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RIEMANNIAN MANIFOLDS IN WHICH
CERTAIN CURVATURE OPERATOR HAS CONSTANT

EIGENVALUES ALONG EACH HELIX

Yana Alexieva and Stefan Ivanov

Abstract. Riemannian manifolds for which a natural skew-symmetric cur-
vature operator has constant eigenvalues on helices are studied. A local
classification in dimension three is given. In the three dimensional case one
gets all locally symmetric spaces and all Riemannian manifolds with the con-
stant principal Ricci curvatures r 1 = r2 = 0, r3 6= 0, which are not locally
homogeneous, in general.

1. Introduction

Curvature is a fundamental notion of differential geometry. A useful technique
to describe the curvature along a geodesic in a Riemannian manifold is the use of
the Jacobi operator. If the Jacobi operator has constant (resp. pointwise constant)
eigenvalues, then the Riemannian manifold M is said to be a globally Osserman
(resp. a pointwise Osserman) manifold. Osserman [19] wondered if the eigenvalues
of the Jacobi operator are globally constant, need the manifold be at least locally
a rank one symmetric space or flat. This question has been answered in the
affirmative by Chi [5] if the dimension n is odd, if n ≡ 2 mod 4, or if n = 4; the
case n ≡ 0 mod 4 and n > 4 is still open. Pointwise Osserman spaces have been
studied by many authors [6, 7, 8]. Examples of 4-dimensional pointwise Osserman
spaces which are not globally Osserman have been given in [8].

In [1] J. Berndt and L. Vanhecke have introduced the so called C-spaces and P-
spaces as a generalizations of locally symmetric spaces. A C-space (resp. P-space)
is by definition a Riemannian manifold for which the Jacobi operator has constant
eigenvalues (resp. parallel eigenspaces) along every geodesic. These manifolds
have been investigated in [2, 3, 4]. A local classification of 3-dimensional C-spaces
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and of 3-dimensional P-spaces has been given in [1]. Locally conformal flat 4-
dimensional C-spaces and locally conformal flat 4-dimensional P-spaces have been
described recently in [13, 14]. Examples of non locally symmetric 4-dimensional
P-spaces are constructed in [14].

The skew-symmetric curvature operator R also encodes important information
about the curvature. Riemannian manifolds with pointwise constant eigenvalues
of R are described locally in dimension four in [12], in all other dimensions except
7 and 8 these spaces are locally classified recently in [9]. If the eigenvalues of R
are constant along every unit circle, M is called an O-space; if R admits parallel
Jordanian basis along every unit circle, M is called a T -space. These manifolds
have been studied in [10, 11]. A local description of 3-dimensional O-spaces and
T -spaces has been also obtained.

In the present note we describe the curvature along a helix using the curvature
operator. A helix in a Riemannian manifold is a smooth curve for which the
first and second curvatures are constants and all other curvatures are equal to
zero. We consider Riemannian manifold for which the skew-symmetric curvature
operators defined along every helix with fixed first and second curvature have
constant eigenvalues along the helix. Such a Riemannian manifold is called a Q-
space. For example, every locally symmetric space is a Q-space. In the same way,
O. Kowalski [16] have suggested that could be a relation between 3-dimensionalQ
spaces and 3-dimensional curvature homogeneous Riemannian manifolds which are
precisely the Riemannian manifolds with constant Ricci eigenvalues. It is natural
to expect that the constant Ricci eigenvalues depend on the fixed first and second
curvatures of the helix. Unfortunately, we show that this is not entirely true. In
fact, we prove the following

Theorem 1.1. Let (M, g) be a 3-dimensional Q-space of class C∞. Then M is
locally almost everywhere (i.e. around the points of an open and everywhere dense
set) isometric to one of the following spaces:

i) A space of constant Riemannian sectional curvature.
ii) A Riemannian product of the form M2×R, where M2 is a 2-dimensional

Riemannian manifold of constant sectional curvature.
iii) A Riemannian manifold with constant Ricci curvatures r1 = r2 = 0,

r3 6= 0.

