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ABSTRACT. The discrete version of the Hamiltonian system
= ANH(t)x

with H(t) = H*(t) = H(t + T) is considered. Following the line of M.G.
Krein the stability zones with respect to the parameter A\ are considered:
the side zones have to be estimated from multiplier traffic rules while the
central stability zone from the discrete version of the skew - periodic bound-
ary value problem.
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1. INTRODUCTION AND MOTIVATION

The object of this paper is the stability analysis of the discrete version of the linear
periodic Hamiltonian system:

(1) @ = \JH(t)x

where H(t) = H*(t) = H(t+T),T > 0; H(t) has complex entries and is Hermitian.
Also J is defined by

2 = (0.5%)

and ) is, generally speaking, a complex parameter. System (1) is a generalization
encompassing a lot of by now classical systems that go back to Sturm, Liapunov
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and Zukovskii. M.G. Krein [1] give a strong generalization of many classical results
and opening new fields of research issued from the interaction of several apparently
independent mathematical domains. The long line of research opened by Krein
is summarized in the monograph of Yakubovich and Starzinskii [2]. As pointed
out by Krein and Yakubovich [3] various problems in contemporary engineering
and physics (e.g. dynamic stability of structures, parametric resonance in high-
capacity electrical transmission lines, motion of particles in accelerators) lead to
the investigation of Hamiltonian systems with periodic coeflicients.

Another field of origin for periodic Hamiltonian systems is calculus of varia-
tions and optimal control. Here a long list of papers may be mentioned but we
mention here only the papers of Yakubovich [4] where linear periodic Hamiltonians
are considered in the context of linear optimal feedback (minimizing a quadratic
integral performance index) and quadratic Liapunov functions.

A crucial difference between these two directions of research exists. The first
one, developed mainly by Krein is concerned with stable Hamiltonian systems
whose multipliers are located on the unit circle. On the contrary linear quadratic
control requires a dichotomic i.e. totally unstable Hamiltonian system whose mul-
tipliers are not on the unit circle. This last property is robust (i.e. it is preserved
against structural perturbations) while the first one is not robust (generally speak-
ing). The search for robustness of stable Hamiltonian systems led Krein to the
introduction of strong stability, to the discovery of ”traffic rules” on the unit circle
for the multipliers, and to new results about the A zones of stability. Since the
central zone is estimated using the eigenvalues of a certain self adjoint boundary
value problem, the research on stability met the old Sturm-Liouville framework
which also generates problems for Hamiltonian systems. A good reference on these
problems together with variational calculus and optimal control is the book of
Kratz [5].

In the last few years a new field of research emerged - discrete time Hamil-
tonian systems. A basic reference is the book of Ahlbrandt and Peterson [6]. We
shall mention here some papers [7], [8], [9], from the long list belonging to Bohner
and Dosly. Their topics are oscillation, disconjugacy and transformation of Hamil-
tonian systems, both continuous and discrete time. The study of discrete-time
Hamiltonian systems in connection with linear - quadratic optimal control may
be found in the paper of Halanay and Ionescu [10]. Applications of dichotomic
periodic linear Hamiltonian systems (i.e. totally unstable), both continuous and
discrete-time to forced nonlinear oscillations are to be found in [11].

This paper is concerned with strong stability (in the sense of Krein) of discrete-
time Hamiltonian systems. Such systems may arise from sampling (1). Since sta-
bility is, generally speaking, not preserved by sampling (not always) this problem
is of interest. On the other hand, not all results of the continuous time fields
may migrate, mutatis-mutandis, to the discrete-time field even in the conditions
of the new emerging theory on time scales [12], [13],[14]; this will become clear
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throughout the paper. Let us consider system (1) with H(¢) as follows

A(t) B*(t
3) H(t) = (Big D((t)))

with A(.) and B(.) Hermitian matrices. We perform the usual Euler discretization
of the derivatives with the step h = T'/N but using forward difference in the first
equation and the backward difference in the second one; it is necessary to observe
this rule if we want to obtain a discrete-time Hamiltonian. We deduce

ykt DM —y(kh) — )\ B(kh)y(kh) + AD(kh)z(kh)

) —Z“h)‘zz(’“‘“h) = —NA(kh)y(kh) — AB*(kh)z(kh)

where y,z are the m-dimensional sub-vectors of the 2m vector 2. Denoting y(kh) =
Yk, 2(kh) = 241, A(kh) = Ay, B(kh) = By, D(kh) = Dy and, with an abuse of
notations, \h by A we obtain the discrete-time linear periodic Hamiltonian system:

