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ON THE ASYMPTOTIC CONVERGENCE OF THE
POLYNOMIAL COLLOCATION METHOD FOR SINGULAR

INTEGRAL EQUATIONS AND PERIODIC
PSEUDODIFFERENTIAL EQUATIONS

A. I. FEDOTOV

Abstract. We prove the convergence of polynomial collocation method for

periodic singular integral, pseudodifferential and the systems of pseudodif-
ferential equations in Sobolev spaces H s via the equivalence between the

collocation and modified Galerkin methods. The boundness of the Lagrange
interpolation operator in this spaces when s > 1/2 allows to obtain the opti-

mal error estimate for the approximate solution i.e. it has the same rate as
the best approximation of the exact solution by the polynomials.

Introduction

Arnold and Wendland in [2] proposed the original technique of justification the
spline collocation methods for pseudodifferential equations in Sobolev spaces. The
justification is based on the equivalence between spline collocation and modified
Galerkin-Petrov methods and justification of the last one by reducing it to the
standard Galerkin method. In [3] - [7] this approach was used for justification of
spline collocation methods for the various classes of singular integral and pseu-
dodifferential equations. It was shown that strong ellipticity of the equation is
sufficient and in some cases (see [20] - [19]) necessary condition for the conver-
gence of spline collocation method. Note that earlier in [11] Golberg used the
analogy between collocation and Galerkin methods as a criterion of optimal nodes
choice.

Here the approach of the article [2] is used for justification of the polynomial
collocation method for the singular integral, periodic pseudodifferential and the
systems of the pseudodifferential equations in Sobolev spaces. The results show
that polynomial collocation method converges for wider class of equations than
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spline collocation method. Namely it converges for all elliptic i.e. uniquely solvable
equations while spline collocation method converges only for strong elliptic ones.
Moreover, the rate of convergence of polynomial collocation method grows up
with the growing of the smoothness of exact solution infinitely while for spline
collocation method this rate is bounded by the order of used splines. Finally, the
calculation schemes of polynomial collocation methods are easier than of spline
collocation methods for the wide range of equations including singular integral
and integro-differential equations, because the singular integrals of polynomials
could be calculated explicitly.

1. Collocation with trigonometric polynomials

Consider the linear equation

Au = f , A : Hs+β → Hs , s, β ∈ R ,(1)

where f is known and u is desired unknown 2π-periodic, complex-valued functions,
Hs denotes Sobolev space of order s i.e. the closure of all smooth 2π-periodic
complex-valued functions of a real variable t with respect to the norm

‖f‖s = ‖f‖Hs = {|f̂(0)|2 +
∑

0 6=k∈Z

|f̂(k)|2|k|2s}1/2,

where

f̂(k) = (2π)−1

∫ π

−π
f(t)ēk(t) dt , k ∈ Z,

are the complex Fourier coefficients of the function f ∈ Hs,

ek(t) = exp(ikt) , k ∈ Z ,

are trigonometric monomials and β ∈ R is the order of the operator A. For the
following we’ll assume that s > 1/2 providing the embedding of H s in C.

Denote the space of trigonometric polynomials of degree n by

Tn = span{ek(t) : |k| ≤ n} , n ∈N0 .

Here N0 = {0, 1, ...} is a set of natural numbers including zero. When zero is
excluded we write N = {1, 2, ...}. Since dimTn = 2n+ 1, define the equally-spaced
collocation points by

tk = 2πk/(2n+ 1) , |k| ≤ n ,(2)

and seek u∗n ∈ Tn satisfying

(Au∗n)(tk) = f(tk) , |k| ≤ n .(3)

When it exists, the function u∗n is said to be a trigonometric collocation solution
of (1).
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2. Some preliminaries

It’s known that being equipped with the inner product

〈f, g〉s = f̂ (0) · ¯̂g(0) +
∑

0 6=k∈Z

f̂ (k) · ¯̂g(k)|k|2s ,

Hs becomes the Hilbert space and H0 = L2.
Denote the polynomial of the best approximation to x ∈ Hs of degree ≤ n and

the corresponding best approximation

(Snx)(t) =
∑
|k|≤n

x̂(k)ek(t) , En(x)s = inf
xn∈Tn

‖x− xn‖s = ‖x− Snx‖s ,

where (Snx)(t) is the n-th partial sum of the Fourier series of x.