Conversely, any 3-dimensional Riemannian manifold of type i), ii) or iii) is a
Q-space.

Milnor has studied in [18] 3-dimensional Lie groups with left invariant Rieman-
nian metrics with constant principal Ricci curvatures r1 = r2 = 0, r3 6= 0. He
has found a lot of examples of such spaces which are locally homogeneous but not
locally symmetric (SU (2) with its special left invariant metric for example). By
Theorem 1.1, these spaces are examples of Q- spaces which are locally homoge-
neous but not locally symmetric.

It is well known that a 3-dimensional Riemannian space is curvature homoge-
neous iff it has constant principal Ricci eigenvalues. Recently, O. Kowalski has
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constructed in [15] an explicit example of Riemannian 3-manifold with constant
principal Ricci curvatures r1 = r2 = 0, r3 6= 0 which is not locally homogeneous.
By Theorem 1.1 this is an example of Q-space which is curvature homogeneous
but not locally homogeneous. This Q-space is also an O-space but it is neither a
C-space nor a P-space [10].
Q-spaces can be regarded as a non-trivial generalization of locally symmetric

spaces since every locally symmetric space is a Q-space but, in dimension 3, there
is a family of Q-spaces which are not even locally homogeneous and depend essen-
tially on two arbitrary functions of one variable (see [15]). Theorem 1.1 implies
that every 3-dimensional Q-space is curvature homogeneous but there is a lot of
curvature homogeneous (and even locally homogeneous) 3-manifolds which are not
Q-spaces. See [15, 21, 17].

It is clear that the Riemannian manifolds for which the curvature operator R has
constant eigenvalues are Q-spaces. In dimension three the converse also holds, i.e.
every three dimensionalQ-space has constant eigenvalues of the curvature operator
R by Theorem 1.1 and Remark 2 of [12]. Moreover, Theorem 1.1 and Theorem
1.1 of [10] imply that 3-dimensional Q-spaces coincide with the 3-dimensional O-
spaces. As we know, it is not clear whether Q-spaces coincide with O-spaces or
have constant eigenvalues of the curvature operator in higher dimensions.

We are grateful to Professor O. Kowalski who suggested the problems considered
in the paper for his useful remarks and for his help to make clear the exposition
of the case B2 in the proof of our main result.

2. Characterizations of Q-spaces

Let (M, g) be an n-dimensional Riemannian manifold and ∇ the Levi-Civita
connection of the metric g. We denote by TpM the tangential space at a point
p of M. The curvature operator is defined by R(X,Y ) = [∇X ,∇Y ] − ∇[X,Y ] for
every smooth vector fields X,Y, Z, V on M. The curvature tensor of type (0,4) is
defined by R(X,Y, Z, V ) := g(R(X,Y )Z, V ).

A smooth curve c(t) : Iε →M, Iε = (−ε, ε), ε > 0, with tangent vector field ċ,
parameterized by the arc length, is said to be a helix if its first curvature k1 is
a constant different from zero, its second curvature k2 is also a constant different
from zero and all other curvatures are zeros. For a helix with fixed k1 and k2 we
have

∇ċċ = k1n; ∇ċn = −k1ċ+ k2b ∇ċb = −k2n .(2.1)

The unit vector field n is the first normal of c(t) and the unit vector field b is its
second normal. All other normals orthogonal to ċ, n and b are parallel along c(t).