(5) Yk+1 — Yk = ABryr + ADyzk11
Zky1 — 2k = — Ak — ABj 2k

with Ay, By, Dy being N-periodic. Remark that this system may be also written
as:

(6) Y+l — Yk | _ NJH, Yk

Zk+1 — %k Zk+1

. Ay, B} . .
with Hy = B. D and J as previously. Also system (5) may be given the
k Dk
Cauchy form
(7) Tht1 = Ck(/\)xk
with
-1

(I =ADy I+ M\B;0

® k(A = <01+AB;> ( By I)

and this is true for any A € C except a finite member of eigenvalues of B}. If the
eigenvalues of By are also excluded, then Cx()) is invertible and the solution of
(5) may be constructed for all integers k € Z (i.e. forward and backward); only in
this case stability and strong stability have sense.

Definition 1. A point Ag is called a A-point of stability of system (5) if for A = Ay
all solutions of the system are bounded on Z. If, moreover, for A = )y, all solutions
of any system of (6) type having Hj, replaced by Hj, (N-periodic and Hermitian)
sufficiently close to Hy (in some well-defined sense) are also bounded on Z, then
we call A = )y a A-point of strong stability of (6).
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It will be shown in the paper that, as in the continuous time case [1] the set
of A-points of strong stability of (6) is an open set and thus if it is nonempty
it decomposes into a finite or infinite system of disjoint intervals that are called
A-zones of stability.

In the following we shall deal with the theory of the A-zones of stability for
system (6) following the line of [1], relating the existence and estimation of these
zones to the multiplier problem (as in the pioneering papers of Liapunov).

2. THE MONODROMY MATRIX AND THE MULTIPLIERS

We may compute Cj () from (8) and find that
9) CRNJC(N) = J = (A= N)Qk(N)

where Qr()\) is Hermitian. We deduce that Cj(\) is J-unitary for real A and
Hermitian Hy and J - orthogonal (symplectic) if Hj is symmetric. We may also
write

(10) xk(/\) = Ckfl()\)...C()(/\)xo = Uk()\)iro

thus defining the transition matrix( fundamental matrix of solutions) which results
J-unitary or symplectic accordingly. It follows that the monodromy matrix Uy ()
will be also J-unitary or symplectic. In the terminology of [2] systems with complex
coefficients and J-unitary matrix Cj () are called Hamiltonian while systems with
real coefficients and symplectic matrix Cj () are called canonical.

The eigenvalues of the monodromy matrix i.e. the roots p;(\) of the character-
istic equation

(11) det(Un(A) — pI) =0

are called multipliers of (5) (or (6)). The following result of Poincaré-Liapunov
type may be proved following, e.g.,[2].

Theorem 1. a) If Hy is Hermitian the spectrum of Un () is located symmetri-
cally with respect to the unit circle i.e. the multipliers occur in pairs (p,p~ )
including their multiplicities as roots of (11).

b) If Hy is symmetric the spectrum of Un(\) is located skew-symmetrically with
respect to the unit circle, i.e., the multipliers occur in pairs (p, p~1).

¢) If Hy and X are real and Hy is symmetric the multipliers occur in groups of
four, being symmetric with respect to both unit circle and imaginary axis.

From here we may deduce:

Proposition 1. All solutions of (5) are bounded on Z iff all multipliers of the
system are of modulus one (located on the unit circle) and are of simple type (its
root space coincides with its eigenspace) or, equivalently, have simple elementary
divisors.
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Since we are concerned with robust(strong) stability, it is useful to analyze
parameter dependence (on A) of the multipliers. Unlike in the continuous-time
case Un(A) is not of entire but of meromorphic type being rational with respect
to A. For A sufficiently close to the origin we may consider the McLaurin expansion
of Ck(/\)

and of Uy (A)
N-1

Un(A) = Iom + AT > Hi+o())
0

It follows that in a sufficiently small neighborhood of A = 0 the holomorphic
matrix-valued logarithm is well defined

I\ =in Ux(\) = Lo+ IiA + o(\)

such that Uy(\) = e’ . We deduce that Iy = 0,1} = JZ(])V*1 H;,. With an
appropriate indexing we shall have p;(\) = exp(v;())),j = 1,n, with p;()\) being
system’s multipliers and 7, () the eigenvalues of I'(\). Following the line of [1]
and [15] we may prove.

Theorem 2. Assume that Zév_l Hj. > 0 and has distinct eigenvalues. Then there
exists an interval (—1,1) such that for X € (=1,1) all solutions of (6) are bounded
on Z.