Lemma 1. If x ∈ Hp and s ≤ p, then1,

En(x)s ≤ cns−pEn(x)p .

Proof. Indeed

En(x)s = ‖x− Snx‖s = {
∑
|k|>n

|x̂(k)|2|k|2s}1/2

= {
∑
|k|>n

|x̂(k)|2|k|2p|k|2(s−p)}1/2

≤ (n+ 1)s−pEn(x)p ≤ cns−pEn(x)p .

Let Ln be the usual polynomial Lagrangian interpolation operator that assigns
to every function x ∈ Hs the polynomial

(Lnx)(t) = (2n+ 1)−1
∑
|k|≤n

x(tk)
sin((2n+ 1)(t− tk)/2)

sin((t− tk)/2)

coinciding with x in the nodes (2).

Lemma 2. The operator Ln is bounded and the following estimate is valid

‖Ln‖Hs→Hs ≤
√

1 + ζ(2s) , n = 1, 2, ...,

where ζ(t) - is the Riemann’s ζ-function bounded and decreasing for t > 1.

Proof. Let’s rewrite Lagrange polynomial Lnx in a form

(Lnx)(t) =
∑
|k|≤n

x̂(k)(n)ek(t) ,

where
x̂(k)(n) = (2n+ 1)−1

∑
|l|≤n

x(tl)ēk(tl) , |k| ≤ n ,

1Here and in c denotes generic constant not depending on n and having different values at
different places.
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are Fourier-Lagrange coefficients of the function x with respect to the nodes (2).
Substituting x by it’s Fourier series expansion and omitting summands equal to
zero we will obtain

x̂(k)(n) = (2n+ 1)−1
∑
|l|≤n

ēk(tl)
∑
m∈Z

x̂(m)em(tl) =
∑
µ∈Z

x̂(k + µ(2n+ 1)) .

Now, denoting for the convenience k′ = k + δ0k (δij is the Kronecker symbol)
estimate with the help of Hölder inequality the norm of the polynomial Lnx

‖Lnx‖2s =
∑
|k|≤n

|x̂(k)(n)|2|k′|2s =
∑
|k|≤n

|
∑
µ∈Z

x̂(k + µ(2n+ 1))|2|k′|2s

=
∑
|k|≤n

|
∑
µ∈Z

|(k + µ(2n+ 1))′|−sx̂(k + µ(2n+ 1))|(k + µ(2n+ 1))′|s|2 |k′|2s

≤
∑
|k|≤n

(
∑
µ∈Z

|x̂(k+ µ(2n+ 1))|2|(k+ µ(2n+ 1))′|2s
∑
µ∈Z

|k′/(k+ µ(2n+ 1))′|2s)

≤ max
|k|≤n

{
∑
µ∈Z

|k′/(k + µ(2n+ 1))′|2s}‖x‖2s .

The chain of the inequalities

max
|k|≤n

{
∑
µ∈Z

|k′/(k + µ(2n+ 1))′|2s} ≤ 1 +
∑
µ∈N

((2µ+ 1)−2s + (2µ− 1)−2s)

≤ 1 +
∑
µ∈N

µ−2s = 1 + ζ(2s)

concludes the proof.
Let

Jx = (2π)−1

∫ π

−π
x(t)dt and Jnx = (2n+ 1)−1

∑
|k|≤n

x(tk)

be the Riemann’s integral of the function x ∈ Hs and quadrature rule for its
approximate calculation correspondently.

Lemma 3. Let x ∈ Hs. Then

x(tl) = 0 , |l| ≤ n ,(4)

if and only if

〈x− ekJ(xēk) + ekJn(xēk), ek〉s = 0 , |k| ≤ n .(5)

Proof. Denote rk = J(xēk) − Jn(xēk), |k| ≤ n the residuals of the quadrature
sums and form a polynomial

xn(t) =
∑
|k|≤n

rkek(t) .(6)

We can rewrite (5) simply as 〈x−xn, ek〉s = 0, |k| ≤ n. Assume that (4) are valid,
then

〈x− xn, ek〉s = 〈x, ek〉s − 〈xn, ek〉s = Jn(xēk)|k′|2s = 0 , |k| ≤ n .
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Now assume that (5) are valid, i.e

(2n+ 1)−1|k′|2s
∑
|l|≤n

x(tl)ēk(tl) = 0 , |k| ≤ n .