Proposition 2.1. A smooth curve c(t) with tangent vector field ċ, parameterized
by the arc length, is a helix if and only if c(t) satisfies the following differential
equation

g(∇ċċ,∇ċċ)∇3
ċ ċ+ g(∇2

ċ ċ,∇2
ċċ)∇ċċ = 0 ,(2.2)

where∇2 and ∇3 denote the second and the third covariant derivative, respectively.
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Proof. We calculate from (2.1) that (2.2) holds, since k1 and k2 are constants.
Conversely, let (2.2) hold. We have to prove k1 = const. , k2 = const. and that

the third equality of (2.1) holds. We obtain differentiating the equality g(∇ċċ, ċ) =
0 twice that

ċg(∇ċċ,∇ċċ) = 0 , ċg(∇2
ċċ,∇2

ċċ) = 0 .(2.3)

We get from the first and the second equalities of (2.1) taking into account (2.3)
that

k2
1 = g(∇ċċ,∇ċċ) = const. , k2

1(k2
1+k2

2) = k2
1g(∇ċn,∇ċn) = g(∇2

ċċ,∇2
ċċ) = const.

Now, we obtain the third equality of (2.1) differentiating the second equality of
(2.1) and taking into account the first equality of (2.1) and (2.2). �

The equation (2.2) is an ordinary differential equation describing the helices. By
Proposition 2.1 and the fundamental theorem of ordinary differential equations,
we obtain

Proposition 2.2. Suppose, we are given two non zero constants k1 and k2. If
dim M ≥ 2 then for every point p ∈ M and every three orthonormal vectors
u, v, w ∈ TpM there exists locally a unique helix c(t), parameterized by the arc
length with first curvature equal to k1, second curvature equal to k2 and satisfying
the following initial conditions

c(0) = p, ċ(0) = u , (∇ċċ)(0) = k1v , (∇2
ċ ċ)(0) = −k2

1u+ k1k2w .(2.4)

Further in the paper, we will consider helices with fixed first curvature k1 and
second curvature k2. Let c(t) be a helix on M. We consider the families of smooth
skew-symmetric linear operators along c(t) defined by

κc(X) := R(∇ċċ,∇2
ċċ)X , κ′c(X) := (∇ċR)(∇ċċ,∇2

ċċ)X(2.5)

for every vector field X along c(t).
It follows from (2.2) and (2.5) that

κ′c(X) = ∇ċκc(X) − κc(∇ċX) .(2.6)

We have the following characterization of locally symmetric spaces:

Proposition 2.3. For an n-dimensional (n ≥ 2) Riemannian manifold (M, g)
the following conditions are equivalent:

i) (M, g) is a Riemannian locally symmetric space;
ii) For every helix c on M we have κ′c = 0;

iii) For every helix c on M we have κc ◦ ∇ċ = ∇ċ ◦ κc;
iv) For every helix c on M the operator κc transforms a vector field parallel

along c to a vector field parallel along c;
v) For every helix c on M the matrix of κc with respect to a basis of vector

fields parallel along c is invariant i.e. the matrix has constant entries.
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Proof. The implication i) → ii) is clear.
To prove the converse, let u, v, w be three orthonormal vectors at a point p ∈M.

Let c(t) be the helix on M determined by the initial conditions (2.4). For every
X ∈ TpM, we get from κ′c = 0 the equality

k1(∇uR)(u, v)X = k2(∇uR)(v, w)X .(2.7)

Taking the orthonormal frame {−u,−v, w} by the frame {u, v, w}, we get from
(2.7) that (∇uR)(v, w)X = 0. By the well known properties of the Riemannian
curvature operator, we can conclude that the latter equality is valid for arbitrary
u, v, w ∈ TpM which proves i).

The equivalence of ii), iii), iv) and v) follows from (2.6). �
Let A be a skew-symmetric linear operator on a Euclidean vector space E.