Remark that this is the first result asserting existence of a central A-zone of

stability for (6). In the following we shall extend the result to the case of non-
distinct eigenvalues and obtain estimates for [.

3. SELF-ADJOINT BOUNDARY VALUE PROBLEMS FOR THE CANONICAL
SYSTEM

In this section we shall consider the boundary value problem for (6) defined by
the boundary condition

(12) zny —Grg=0
with G some J-unitary matrix (G*JG = J). Following [1] and [15] it can be proved.

Theorem 3. Let Hy > 0,k = O,N—l,ZéV_l Hi > 0. Then the eigenvalues
(characteristic numbers) of the boundary value problem defined by (6) and (12)
are real.

We point out also the following facts
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1. Any root of the equation
(13) det(Un(A\) —G) =0

is a characteristic number of the boundary value problem and is real. Therefore
all roots of (13), if any, are real.

2. The number A = 0 is a characteristic number iff det(I — G) = 0 (iff G has 1 as
eigenvalue).

We may also prove

Theorem 4. The multiplicity k; of any characteristic number of (6), (12) coin-
cides with the number of linearly independent associated solutions of the problem.

The proof of this theorem follows the line of Theorem 3.4 in [1] and Theorem
3.3 in [15] but in this case Un(\) — G is, generally speaking, rational and we need
the Smith-McMillan form of a rational matrix in order to obtain the result.

In order to obtain strong (i.e. robust) stability using the properties of the
boundary value problem we shall need a result concerning the dependence of the
characteristic numbers A; on the matrix Hj, dependence that is symbolized by
N (H).

Theorem 5. Let 0 < \y < Xy < ... be the positive characteristic numbers of the
boundary value problem and let 0 > A_1 > A_o > ... be the negative ones (it is
assumed that each characteristic number occurs in the corresponding sequence the
number of times equal to its multiplicity as a root of (13)). Let H\, H? be such
that Hi > O,Zév_lH,i > 0,i = 1,2 and assume that H} < H? k = 0,N —1.
Then )\J(Hl) Z )\j(H2),)\,j(H1) S )\,j(Hz).

The proof follows the line of [1] and [15].

4. MULTIPLIERS OF 1ST AND 2ND KIND: ANALYTIC PROPERTIES AND
THE STRONG (ROBUST) STABILITY

We shall return to Proposition 1 which states that (6) is stable provided all its
multipliers are located on the unit circle and are of simple type. Generally speaking,
a J-unitary matriz with the eigenvalues on the unit circle and of simple type is
called of stable type. The matrices of stable type have an interesting property: all
J-unitary matrices that belong to a d-neighborhood of a matrix of stable type are
also of stable type ([1],Theorem 1.2). This property suggests the approach to be
token in the analysis of strong stability for Hamiltonian systems.

Definition 2. A Hamiltonian system is said to be strongly stable if it is stable
and all Hamiltonian systems belonging to a neighborhood of it are also stable.
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In fact we may follow [1] and [15] and use some arguments of [16] to show that
if the Hamiltonian system

Tht1 — T = J Hy, (ZZL)

is stable (of stable type) then there exists some § > 0 such that all Hamiltonian

systems with Hj, replaced by Hj, with Zévfl |H), — Hy| < 6 are also of stable type.
This robustness result has the following consequences:

A. If we consider (6) we may obtain neighboring Hamiltonian systems by modi-
fying the parameter A; but A\ has to take real values in order that monodromy
matrices be J-unitary.

B. Since stability is expressed through the properties of the multipliers and strong
stability means preservation of this property with respect to parameter \ vari-
ations (among other perturbations that preserve the Hamiltonian character of
the system) it would be of interest to discuss multiplier properties with respect
to A.

The first remark hints to the A\-zones of stability for real A. The other one
indicates that multiplier dependence on A\ may help in strong stability studies
even for complex A. Indeed, for complex A\ we may state and prove

Theorem 6. Consider (6) with complex \ i.e. with Im X\ # 0. Then half of
system’s multipliers have moduli less than 1 and the other half have them larger
than 1 provided Hj, > 0, Zév_l H;. > 0.

The proof relies on the fact that Un () is nonsingular and also either J-increasing
(for Im A > 0) or J-decreasing (for Im A < 0); then Theorem 1.1 of [1] is used.

