemma 2 is defined for non-holomorphic functions, too.
Consequently, the differential equation under consideration has non-holomorphic
solutions, in general!.

Solutions w = A(z) of the complex differential equation

0Zw=0

(where n > 2) are called poly-analytic functions?. In a given domain § they can
be represented in the form

®) Ao =Y as()

where the «;(z) are holomorphicin z. In view of Weyl’s Lemma this represention
formula holds if only A and its n —1 first derivatives dzA, .. ., 322_1/\ are integrable.

Differentiating (3) (n — 1) times with respect to Z, one gets the representation
formula

1
py = ———027 1)
K I § YR
for the leading coefficient «,,_1. The remaining coefficients can be calculated by
the recursion formula

1
k -1 —k+1
ap = E@; (A — Oén_lzn = g 412 + ) .

I'Non-holomorphic solutions of ordinary differential equations in the complex domain have
been discussed already in the paper [15].
2Cf. M. B. Balk’s book [1].
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Replacing Z by an independent variable (, one gets an extension

Alz,Q) =) aj(2)¢!

7=0

which is holomorphic in z and ¢ in the fundamental domain® Qx € . Differ-
entiating k£ times with respect to ¢ and substituting { = 0, one gets another
representation

1
ag(z) = HaIEA(Z’ 0)

of the holomorphic coefficients of a poly-analytic function. The given A(z) is
connected with A(z, () by the relation

A(z) = A(z,2).

Let €5 and €2 be domains in the z;- and zy-plane resp. Then a (complex
valued) function h = h(z1, z2) defined in @y x Q2 is called poly-analytic if it is a
solution of a system of differential equations of type
(4) 3;11/1 =0, 3;22/1 =0
Such a function can be represented in the form

ni—1lno—1

h(Zl,Zz) = Z Z hV1V2(ZlaZZ)211/1212/2

v1=0 v3=0

where the hy,,, are holomorphic functions in z; and z2. Again, the coefficients
hy,v, can be represented by the derivatives of h. Similarly, the h,,,, can also be
represented by the derivatives of the holomorphic extension

ni—1lnao—1

H(z1,22,(1,¢2) = Z Z Py (21, 22) (7 57

v1=0 v3=0
4. DECOMPOSITIONS BY HOLOMORPHIC FACTORS IN THE COMPLEX PLANE

Since a holomorphic function of a complex variable z can be interpreted as
a function depending on one variable only, it makes sense to ask under which
conditions a (real- or complex-valued) non-holomorphic function 2 = h(z) can be
represented by finitely many holomorphic functions. For instance, the real valued
function h defined by

h(z,y) = x* +y* + Z (29: —z? - yz)k
k=0

in the unit disk (i.e., % + y? < 1) can be represented in the form
h=fifi+ f2f2

3Concerning the concept of a fundamental domain see, for instance, I. N. Vekua's book [16].
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where

1
1—2z

fi(z) =z and fa(z) =

Using the results of the previous section, we are now in a position to solve the
differential equation mentioned in Lemma 2.

Since @, is an elliptic operator and since the differential equation under con-
sideration has holomorphic coefficients, its solutions have (local) power series rep-
resentations in « and y (cf., for instance, L. Schwartz [12]). Without any loss of
generality consider a neighbourhood of z = 0, and rewrite the desired solution in
the form

Z aj(z)ij

where the a;(z) are power series in z, i.e., they are holomorphic in z. Note
that 0,7 = 0, i.e., the 7 are anti-holomorphic. Moreover, the Z/ are linearly
independent. Consequently, all of the coefficients a;(z) have to satisfy the given
ordinary complex differential equation. Since the a;(z) are holomorphic solutions,
they are linear combinations

n

S el gi(z)

k=1

of n linearly independent (holomorphic) solutions gi(z). Again rearranging the
power series; one gets, finally,

h(z) = (Z cé”gw)) 7

7=0 \k=1

= igk(z)fk(z)
where
fu(z) = Z_:@z]

Hence the following decomposition theorem has been proved:

Theorem 1. Suppose DZ h = 0, while szz_lh #+ 0 in the domain Q of the z-
plane. Then h can be represented in the form

(5) h(z) =D (=) fi ()

where the g and the fi are holomorphic functions in Q.
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Remark 1. Since the solution of an ordinary differential equation exists globally in
case the differential equation is linear, the function A can be decomposed globally,
too.

Remark 2. If h is of form (5), then D2 h = 0 necessarily. Indeed, (5) implies that
h and its derivatives with respect to z (up to the order n) are linear combinations
of the n rows

G 09 - 077x),

k=1,..,n. Therefore, D2 h has (as determinant with n + 1 rows) to be equal to
zero at each point z.