The coefficients {ēk(tl) : |k| ≤ n, |l| ≤ n} form the kind of Vandermond’s
determinant. So the homogeneous system of equations (5) has the unique solution
x(tl) = 0, |l| ≤ n.

Denote by Rn the operator

Rn(x) =
∑
|k|≤n

rkek(t) , Rn : Hs → Hs ,

which assigns the polynomial (6) to every function x ∈ Hs. The estimation of its
norm gives the following

Lemma 4. For every x ∈ Hs

‖Rnx‖s ≤ cEn(x)s , n ∈N0 .

Proof. The coefficients of the polynomial Rnx

rk = J(xēk) − Jn(xēk) = J(xēk)− J(ēkLnx) = J((x− Lnx)ēk) , |k| ≤ n ,
are the first 2n + 1 Fourier coefficients of the function (x − Lnx)(t), so with the
help of Lemma 2 we’ll obtain

‖Rnx‖s = ‖
∑
|k|≤n

rkek‖s = ‖Sn(x−Lnx)‖s = ‖Ln(Snx−x)‖s ≤
√

1 + ζ(2s)En(x)s .

Lemmas 3 and 4 play a crucial role in the following account. The first one
allows to prove the equivalence of the collocation and modified Galerkin methods.
The second allows to estimate the rate of convergence of the last one.

3. Singular integral equations

Suppose that (1) is the singular integral equation

A ≡ aPu+ bQu+ Ku = f , A : Hs → Hs ,(7)

where P and Q are the complementary projection operators defined by

(Pu)(t) =
∑
l≥0

û(l)el(t) , (Qu)(t) =
∑
l≤−1

û(l)el(t) ,

and where K : Hs → Hs is a compact linear operator. For simplicity, assume
that the coefficients a, b ∈ C∞ are 2π-periodic complex-valued functions of a real
variable t ∈ R, then

A : Hs → Hs

is a bounded linear operator. If the coefficients satisfy

|a(t)|2 + |b(t)|2 6= 0 for all t ∈ R ,

then A is said to be elliptic (or non-degenerate).
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The function t → a(t) parametrizes a smooth, closed curve in the complex
plane, whose winding number (about the origin) is denoted by

W (a) = (1/2π)[arg a(t)]πt=−π .

Also, the kernel, image, cokernel and index of A : Hs → Hs are denoted by

ker (A) = {u ∈ Hs : Au = 0} ,
im(A) = {f ∈ Hs : f = Au for some u ∈ Hs} ,

coker (A) = Hs/im (A) ,

ind (A) = dimker(A) − dim coker (A) .

Theorem 1. Suppose that for the equation (7) the following is held:
A1 the singular integral operator A is elliptic with W (a) = W (b) and ker(A) =
{0},

A2 there is an ε > 0 such that K : Hs → Hs+ε is bounded,
A3 s > 1/2.

Then for all n sufficiently large, there exists a unique collocation solution u∗n
which converges to the exact solution u∗ and

‖u∗ − u∗n‖s ≤ cEn(u∗)s .

Corollary 1. If in the Theorem 1 u∗ ∈ Hs+p, then

‖u∗ − u∗n‖s ≤ cn−pEn(u∗)s+p .(8)

Proof of the Theorem 1. The index Theorem for singular integral operators
(see [17]) states that A is a Fredholm operator if and only if A is elliptic, in which
case

ind (A) = W (a)−W (b)
and A is invertible.

Define the pair of spaces

C∞+ = {f ∈ C∞ : f̂ (l) = 0 for all l ≤ 0} ,

C∞− = {f ∈ C∞ : f̂ (l) = 0 for all l ≥ 0} .
It is not difficult to verify that the following are equivalent:

1. f ∈ C∞+ .

2. For all N > 0, f̂ (l) = O(l−N ) as l →∞.
3. The function f ∈ C∞+ admits an analytic continuation into the upper half

plane, which is bounded and 2π-periodic (i.e. f(z + 2π) = f(z) for Imz ≥ 0).
There are analogous characterization for C∞− , and as a consequence one has the

well known factorization property [9, p. 191], [10, p. 78].