If A has a real eigenvalue then it has to be zero. If A possesses a non-zero
eigenvalue of multiplicity m then it has to be of the form

√
−1a, a ∈ R. Then

−
√
−1a is also an eigenvalue of A of the same multiplicity. Let A has eigenvalues

0,
√
−1a1,−

√
−1a1, ...,

√
−1al,−

√
−1al of multiplicity m,m1,m1, ...,ml,ml, re-

spectively. Then there exists an orthonormal basis Z1, ..., Zm, X
(1)
1 , Y

(1)
1 , ..., X

(1)
m1,

Y
(1)
m1 , ..., X

(l)
1 , Y

(l)
1 , X

(l)
ml , Y

(l)
ml of E such that

A(Zp) = 0, p = 1, ...,m ,(2.8)

A(X(j)
s ) = ajY

(j)
s , A(Y (j)

s ) = −ajX(j)
s , j = 1, ..., l; s= 1, ...mj .

Such a basis of E is known as a Jordanian basis for A.

Definition 2.1. A Riemannian manifold (M, g) is said to be a Q-space if for any
helix c(t) the operator κc has constant eigenvalues along c(t).

An equivalent point of view is the following. Let c(t) be a helix on a Riemannian
manifold (M, g). We may consider the ”extrinsic helix flow” on the orthonormal
2-frame bundle of M whose orbits are defined by t −→ (n(t),−k1ċ(t) + k2b(t)) ∈
Tc(t)M × Tc(t)M. A Q-space is a space such that the skew-symmetric curvature
operators R(n(t),−k1ċ(t) + k2b(t)) on Tc(t)M have constant eigenvalues along ev-
ery orbit.

Definition 2.2. A Riemannian manifold (M, g) is said to be a J -space if for any
helix c(t) the operator κc has Jordanian basis parallel along c(t) (at least locally
around almost every point of c(t)).

Remark 1. It follows from Proposition 2.3 that a smooth Riemannian manifold
M is a locally symmetric Riemannian manifold iff M is a Q-space and M is a
J -space simultaneously.

Due to this observation it is natural to study the Q-spaces and the J -spaces
separately. This leads to two natural generalizations of locally symmetric Rieman-
nian manifolds.

In this paper we consider the Q-spaces.
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Our further considerations are based on the following simple

Observation 1.1. If a skew-symmetric linear operator A on an Euclidean vector
space E has eigenvalues 0,

√
−1a1,−

√
−1a1, ...,

√
−1al,−

√
−1al then the operator

A2 is self-adjoint linear operator and it has eigenvalues 0,−a2
1, ...,−a2

l .
Further, for each point p ∈ M and for any three orthonormal tangent vectors

u, v, w at p we define two skew-symmetric endomorphisms κu,v,w, κ′u,v,w of TpM
by

κu,v,w = R(k1v,−k1u+ k2w), κ′u,v,w = (∇uR)(k1v,−k1u+ k2w) .

The proof of the following result is similar to the proof of Theorem 2.4 in [10]
and we omit it.

Theorem 2.4. Let (M, g) be a smooth Riemannian manifold of dimension n(n ≥
2). Then the following conditions are equivalent:

i) M is a Q-space;
ii) For each point p ∈M and for any three tangent vectors u, v, w at p there

exists a skew-symmetric endomorphism Tu,v,w of TpM such that

κ′u,v,w = κu,v,w ◦ Tu,v,w − Tu,v,w ◦ κu,v,w .(2.9)

Corollary 2.5. Let M = M1× ...×Mr be a locally reducible smooth Riemannian
manifold and each of Mi is smooth. Then M is a Q-space iff each of Mi is a
Q-space.

3. Three dimensional Q-spaces

In this section we treat the classification problem for Q-spaces of dimension
three. The key point for the three dimensional case is the following

Proposition 3.1. Let (M, g) be a 3-dimensional Riemannian manifold. Then M
is a Q-space iff the following identities hold

(3.10) k2
1 {R(X,Y, Y,X)(∇XR)(X,Y, Y,X)

+R(X,Y, Y, Z)(∇XR)(X,Y, Y, Z) + R(Y,X,X,Z)(∇XR)(Y,X,X,Z)}
+ k2

2 {R(Y, Z, Z, Y )(∇XR)(Y, Z, Z, Y )