Definition 3. a) Let pp with |po| = 1 be a simple eigenvalue of a J-unitary ma-
trix and eg the associated eigenvector. If eq is a plus-vector (with i(Jeg, eg) >
0) the eigenvalue is called of 1st kind and if eq is a minus-vector
(with i(Jep, eg) < 0) the eigenvalue is called of 2nd kind.

b) Let po with |pg| =1 be a non-simple eigenvalue of a J-unitary matrix and let
L,, be the corresponding proper subspace. If £, contains plus-vectors only,
then pg is of 1st kind and if £,, contains minus-vectors only, then pg is of 2nd
kind. If £,, contains at least a null-vector (with i(Jeg,eg) = 0) then pq is of
mixed (indefinite type).

c) Let po with |pg| # 1 be a non simple eigenvalue of a J-unitary matrix: if
|po| > 1 it is called of 1st kind and if |pg| < 1 it is called of 2nd kind.

The main feature of this classification is the fact that it relies on the sign of the
associated eigenvectors. This allows the extension of the notions to matrices that
are not J-unitary. Indeed we already known [1], [15] that Un () - the monodromy
matrix - whose eigenvalues, the multipliers, are of interest - is J-increasing for
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Im A > 0 and J-decreasing for Im A < 0. It is also known [1], that for J-
increasing matrices an eigenvalue with modulus larger than 1 has its eigenvectors
plus vectors thus being of 1st kind; accordingly, the eigenvalues with modulus lower
than 1 (located inside the unit disk) are of 2nd kind. For J-decreasing matrices,
the eigenvalues inside the unit disk are of 1st kind etc.

The dependence of multipliers’ properties on A may be followed using argu-
ments from analytic function theory as in [1] and especially in [2]. The multipliers
equation:

Ap; \) = det(Un (M) — pI) = 0

takes the form
PP Ag i (NP AL(V)p + Ap(N) =0

where Ay (\) are rational functions and Ag(\) = det Uy (). From a basic repre-
sentation lemma of Weierstrass it follows that in a neighborhood of A\g € R the
multipliers p;(A) that coincide for A\ — A¢ with a multiplier py of definite kind (1st
or 2nd but not mixed) are analytic functions of X i.e. the expansion of p;(\) con-
tains only integer powers of (A — \g). Further, we may follow [2] and obtain more
specific information on the expansions of p;(A), p;(A) being considered branches
of some analytic function coinciding in pg for A — Ag.

From this information on expansion’s coefficients we may deduce the so-called
Krein traffic rules for the multipliers on the unit circle. We shall give below an
account on these traffic rules that remain unchanged in the discrete-time case.

1. Let A\p € R and po be a multiplier i.e an eigenvalue of Uy ()\g) with |po| = 1
and of multiplicity . Consider a sufficiently small disk v : {p : |p — po| < €}
such that there are no other eigenvalues of Uy (o) inside it. There will then
exist some d(e) > 0 such that for all A satisfying |A — Ag| < 0 there will exist
exactly r multipliers (eigenvalues of Uy () with their multiplicities ) which are
located inside the disk 7 considered above. It A = \g +1h,0 < h < 8, Un(A) is
J-increasing and, therefore, the multipliers which are in v and inside the unit
disk are of 2nd kind while those which are in v and outside the unit disk are
of 1st kind. It was shown [1], [2] that this distribution of multipliers does not
change as long as A does not cross the real axis of the (A) plane.
Consequently we may say that in pg coincide for A = g e.g. 1 of 1st kind and
r — r1 of 2nd kind. The multiplier py is thus of mixed type.

2. Consider a multiplier of definite type on the unit circle e.g. a multiplier of 1st
kind (with its eigenvectors - plus-vectors) with multiplicity r, corresponding to
Ao. In its neighborhood one may find only multipliers of 1st kind. Let us assume
that A takes real values on the interval (A\g—3, A\g+9). For A # Ao the multipliers
that coincided in pg split off in r multipliers describing r branches of the
corresponding analytic function. Nevertheless the resulting multipliers remain
on the unit circle and move clockwise for increasing A. Were this not true, if a
multiplier of 1st kind occurs (outside the unit disk) it will be accompanied by
the occurrence of a multiplier of 2nd kind due to multipliers’ symmetry; but
in this case pg would not be of definite kind.
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Obviously for multipliers of 2nd kind the motion for increasing \ is counter-
clockwise when the multiplier splits off.

3. The multipliers of mixed type from the unit circle split off in multipliers of
different kinds and they may, for some real A to leave the circle in a symmetrical
way: one outside and one inside.