Lemma 5. Let a ∈ C∞ satisfy a(t) 6= 0 for all t ∈ R. If W (a) = κ then there
exist functions a± ∈ C∞± such that

1. a(t) = a+(t)eiκta−(t) for all t ∈ R.
2. 1/a± ∈ C∞± .



COLLOCATION METHOD FOR PSEUDODIFFERENTIAL EQUATIONS 7

We’ll also need the following identities (see [10, p. 71]):

Sn(a+P + a−Q)Sn = Sn(a+P + a−Q) ,(9)

Sn(Pa− +Qa+)Sn = (Pa− +Qa+)Sn ,
for any a± ∈ C∞± .

According to the Theorem 1

W (b−1a) = W (a)−W (b) = 0 ,

so due to Lemma 5 there exists a factorization

b−1a = ρ+ρ− , ρ± ∈ C∞± .

Define the operators

M = bρ+ , N = Pρ− +Qρ−1
+ ,

then, using the fact that P + Q = I, it is easy to see that

M−1 = ρ−1
+ b−1 , N−1 = Pρ−1

− +Qρ+ .

Let [·, ·] be the usual commutator bracket, and define

T = M−1K + [ρ−, P ] + [ρ−1
+ , Q] ,

then elementary algebra gives

A = M (N + T ) .

This representation in other notations appeared in the monographs of N. I. Muskhe-
lishvili [16] and F. D. Gakhov [8]. For the justification of the approximate methods
for singular integral equations it was used for the first time by V.V. Ivanov [12].

Consider the equation

Bu ≡ (N + T )u = y , y = M−1f , B : Hs → Hs ,(10)

which is equivalent to the equation (1). Equivalence here means that the equations
(1) and (10) are either both solvable or not, and their solutions coincide. Moreover,
McLean and Wendland [14, p. 367] have shown that the operator T : Hs → Hs+ε

is bounded for the same s and ε as the operator K.
Analogously, consider the system of equations

(Bun)(tk) = y(tk) , |k| ≤ n ,

which is equivalent to the system of equations (3). Lemma 3 allows us to rewrite
the system of equations (3) as the system of equations of modified Galerkon-Petrov
method

〈Bun − y −Rn(Bun − y), el〉s = 0 , |l| ≤ n ,

or in the form of operator equation of projection method

SnBun = Sn(y + Rn(Bun − y)) .(11)

With the help of (9) and consequential identities

SnNSn = NSn , SnNun = SnNSnun = NSnun = Nun ,(12)
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left hand side of the equation (11) could be represented as

Bnun = SnBun = Sn(N + T )un = (N + SnT )un .

Therefore from the invertibility of the operator N +T : Hs → Hs and the conver-
gence

‖(T − SnT )u‖z = En(Tu)s ≤ cn−εEn(Tu)s+ε ≤ cn−ε‖u‖s
it follows that there is such a number n1 ∈ N that for all n ≥ n1 the perturbed
operator Bn = N + SnT has an inverse satisfying the uniform bound

‖B−1
n ‖Hs→Hs ≤ c .

To estimate the rate of convergence of the approximate solutions u∗n ∈ Tn to
the exact solution u∗ ∈ Hs of the equation (1) we denote by ūn = Snu∗ ∈ Tn
the polynomial of the best approximation of u∗ and taking into account that
ūn = B−1

n SnBūn write

u∗ − u∗n = u∗ − ūn + B−1
n SnBūn −B−1

n Sn(y + Rn(Bu∗n − y))

= u∗ − ūn + B−1
n SnBūn −B−1

n SnBu∗ −B−1
n SnRn(Bu∗n − y)

= (I − B−1
n SnB)(u∗ − ūn) +B−1

n SnRn(Bu∗ −Bu∗n) .

The boundness of the operators B−1
n , Sn, B and the obvious identity SnRn = Rn

allow us to obtain the estimation

‖u∗ − u∗n‖s ≤ c‖u∗ − ūn‖s + c‖Rn(Bu∗ −Bu∗n)‖s
(13)

≤ cEn(u∗)s + c‖Rn(Nu∗ −Nu∗n)‖s + c‖Rn(Tu∗ − Tu∗n)‖s
With the help of the Lemma 4 the third summand of the right hand side can be
estimated as follows:

‖Rn(Tu∗ − Tu∗n)‖s ≤ cEn(T (u∗ − u∗n))s ≤ cn−εEn(T (u∗ − u∗n))s+ε
≤ cn−ε‖u∗ − u∗n‖s .