+ R(X,Y, Y, Z)(∇XR)(X,Y, Y, Z) +R(Y, Z, Z,X)(∇XR)(Y, Z, Z,X)} = 0 ;

(3.11) k1k2 {R(X,Y, Y, Z)(∇XR)(X,Y, Y,X)

+R(X,Y, Y, Z)(∇XR)(Z, Y, Y, Z) + R(Y, Z, Z,X)(∇XR)(Y,X,X,Z)

− R(Y,X,X,Z)(∇XR)(Y, Z, Z,X) + (R(Y, Z, Z, Y )

+R(Y,X,X,Z))∇XR(X,Y, Y, Z)} = 0

for any orthonormal vectors X,Y, Z at any point p ∈M.
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Proof. Since M is 3-dimensional then M is a Q-space iff for any helix c(t)

trace (κ2
c) = const.(3.12)

Let c(t) be the helix determined by the initial conditions (2.4), n be its first normal
and b be its second normal given by (2.2). The equality (3.12) is equivalent to the
following equation

ċ [g(κc(ċ), κc(ċ)) + g(κc(n), κc(n)) + g(κc(b), κc(b))] = 0 .

By (2.1) the latter equality can be written as

g(κ′c(ċ), κc(ċ)) + g(κ′c(n), κc(n)) + g(κ′c(b), κc(b)) = 0 .

Evaluating this equality at the point p we obtain that the sum (3.10) + (3.11) is
equal to zero. Replacing the orthonormal frame {−X,−Y, Z} by the orthonormal
frame {X,Y, Z}, we obtain that the difference (3.11) − (3.10) is equal to zero.
Thus, we have proved Proposition 3.1. �

In every point p ∈M we consider the Ricci operator Ric as a linear self-adjoint
operator on the tangential space TpM. Let Ω be the subset of M on which the
number of distinct eigenvalues of Ric is locally constant. This set is open and
dense on M. We can choose C∞ eigenvalue functions of Ric on Ω, say r1, r2, r3,
in such a way such that they form the spectrum of Ric at each point of Ω (see for
example [1, 20, 15]). We fix a point p ∈ Ω. Then there exists a local orthonormal
frame field E1, E2, E3 on an open connected neighborhood U of p such that

Ric(Ei) = riEi , i = 1, 2, 3 .(3.13)

We set ωij,k = g(∇EiEj, Ek), i, j, k ∈ {1, 2, 3}.
We obtain using Observation 1.1 the following technical result

Proposition 3.2. it Let (M, g) be a 3-dimensional Riemannian manifold. Let Ω
be an open and dense set of M and r1, r2, r3 smooth functions forming at each
point of Ω the spectrum of Ric. Let U ⊂ Ω and let E1, E2, E3 be orthonormal
vector fields on U satisfying the condition (3.13). Let M be a Q-space. Then

i) The Ricci eigenvalues r1, r2, r3 are constants on U ;
ii) For all distinct i, j, k ∈ {1, 2, 3}, the following formulae are valid on U :

rj(rk − ri)ωii,k = 0 ;(3.14)

ri(rj − rk)ωij,k = 0 .(3.15)

Proof. For a 3-dimensional Riemannian, manifold the curvature tensor R is given
by

(3.16) R(X,Y )Z

= ric(Y, Z)X − ric(X,Z)Y + g(Y, Z)Ric(X) − g(X,Z)Ric(Y )

− 1
2
s [g(Y, Z)X − g(X,Z)Y ] , X, Y, Z ∈ TpM, p ∈M ,
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where ric and s denote the Ricci tensor and the scalar curvature of R, respectively.
Using (3.16), we see that (3.10) and (3.11) are equivalent respectively to

k2
1 {[s − 2ric(Z,Z)] [2(∇Xric)(X,X) + 2(∇Xric)(Y, Y )−X(s)](3.17)