We may now represent the multiplier traffic on the unit circle. The multipliers
of definite kinds split and move clockwise and counter-clockwise, they met and
separate, but do not leave the circle as A € R increases or decreases. When two
multipliers of different kind met they generate a multiplier of mixed kind which
will split in multipliers of different kind again leaving the circle symmetrically (an
equal number entering the unit disk and leaving it) thus generating instability.

5. THE STABILITY ZONES OF THE HAMILTONIAN SYSTEM WITH
PARAMETER

In this section we shall consider that the neighboring Hamiltonians of the strong
stability problem are generated by modifying the parameter .

Theorem 7. The strong stability points of (6) form an open set which is not
empty when (6) is of positive type, i.e., when Hy > 0, Zév_l Hy, > 0.

The proof goes as in [1] and [15] with X\oHy and AHj as Hy: if A — Xo| < 0
then we are in the basic case of neighboring Hamiltonians.

If Ay € R is a point of strong stability, the set of strong stability points is open:
we start with the interval (Ao —d, A\g+0) and afterwards we consider neighborhoods
of the points of this interval (”continuations”). The open intervals thus obtained
are the A-stability zones.

Non emptiness is connected with the central stability zone (around A = 0)
which is nonempty at least in the case of Theorem 2. The central stability zone
will be again considered in the next section. Now we shall focus on side zones in
the positive type case, when Hy > 0, Zév_l Hi > 0.

The main tool of the analysis is an inequality that follows from the analytic
properties of the multipliers:

2
L

d )
(14) — g P (M) |a=xo > ai"" (Mo)
0

~
I

where p;()) is any branch of the analytic functions defined by multiplier depen-
dence on A [1] and o™" is the lowest eigenvalue of a nonnegative matrix. It has
been shown by a simple example that, unlike in the continuous-time case, a strictly
positive lower bound that is independent of A\g does not exist. Therefore it is not
possible to obtain, even in the simplest case, an estimate of the width of any side

zone that is independent of its position with respect to the central zone [15].
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We may however choose some interval (—Ag, Ap) and compute a lower bound
for the smallest eigenvalue that is independent of A\g but depends on the chosen
interval i.e. on Ag. Let xx(4p) be this lower bound. Since the system is of positive
type, xx(Ap) > 0 but Zév_l Xk(Ap) > 0 and (14) becomes

N—-1
d
(15) @9 Pi(A)a=xo 2 > xi(Ao)
0

This inequality is similar to (5.12) of [1]; the dependence on some interval width
Ay that may include the central zone and, possibly, some side zones, is not very
restrictive: any numerical results are obtained for finite intervals, finite sums etc.

Theorem 8. If Hy > 0, Zévfl Hy, > 0 then the width of any A-zone of stability

included in some interval (—Aog, Ag) does not exceed W(Zév_l Xk (A0))™ where
Xk(AO) = Z'nf‘MSAOJZ”n()\).

The proof follows at once by applying the ”traffic rules” [1],[15]. Note that the
width of any of two parts of the central zone also does not exceed the above
estimate.

6. THE CENTRAL ZONE OF STABILITY FOR A HAMILTONIAN SYSTEM OF
POSITIVE TYPE

We shall consider here the boundary value problem for (6) defined by (12) with
G = —I. Its characteristic numbers are real: their existence follows from the fun-
damental theorem of Algebra provided det(Un(A)+1) # const. and their number
is finite. Let A4 be the smallest (first) positive characteristic number and A_ the
largest (first) negative one. We shall have

Theorem 9. Assume that H > O,Zévfl Hy > 0. The open interval (A_, Ay)
belongs to the central zone of stability of (6); moreover, if Hy, are real, this interval
and the central zone of stability coincide.

The proof of this result goes as in [1], [15] and relies on Theorem 2.3; the restriction
on distinct eigenvalues is removed by a perturbation argument.

The only remaining point of the entire construction is existence of the charac-
teristic numbers of opposite sign for the skew-symmetric (with G = —T) boundary
value problem. The complex function argument of [1] was valid in the case of [15]
but it can not be used in general since Uy () is not, generally speaking, of entire
type and the contradiction obtained in [1] which proved existence of characteristic
numbers of opposite signs fails. Krein himself was aware of the fact that complex
function arguments were perhaps too strong [1] and suggested to apply the the-
ory of weighted integral equations [17]; later this theory was incorporated in the
theory of Volterra operators on Hilbert spaces [18]. In the discrete-time case this
may reduce to some (possibly less) known results on determinants. Application of
the theory on time scales [12], [13], [14] may be of great interest.
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