To estimate the second summand we will use once more Lemma 4, and the iden-
tities (12)

‖Rn(Nu∗−Nu∗n)‖s ≤ c‖N (u∗ − u∗n)− SnN (u∗ − u∗n)‖s
≤ c‖N (u∗ − u∗n) −N (ūn − u∗n) + SnN (ūn − u∗n)− SnN (u∗ − u∗n)‖s
≤ c‖N (u∗ − ūn)‖s + c‖SnN (u∗ − ūn)‖s ≤ cE(u∗)s .

Hence, the estimation (13) will take the form

‖u∗ − u∗n‖s ≤ cEn(u∗)s + cn−ε‖u∗ − u∗n‖s .

Choosing n2 ≥ n1 on condition that cn−ε < 1/2 is valid for all n ≥ n2 and
transposing the last summand of the estimation to the left hand side we obtain
finally

‖u∗ − u∗n‖s ≤ 2cEn(u∗)s .(14)
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Lemma 1 and the estimation (14) allow to obtain the estimation (8) of the
Corollary 1.

Remark. As it was shown in [13, p. 135] when A1 is not satisfied, it may
nevertheless be possible to obtain approximate solutions ofAu = f by the following
modification due to Mikhlin and Prössdorf [15, p. 442-443].

With κ = W (a) −W (b) 6= 0 introduce the new operator

D = e−κaP + bQ+K(e−κP +Q) ,

whose coefficients have equal winding numbers. Now let vn =
∑
|l|≤n ξlel de-

note the approximate solution of the equation Dv = f obtained by applying the
collocation method. Then the sequence

un =
n∑
l=0

ξlel−κ +
−1∑
l=−n

ξlel

converges to a solution u of the original equation Au = f provided a solution u
exists.

4. Periodic pseudodifferential equations

We consider equations with operators

Bv ≡ (aP + bQ+ K)Λβv = f(15)

where the operator Λβ denotes the Bessel potential operator of order β ∈ R, given
by

Λβel = |l + δ0l|βel , l ∈ Z ,

(δij is the Kronecker symbol) and corresponding continuous extension. If β = 0,
then B is just a singular integral operator.

From Agranovich’s Theorem [1], [21] it is known that any one-dimensional (clas-
sical) pseudodifferential operator of order β acting on periodic functions can be
written in the form (15). In fact suppose B0 is the principal part of B, i.e.

(B0u)(t) =
∑
k∈Z

σ0(t, k)û(k)eikt ,

where σ0(t, k) - the principal symbol of B - is 2π-periodic in t, and positive homo-
geneous of degree β in k 6= 0, i.e.,

σ0(t, k) =
{
|k|βσ0(t, k/|k|) , k 6= 0 ,

1 , k = 0 .

A simple calculation shows that with

a(t) = σ0(t,+1), b(t) = σ0(t,−1) ,(16)

the principal part of B can be written as B0 = (aP+bQ)Λβ.The following mapping
property of Λβ allows the extension of the former results to (15), see [23, p. 149].
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Lemma 6. For arbitrary β, s ∈ R the mapping

Λβ : Hs+β → Hs

is an isomorphism.

Lemma 7. Operator Λβ commutes with Sn, with P and with Q.

Just as for the case of a singular integral operator (β = 0), we say that B is
elliptic if the functions (16) satisfy

a(t) 6= 0 and b(t) 6= 0 for all t ∈ R .

Obviously, when B is elliptic, the mapping

B : Hs+β :→Hs , β ∈ R ,

is an isomorphism if and only if W (a) = W (b) and ker(B) = {0}.
Let us write A = aP + bQ+K, then the equation

Bv ≡ AΛβv = f(17)

is equivalent to
Au = f with u = Λβv ,

and the system of collocation method

(Bvn)(tk) = f(tk) , |k| ≤ n ,(18)

is equivalent to finding the polynomial

un = Λβvn ∈ Tn(19)

satisfying

(Aun)(tn) = f(tn) , |k| ≤ n .(20)

Therefore, the solvability of the (18) is determined by the solvability of the (20)
and (19). The solution of the last one consists in the calculation of the Fourier
coefficients of the polynomial vn according to the formulas

v̂n(l) = |l|βûn(l) , |l| ≤ n .(21)

Theorem 2. Suppose that for the equation (17) the following is held:
B1 the pseudodifferential operator B is elliptic with W (a) = W (b) and ker (B) =
{0},

B2 there is an ε > 0 such that K : Hs+β → Hs+β+ε is bounded for all s ∈ R,
B3 s > 1/2.