+4ric(X,Z)(∇Xric)(X,Z) + 4ric(Y, Z)(∇Xric)(Y, Z)}
+k2

2 {[s− 2ric(X,X)] [2(∇Xric)(Z,Z) + 2(∇Xric)(Y, Y )−X(s)]

+4ric(X,Y )(∇Xric)(X,Y ) + 4ric(X,Z)(∇Xric)(X,Z)} = 0 ;

(3.18) k1k2 {[(∇Xric)(X,X) + (∇Xric)(Z,Z)

+2(∇Xric)(Y, Y ) −X(s)] ric(X,Z) − (∇Xric)(X,Z)ric(Y, Y )

−(∇Xric)(Y, Z)ric(X,Y )− (∇Xric)(X,Y )ric(Y, Z)} = 0

for any orthonormal tangent vectors X,Y, Z.
Let A = (a1, a2, a3), B = (b1, b2, b3), C = (c1, c2, c3) be three orthonormal vec-

tors in R3. We set X = aiEi, Y = biEi, Z = ciEi (the Einstein summation
convention is assumed). Substituting these vectors into (3.17) and into (3.18), we
obtain after some calculations

k2
1

{[
r1 + (2(c3)2 − 1)r2 + (2(c2)2 − 1)r3

]
X(r1)(3.19)

+
[
r2 + (2(c3)2 − 1)r1 + (2(c1)2 − 1)r3

]
X(r2)

+
[
r3 + (2(c2)2 − 1)r1 + (2(c1)2 − 1)r2

]
X(r3)

−4c1c2r3
[
a1(∇E1ric)(E1, E2) + a2(∇E2ric)(E2, E1) + a3(∇E3ric)(E1, E2)

]
−4c1c3r2

[
a3(∇E3ric)(E3, E1) + a1(∇E1ric)(E1, E3) + a2(∇E2ric)(E3, E1)

]
−4c2c3r1

[
a1(∇E1ric)(E2, E3) + a2(∇E2ric)(E2, E3) + a3(∇E3ric)(E3, E2)

]}
+k2

2

{
{
[
r1 + (2(a3)2 − 1)r2 + (2(a2)2 − 1)r3

]
X(r1)

+
[
r2 + (2(a3)2 − 1)r1 + (2(a1)2 − 1)r3

]
X(r2)

+
[
r3 + (2(a2)2 − 1)r1 + (2(a1)2 − 1)r2

]
X(r3)

−4a1a2r3
[
a1(∇E1ric)(E1, E2) + a2(∇E2ric)(E2, E1) + a3(∇E3ric)(E1, E2)

]
−4a1a3r2

[
a3(∇E3ric)(E3, E1) + a1(∇E1ric)(E1, E3) + a2(∇E2ric)(E3, E1)

]
−4a2a3r1

[
a1(∇E1ric)(E2, E3) + a2(∇E2ric)(E2, E3) + a3(∇E3ric)(E3, E2)

]}
= 0 ;

(3.20) k1k2
{
−
[
a3c3r2 + a2c2r3

]
X(r1)

−
[
a3c3r1 + a1c1r3

]
X(r2) −

[
a2c2r1 + a1c1r2

]
X(r3) + (a1c2 + a2c1)r3[

a1(∇E1ric)(E1, E2) + a2(∇E2ric)(E2, E1) + a3(∇E3ric)(E1, E2)
]

+ (a1c3 + a3c1)r2
[
a3(∇E3ric)(E3, E1) + a1(∇E1ric)(E1, E3)

+a2(∇E2ric)(E3, E1)
]

+ (a2c3 + a3c2)r1[
a1(∇E1ric)(E2, E3) + a2(∇E2ric)(E2, E3) + a3(∇E3ric)(E3, E2)

