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SELF–DUALITY AND POINTWISE OSSERMAN MANIFOLDS

Dmitry Alekseevsky1 , Novica Blažić2,
Neda Bokan2, and Zoran Rakíc2

The main goal is to show that the pointwise Osserman four-dimensional
pseudo-Riemannian manifolds (Lorentzian and manifolds of neutral signature (−−
++)) can be characterized as self dual (or anti-self dual) Einstein manifolds. Also,
examples of pointwise Osserman manifolds which are not Osserman are discussed.

§0 Introduction and notational conventions

The Jacobi operator KX : Y 7→ R(Y,X)X is a very useful for understanding the
relation between the curvature and the geometry of a pseudo-Riemannian manifold
(M, g). Except the well known applications in the Riemannian geometry, Jacobi
operator helps to describe dynamics of the pseudo-Riemannian manifold. For
example, the family of free falling particles along a geodesic γ in a Lorentzian
manifold is described by the normal variational Jacobi vector field V along γ. The
Jacobi operator plays the role of the tidal force and V satisfies Newton’s second
law: V ′′ −RV γ′(γ′) = 0.

Assuming that X ∈ TpM is the unit vector, it is particularly important case
when the eigenvalues of the Jacobi operator KX are constant. Let M be a pseudo-
Riemannian manifold of signature (p, q). Denote the metric tensor by 〈·, ·〉. Let
Sε(p) := {X ∈ TpM | 〈X,X〉 = ε1} be the set of all unit spacelike (ε = +1) or
timelike (ε = −1) tangent vectors at p ∈ M . Let Sε(M ) = ∪pSε(p) and X ∈ Sεp.
Since X is not a null vector, we have RX⊕X⊥ = TpM . The Jacobi operator KX
induces a symmetric endomorphism of the vector space TX(Sεp) = X⊥ = {Y ∈
TpM | 〈X,Y 〉 = 0}.
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We say that M is a spacelike (resp., timelike) Osserman at p if the eigenvalues
of KX are independent of X ∈ S+

p (resp., X ∈ S−p ). M is timelike (resp.,
spacelike) pointwise Osserman if M is timelike (resp. spacelike) Osserman at each
p ∈M . We say that M is spacelike (ε = +1) or timelike (ε = −1) Osserman if the
eigenvalues of KX are constant on Sε(M ).

Let M be a Riemannian manifold. If M is locally a rank one symmetric space
or locally flat, then M is locally a two-point homogeneous space. This means
that local isometries of M act transitively on the unit sphere bundle S+(M ).
Conversely, any manifold which is locally a two-point homogeneous space is locally
a rank one symmetric space or is flat. For these manifolds, the eigenvalues of the
Jacobi operator KX are constant on S+(M ). Osserman [12] conjectured that the
converse hold; we restate his conjecture as follows:

Conjecture. If a Riemannian manifold M is Osserman, then M is locally a two-
point homogeneous space.

There are Riemannian four-dimensional manifolds which are pointwise Osser-
man but which are not Osserman manifolds. Construction of such an example,K3
surface, is based on the characterization of pointwise Osserman manifolds as self-
dual (or anti-self-dual) Einstein manifolds obtained by Vanheceke and Sekigawa
[15] (see also [10]).

Generally, pseudo-Riemannian non-flat Osserman manifolds are not necessarily
locally rank-one symmetric space. There are examples which are not locally sym-
metric, even not locally homogeneous manifolds (see [2, 14, 8, 5, 3]). But, theorem
of Sekigawa and Vanhecke can be generalized to the four-dimensional manifolds
of arbitrary signature (Riemannian, Lorentzian and of neutral signature mani-
folds, Theorem 2). We have recently learned that the same result was obtained by
Garcia-Rio independently.

§1 Jacobi operator of manifolds of neutral signature

In the study of the Osserman type conditions for pseudo-Riemannian mani-
folds, the algebraic structure of Jacobi operator, specially its Jordan form, play
important role. Let M be a timelike or spacelike Osserman manifold of signature
(− − ++). Then we naturally distinguish four different cases depending on the
algebraic form of the endomorphism KX of R3.

To describe symmetric operators A in pseudo-euclidean vector space V, with
the metric g =< ·, · > of signature (−+ +) first we introduce some basis and then
prove the corresponding proposition.

We will denote by (t, x, y) an orthonormal basis of V, such that t2 = −1, x2 =
y2 = 1, and by (p, q, y) an isotropic basis, defined by the conditions

p2 = q2 =< p, y >=< q, y >= 0; < p, q >= y2 = 1.