Then for all n sufficiently large, there exists a unique collocation solution v∗n of
(18), and

‖v∗ − v∗n‖s+β ≤ cEn(v∗)s+β .

Corollary 2. If in the Theorem 2 v∗ ∈ Hs+α, α > β, then

‖v∗ − v∗n‖s+β ≤ cnβ−αEn(v∗)s+α .
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Proof of the Theorem 2. The solvability of the system of equations (18) follows
immediately from the Theorem 1 and the identities (21). Theorem 1 also allows
to obtain the error estimation

‖v∗ − v∗n‖s+β = ‖Λβv∗ − Λβv∗n‖s ≤ cEn(Λβv∗)s = cEn(v∗)s+β .

The last estimation and the Lemma 1 yield the estimation of the Corollary 2.

5. Systems of periodic pseudodifferential equations

As in [13] (see also the bibliography there) we will extend the analysis of the
previous paragraphs to systems of singular integral equations and, further, to
elliptic systems of periodic pseudodifferential equations. As indicated in [24], and
using the results of [1], [21], every system of periodic pseudodifferential equations
can be written in the form

Bv ≡ (σ0(t,+1)P + σ0(t,−1)Q+ K)Λβv = f ,(22)

where σ0 is the principal symbol of B, a matrix valued 2π-periodic by t function,
and where β = (β1, . . . , βL) ∈ RL is a suitable vector of orders. Λβ is defined by
the diagonal matrix of operators

Λβ = (δijΛβi) , i, j = 1, . . . , L ,

(δij is the Kronecker symbol), K satisfies assumption B2.
The trigonometric collocation method for (22) reads as to find the vector of

polynomials vn ∈ T Ln satisfying

(Bvn)(tk) = f(tk), |k| ≤ n .(23)

This system of equations is equivalent to the system

(Aun)(tk) = f(tk), |k| ≤ n ,

with un = Λβvn and

A = σ0(t,+1)P + σ0(t,−1)Q+K .

Theorem 3. Suppose that for the equation (22) the following is held:
B1’ detσ0(t,±1) 6= 0 for all t ∈ R and the left indices of σ0(t,+1) and the right

indices of σ0(t,−1) and σ0(t,−1)−1σ0(t,+1) are all equal to zero, ker(B) =
{0},

B2’ there is an ε > 0 such that

K : Hs+β
L → Hs+β+ε

L , Hs+β
L =

L∏
j=1

Hs+βj , ‖ · ‖s+β =
L∑
j=1

‖ · ‖s+βj

is bounded for all s ∈ R,
B3’ s > 1/2.

Then for all n sufficiently large, there exists a unique collocation solution v∗n of
(23), and

‖v∗ − v∗n‖s+β ≤ cEn(v∗)s+β
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Corollary 3. If in the Theorem 3 v∗ ∈ Hs+α
L , α = (α1, . . . , αL) , αj > βj , j =

1, . . . , L, then

‖v∗ − v∗n‖s+β ≤ cnγEn(v∗)s+α , γ = max
1≤j≤L

(βj − αj) .

Proof of the Theorem 3. Assumption B1’ guarantees the existence of the
matrix factorizations

σ0(t,+1) = a+a− , σ0(t,−1) = b−b+ ,

with a±, b± ∈ (C∞± )L×L, having all the desired properties needed in §3 and §4.
The rest of the proof follows as in the proofs of the Theorems 1 and 2 and their
Corollaries if the function factorizations are replaced by matrix factorizations.
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[13] McLean, W., Prössdorf, S. B., Wendland, W. L., Pointwise error estimate for the trigono-
metric collocation method applied to singular integral equations and periodic pseudodiffer-

ential equations, J. Integral Equations Appl. 2, No 1(1989), 125–146.

[14] McLean, W., Wendland, W. L., Trigonometric approximation of solutions of periodic pseu-
dodifferential equations, Operation Theory: Advances and Applications 41 (1989), 359–383.
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