5. A DECOMPOSITION THEOREM FOR FUNCTIONS DEPENDING ON FOUR REAL
VARIABLES

Let h be a (real or complex valued) function depending on four real variables
T1,Y1,%2,Y2. Introduce two complex variables z; = x; 4+ ¢y;, j = 1,2. Suppose
h = h(z1, z2) is a solution of the system (4), i.e., h is a poly-analytic function in two
complex variables z1, z2. Then the natural holomorphic extension H(z1, z2, (1, (2)
is defined in the corresponding fundamental domain in €*. Moreover, h is a
polynomial

nyi—1ngs—1

1/1 Vo —1—Vs
h(z1, z2) E g 1/1'1/2' 7S 2H(zl,zz,O,O)z1 Zy

v1=0 v3=0

in z; and Zs whose coefficients are holomorphic in z; and z3. Applying Lemma 1
to these coefficients, the following statement has been proved:

Theorem 2. Suppose h is a solution of the system
0Fth =0, 972h=0.

Suppose, further, that for 0 <11 < ny and 0 < vy < ny there exist inlegers my,,,
such that
D200 02 H (21, 22,0,0) = 0

where H(z1,7z2,1,(2) is the natural holomorphic extension of h(z1,z22). Then h
possesses a finite decomposition

vy l’2 l’1 l’2) =1 —=V2
h(z1, z2) E fk ’ C (22) 77

v1,v2,k

where the f,gyl’ v2) and the g,(:l’ VQ), 1 <k <my,,,, are holomorphic in z; and zo
respectively.
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6. CONCLUDING REMARKS

Remark 1. The obtained theorems lead to conditions for the solvability of func-
tional equations, too. For instance, in view of Theorem 1 the condition D2 h =0
in € implies that to a given h defined in € there exist holomorphic solutions fx
and gi, k = 1,...,n of the functional equation (5).

Remark 2. The corollary to the proof of Theorem 2.1 in H. Gauchman’s and
L. A. Rubel’s paper [4] states that in a decomposition (1) the functions fi and
gr have to be power series in x and y resp. provided the function A is supposed
to be a power series in z,y (at least locally). Of course, a real-analytic function
(in # and y) is a power series in z and Z, too, but not every power series in z
and Z can be represented in the form (5). This shows that the above Theorem
1 goes further than H. Gauchman’s and L. A. Rubel’s result on real analyticity
does (cf. also Theorem 2.1.4 in Th. M. Rassias’s and J. Simsa’s book [11]). -
Replacing the real variables  and y in H. Gauchman’s and L. A. Rubel’s corollary
under consideration by two independent complex variables, one gets, finally, a
factorization theorem in four real variables.

Remark 3. As already shown in J. Simsa’ paper [13], factorizations of matrix-
valued functions can be reduced not only to factorizations of their entries, but
also they can be described by matrix operations. Consider, for instance, a matrix
valued function h = h(z) defined in © whose entries are supposed to be real-
analytic functions, i.e., the entries of h(z) are locally representable as power series
in (# — z9) and (Z — Zy). We are looking for factorizations

(6) h(z) = f(2)g(Z)

where the entries of the matrices f and g are (locally) power series in their vari-
ables. Let H = H(z,{) be the natural holomorphic extension of h(z) defined in
Q x Q,ie., h(z) = H(z,%) in Q. Then (6) holds if and only if

(7) H(z,¢) = f(2)9(C)

in Q x Q. Repeating the arguments in the proof of Theorem 1 in J. Simsa’s paper
[13], one can prove that (7) is true if and only if

H(z,¢) = H(z,¢0)H ™ (20,(0) H (20, ¢)
for each 7z € Q and ¢ € Q where 2y € Q and (y € Q are arbitrarily chosen.

Remark 4. Similar generalizations of the above approach are possible also for
decompositions with two multi-dimensional (complex) variables and with several
single (complex) variables (cf. M. Cadek’s and J. Simsa’s papers [3] and [2] resp.;
see also F. Neuman’s paper [9]).

Remark 5. The considerations on minimal decompositions (Section 2.3 in Th. M.
Rassias’s and J. Simsa’s book [11]) are, of course, also applicable to decompositions
of functions in complex variables.
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Remark 6. Notice that in the case of more than two real variables some sufficient
and necessary conditions for the existence of decompositions are given by a system
of partial differential equations in real variables (see, e.g., the Theorems 3.4.4 and
3.4.6 in the book book [11] of Th. M. Rassias and J. Simsa). The conditions
formulated in Theorem 2 of the present paper are a system of partial complex
differential equations.
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