Proposition 1. Any symmetric endomorphism A of V has one of the following
three types and it is described below.

(1) Type I. If A has a timelike eigenvector t, then with respect to a suitable



SELF–DUALITY AND POINTWISE OSSERMAN MANIFOLDS 195

orthonormal basis (t, x, y) it has the diagonal form

A = diag(λ, µ, ν).

(2) Type II. If A has no timelike eigenvector, but it has a spacelike eigenvector
y, then with respect to some isotropic basis (p, q, y) it has the matrix of
the form

Type IIa

 a b 0
−b a 0
0 0 µ

 , or Type IIb

µ 1 0
0 µ 0
0 0 λ

 .

(3) Type III. If A has only isotropic eigenvector p, then with respect to some
isotropic basis (p, y, q) the matrix of A has the form a 1 0

0 a 1
0 0 a

 .

Proof. The proof follows from the following remarks:

(1) A has an eigenvector v ∈ V ;
(2) The orthogonal complement v⊥ is two-dimensional A-invariant subspace;
(3) An isotropic basis (p, q) of two-space of signature (−+) is defined up to

hyperbolic rotations p 7→ kp, q 7→ (1/k)q.

§2 Self-dual Einstein and pointwise
Osserman manifolds ot neutral type

Let M be a 4-dimensional pseudo-Riemannian manifold of the neutral signature
(−−++) and E0, E1, E2, E3 a pseudoorthonormal basis of TpM in which the first
two vectors are timelike and the second two are spacelike. Let θ0, θ1, θ2, θ3, be the
basis of T ∗pM dual to E0, E1, E2, E3 and ω = θ0 ∧ θ1 ∧ θ2 ∧ θ3 the corresponding
volume form. The metric on the space of two-forms is defined as

〈θi ∧ θj , θp ∧ θq〉 = 〈θij , θpq〉 = det
[
〈θi, θp〉 〈θi, θq〉
〈θj , θp〉 〈θj , θq〉

]
,

where θij := θi ∧ θj .
The Hodge star operator ∗ :

∧2
TpM −→

∧2
TpM is defined by

∗(ξ ∧ η) = (ξ ∧ η)yω

where y means the contraction. Then ∗2 = Id and ∗(θi ∧ θj ) = εpεqεijpqθ
p ∧ θq ,

where εp = 〈Ep, Ep〉 and εijpq is the signature of the permutation (i, j, p, q).
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Two forms

(2.1) J1 = θ01 + θ23, J2 = θ02 + θ13, J3 = θ03 − θ12

defines a basis of the +1-eigenspace Λ+ of ∗ , called space of self-dual forms.
Similarly, 2-forms

(2.2) J ′1 = θ01 − θ23, J ′2 = θ02 − θ13, J ′3 = θ03 + θ12

defines a basis of the space Λ− of anti-self-dual forms, that is the −1-eigenspace
of ∗. These basis are called the standard basis associated to an orthonormal basis
Ei of TpM .

We will identify the curvature tensor R of M at a point p with a symmetric
endomorphism of the space

∧2
TpM defined by

(2.3) R(θpq) = 1
2Rijpqθ

ijεiεj.

Assume now that the manifold M is Einstein. Then its curvature tensor R can be
written as

R =
τ

12
Id + W+ +W−,

where τ is the scalar curvature and W+,W− are self-dual and anti-self-dual parts
of R characterized by conditions

W±
∧
∓ = 0.

A manifold M is called self-dual ( anti-self-dual) if W− = 0 (W+ = 0).
The problem of classification and characterization of four-dimensional Osserman

type manifolds was studied in [2]. It is interesting to see some relations between
the self-dual (anti-self-dual) manifolds and the pointwise Osserman conditions.

Theorem 2. Let M be an oriented four dimensional Riemannian, Lorentzian or
manifold of neutral signature. Then M is pointwise Osserman if and only if M is
Einstein self-dual (or anti-self-dual).

For the Riemannian manifolds it was proved by Sekigawa and Vanhecke [15]
(see also [10]). In [4] it is proved that Lorentzian pointwise Osserman manifolds
are of constant sectional curvature what is clarifying that case. The proof for
manifold of neutral signature is given in the following two propositions.