]}
= 0 .
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We consider the following two-frames
A = (1, 0, 0), C = (0, 0, 1); A = (0, 1, 0), C = (1, 0, 0); A = (0, 0, 1), C = (0, 1, 0).
Substituting these two-frames consequently into (3.20) we get (3.14). Analogously,
we obtain from (3.19) that for distinct i, j, k ∈ {1, 2, 3}

k2
1Ei(ri + rj − rk)2 + k2

2Ei(−ri + rj + rk)2 = 0 .(3.21)

Using the two-frames
A = (1, 0, 0), C = (0, 1, 0); A = (0, 1, 0), C = (0, 0, 1); A = (0, 0, 1), C = (1, 0, 0)
and (3.14), we get from (3.19) and (3.20 that

k2
1Ei(ri − rj + rk)2 + k2

2Ei(−ri + rj + rk)2 = 0(3.22)

for distinct i, j, k ∈ {1, 2, 3}.
Subtracting (3.22) from (3.21), we obtain

Ei(ri(rj − rk)) = 0(3.23)

for distinct i, j, k ∈ {1, 2, 3}. We get adding (3.21) to (3.22)

k2
1

{
Ei(ri)2 +Ei(rj − rk)2}+ k2

2Ei(−ri + rj + rk)2 = 0(3.24)

for distinct i, j, k ∈ {1, 2, 3}. Substituting the two-frames
A = (1, 0, 0), C = (0,

√
2

2 ,
√

2
2 ); A = (0, 1, 0), C = (

√
2

2 , 0,
√

2
2 ); A = (0, 0, 1), C =

(
√

2
2 ,
√

2
2 , 0) into (3.19) and (3.20), we derive taking into account (3.14) that for

distinct i, j, k ∈ {1, 2, 3}

(3.25) k2
1

{
Ei(ri)2 + Ei(rj − rk)2 − 4ri(rj − rk)ωij,k

}
+ k2

2Ei(−ri + rj + rk)2 = 0 .

Similarly, the two-frames
A = (1, 0, 0), C = (0,

√
2

2 ,−
√

2
2 );A = (0, 1, 0), C = (−

√
2

2 , 0,
√

2
2 );A = (0, 0, 1), C =

(
√

2
2 ,−

√
2

2 , 0), (3.19), (3.20) and (3.14) imply

(3.26) k2
1

{
Ei(ri)

2 + Ei(rj − rk)2 + 4ri(rj − rk)ωij,k
}

+ k2
2Ei(−ri + rj + rk)2 = 0

for distinct i, j, k ∈ {1, 2, 3}.
Subtracting (3.26) from (3.25), we get (3.15) which proves ii).
We shall use the following two frames:

A = (

√
2

2
, 0,

√
2

2
), C = (−

√
2

2
, 0,

√
2

2
) ;(3.27)

A = (0,

√
2

2
,

√
2

2
), C = (0,

√
2

2
,−
√

2
2

); A = (

√
2

2
,

√
2

2
, 0), C = (

√
2

2
,−
√

2
2
, 0) ;

A = (−
√

2
2
, 0,

√
2

2
), C = (

√
2

2
, 0,

√
2

2
) ;(3.28)
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A = (0,

√
2

2
,−
√

2
2

), C = (0,

√
2

2
,

√
2

2
); A = (

√
2

2
,−
√

2
2
, 0), C = (

√
2

2
,

√
2

2
, 0) .

Substituting (3.27) and (3.28) into (3.19), then adding and subtracting the ob-
tained equalities, we obtain taking into account (3.14) that

(k2
1 + k2

2)Ei
(
r2
k + (ri − rj)2)− 4k1k2Ei(rk(ri − rj)) = 0 ,(3.29)

(k2
1 + k2

2)Ei
(
r2
j + (rk − ri)2

)
− 4k1k2Ei(rj(rk − ri)) = 0 .(3.30)

for all distinct i, j, k ∈ {1, 2, 3}.
Subtracting (3.30) from (3.29) and taking into account (3.23), we get

Ei(rjrk) = Ei(rirj)(3.31)

for all distinct i, j, k ∈ {1, 2, 3}.
Combining the equalities (3.23), (3.31), (3.14) and (3.21), we obtain for all

distinct i, j, k ∈ {1, 2, 3} that

Ei(−ri + rj + rk) = Ei(ri − rj + rk) = Ei(ri + rj − rk) .