Proposition 3. Let M be an oriented four dimensional pointwise Osserman man-
ifold of signature (− − ++). Then, possibly after a change of orientation, M
becomes a self-dual Einstein manifold with the curvature tensor

R =
τ

12
Id+W+,
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where the self-dual part W+ :
∧

+ →
∧

+ of R has one of the following forms,
depending on the type of the Jacobi operator:

(1) for Types I, IIa and IIb

(2.4) W+ =

−2a− τ
12 2γ 0

−2γ −2b− τ
12 0

0 0 −2c− τ
12


where τ = 4(a+ b+ c) is the scalar curvature, or

(2) for Type III

R =

 τ
12 0 2k
0 τ

12 2k
−2k 2k τ

12

 ,
where τ = 12α.

Proof. Let M be a pointwise Osserman manifold. First of all let us remark that
it is Einstein ([2, Proposition 2.1]). The Jacobi operator of M at a point p has
one of the types, described in Proposition 1.

(1) Types I, IIa, and IIb
These cases can be considered together, i.e., there exists an pseu-

doorthonormal basis E0, E1, E2, E3 such that the Jacobi operator KE0

is of the form −a γ 0
−γ −b 0
0 0 −c

 ,
and the components of the curvature tensor are determined in ([2, §4.1
and §4.2]) as follows

R1221 = R4334 = a, R1331 = R4224 = −b, R1441 = R3223 = −c,
R2113 = R2443 = −γ, R1224 = R1334 = γ,

R1234 = (−2a+ b+ c)/3, R1423 = (a+ b− 2c)/3, R1342 = (a− 2b+ c)/3.

Note that the scalar curvature is given by τ = −4(a + b+ c).
This implies that the anti-self-dual part W− of the curvature operator

R = τ
12 id+W+ vanishes and with respect to the standard basis J1, J2, J3

of
∧

+ the matrix of the operator W+ has the form

W+ =

−2a − τ
12 2γ 0

−2γ −2b− τ
12 0

0 0 −2c− τ
12

 .
More precisely,

W+ = diag(−2a− τ
12 ,−2b− τ

12 ,−2c− τ
12)



198 D. ALEKSEEVSKY, N. BLAŽIĆ, N. BOKAN AND Z. RAKIĆ

for the type I,

W+ =

 4α−γ
3 2β 0
−2β 4α−γ

3 0
0 0 4α−γ

3


for the type IIa, and

W+ =

−1 1 0
−1 1 0
0 0 τ/4


for the type IIb.

(2) Type III
We will start with the pseudoorthonormal base E0, E1, E2, E3 where

KE0 has a form −α 0 k
0 −α k
−k k −α

 , k =
√

2
2 .

Then the components of the curvature tensor are

R1221 = R4334 = α, R1331 = R4224 = −α, R1441 = R3223 = −α,
R2114 = R2334 = −k, R3114 = −R3224 = k ,

R1223 = R1443 = R1332 = −R1442 = k,

([2, §4.3]). This implies

W+ =

 −α 0 2k
0 −α 2k
−2k 2k −α

 .
�

The inverse statement is also true.

Proposition 4. Any self-dual (or anti-self-dual) Einstein four-dimensional man-
ifold M of signature (−−++) is pointwise timelike and spacelike Osserman man-
ifold.

Proof. The curvature tensor R of the manifold M has the decomposition

R = sId⊕W+,

where τ = 12s is the scalar curvature and W+ is the self-dual part of R which
acts trivially on

∧
− and, hence, may be identified with a symmetric operator of

the pseudo-Euclidean space
∧

+ of signature (−,+,+).
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According to the classification of symmetric operators in the Lorentzian signa-
ture (−,+,+), see Proposition 1, W+ has to have one of the following forms

Case 1

W+ =

−a γ 0
−γ −b 0
0 0 −c


or

Case 2

W+ =

−α 0 k
0 −α k
−k k −α

 , k =
√

2
2 .

One can see that Case 1 corresponds to the types I, IIa and IIb and Case 2 to the
type III.

In Case 1 we have

RJα = sJα,

RJ ′1 = −aJ ′1 − γJ′2, RJ ′2 = γJ′1 − bJ ′2, RJ ′3 = −cJ ′3,(2.5)

and in Case 2

RJα = sJα,

RJ ′1 = −αJ ′1 − kJ ′3, RJ ′2 = −αJ ′1 + kJ ′3, RJ ′3 = kJ ′1 + kJ ′2 − αJ ′3.
(2.6)

Now, we consider Case 1 in more details. We use (2.1)-(2.4) to see

R01ijθ
ijεiεj + R23pqθ

pqεpεq = s(θ01 + θ23),(2.7)

R02ijθ
ijεiεj + R13pqθ

pqεpεq = s(θ02 + θ13),(2.8)

R03ijθ
ijεiεj − R12pqθ

pqεpεq = s(θ03 − θ12),(2.9)

R01ijθ
ijεiεj − R23pqθ

pqεpεq = −a(θ01 − θ23) − γ(θ02 − θ13),
(2.10)

R02ijθ
ijεiεj − R13pqθ

pqεpεq = γ(θ01 − θ23)− b(θ02 − θ13),
(2.11)

R03ijθ
ijεiεj + R12pqθ

pqεpεq = −c(θ03 + θ12).
(2.12)

One can combine (2.8) with (2.11), (2.9) with (2.12), and (2.7) with (2.10) to
obtain respectively

2R01ijθ
ijεiεj = (s− a)θ01 + (s+ a)θ23 − γ(θ02 − θ13),(2.13)

2R23ijθ
ijεiεj = (s+ a)θ01 + (s− a)θ23 + γ(θ02 − θ13),(2.14)

2R02ijθ
ijεiεj = (s− b)θ02 + (s + b)θ13 + γ(θ01 − θ23),(2.15)

2R13ijθ
ijεiεj = (s+ b)θ02 + (s − b)θ13 − γ(θ01 − θ23),(2.16)

2R03ijθ
ijεiεj = (s− c)θ03 − (s+ c)θ12,(2.17)

2R12ijθ
ijεiεj = −(s + c)θ03 + (s − c)θ12.(2.18)
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Hence, we can read an arbitrary component of the curvature tensor from (2.13)-
(2.18). Since KE0Ei = R(Ei, E0)E0 = Ri00jεjej it follows

(2.19) KE0 =

−R1001 −R2001 −R3001

R1002 R2002 R3002

R1003 R2003 R3003

 =

−s−a2
γ
2 0

−γ2 −s−b2 0
0 0 − s−c2

 .
It follows directly from (2.13)-(2.18) by long computations that the eigenvalues of
KX , |X|2 = 1 or |X|2 = −1, do not depend on the choice of a direction X at a
given point. Consequently, the manifold is pointwise Osserman.

Case 2 can be considered analogously. �

Let us state the following consequence of Theorem 2.

Corrolary 5. A four-dimensional manifold of signature (− − ++) is timelike
Osserman if and only if it is spacelike Osserman.

It is proved, in [9], that for pseudo-Riemannian manifold of signature (p, q),
p, q ≥ 1 timelike Osserman condition is equivalent with space-like Osserman con-
dition.

§3 Examples

Since a Riemannian or of neutral signature pointwise Osserman manifold is the
same as a self-dual Einstein manifold many examples of such manifolds can be
obtained by using the twistor construction, see ([1]). In compact Riemannian case
the following result is known.

Theorem. (N. Hitchin, T. Friedrich, H. Kurke ) Let M be a compact Riemannian
self-dual Einstein 4-manifold. If it has positive scalar curvature τ then it is S4 or
CP2 with the standard metric.

If τ = 0, then the universal covering of M is a K3 surface with the Calabi-Yau
metric.

The problem of description of compact self-dual Einstein manifolds of neutral
signature (− −++) is still open.

First non-trivial examples of compact Ricci flat self dual metrics of neutral
signature on the torus was constructed by Petean [13].

Kamada and Machida [11] constructed some examples of non-compact Ricci
flat self-dual manifolds of neutral signature. In [11] using the decomposition of
the curvature tensor, notion of Bianchi type is used to study self-dual manifolds.
Particular attention is devoted to the Kähler self-dual manifolds.

The interesting problem is to constract non-Ricci flat Osserman (i.e. self-dual
Einstein) manifolds of neutral signature. Remarks that rank one symmetric 4-
manifolds of neutral signature (−−++) are exhaused by non-compact manifolds
SO2,3/SO2,2 and SU1,2/SU1,1.
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Problem. Is there a compact non-Ricci flat Osserman manifold of neutral signa-
ture (−− ++)?
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of the manuscript.
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Tohôku Math. J. 49 (1997), 259–275.

[12] Osserman, R., Curvature in the eighties, Amer. Math. Monthly 97 (1990), 731–756.
[13] Petean, J., Indefinite Kähler-Einstein metrics on compact complex surfaces, Comm. Math.

Phys. 189 (1997), 227–235.
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