The latter equalities imply that the Ricci eigenvalues are constants on U which
completes the proof. �

4. Proof of Theorem 1.1

We have the following possibilities for the constants r1(r2−r3), r2(r3−r1), r3(r1−
r2) on U :

Case A. All of them are identically equal to zero;
Case B. One of them is identically equal to zero and the others are non zero;
Case C. All of them are non zero.
CASE A: In this case we have (up to ordering) two possibilities for the constants

r1, r2, r3: r1 = r2 = r3 and r1 = r2 = 0, r3 6= 0.
In the first case (U, g) is an Einstein manifold and hence it is of constant sectional

curvature. The second case is exactly the condition iii) of Theorem 1.1.
CASE B: In this case we have two possibilities for the constants r1, r2, r3:

Case B1: Two of them are equal and different from the third;
Case B2: One of them is zero and all are distinct.

Case B1: We may assume r1 = r2 6= r3. We have the formula (∇Eiric)(Ej , Ek)
= (rk − rj)ωij,k for all i, j, k ∈ {1, 2, 3}, since the Ricci curvatures are constants.
Then, the conditions of the CaseB1, (3.14) and (3.15) imply (∇ric) = 0. Hence,
(U, g) is locally symmetric space by (3.16) and it is locally isometric to i) and ii).

Case B2. To solve this case we rely essentially on the work of O. Kowalski and
F. Prüfer [17]. We use the special coordinate system on U described in [17], p.
18–19. To fit the notations, we note that our ri and ωij,k are denoted by ρi and akji
in [17], respectively. Further, we have to consider the following two possibilities:
a) r3 = 0, r1 6= r2 and b) r1 = 0, r2 6= r3

since the fixed special coordinate system described in [17] has a special choice of
the coordinate vector X3.
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In a), the formulas (3.14) and (3.15) imply that the connection coefficients ωij,k
which may not be zero are ω32,1 6= 0, ω22,1 6= 0, ω11,2 6= 0. Then, the formula
(16) of [17] implies ω11,2 = ω22,1 = 0. So, the non-zero connection coefficient
may only be ω32,1. We proceed examining the conditions described in [17]. The
formulas (28)-(30) in [17] imply that all nine functions U i, Vi,Wi, i = 1, 2, 3 are
identically zero. Then the formula (26) in [17] implies λ2 = 0 and the formula
(4) in [17] leads to λ1 = 0. Then (4) in [17] asserts ρ1 = r1 = ρ2 = r2 which is
impossible.

Assuming b), by similar arguments as in a), we deduce consequently that: the
non-zero connection coefficient may only be ω12,3, λ2 = λ3 = 0 and finally ρ2 =
r2 = ρ3 = r3. So, the case B2 is impossible.

Case C. In this case, the formulas (3.14) and (3.15) imply that all connection
coefficients ωij,k are zeros which implies that (U, g) is flat.

It is easy to verify that any manifold of type i) ii) and iii) is a Q-space. Espe-
cially, in the case iii) we check that r1 = r2 = 0 and r3 = const always satisfies
the equations (3.19) and (3.20) which are equivalent to (3.10) and (3.11). This
completes the proof of Theorem 1.1. �

Remark 2. One may consider the operators nc = R(ċ,∇ċċ) and mc = R(ċ,∇2
ċċ)

along a helix instead of the operator κc and look for the Riemannian 3-manifolds for
which each of these operators has constant eigenvalues along each helix. Applying
the same arguments as in section 2, one derive that all these 3-spaces are the
3-dimensional Q-spaces described above.
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