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RICCI CURVATURE OF REAL HYPERSURFACES

IN COMPLEX HYPERBOLIC SPACE

BANG-YEN CHEN

First we prove a general algebraic lemma. By applying the algebraic
lemma we establish a general inequality involving the Ricci curvature of an arbitrary
real hypersurface in a complex hyperbolic space. We also classify real hypersurfaces
with constant principal curvatures which satisfy the equality case of the inequality.

1. Statement of main result

Let Mn be a Riemannian n-manifold. For each 2-plane section π ⊂ TpM
n,

p ∈ Mn. We denote by K(π) the sectional curvature of π. Let X be a unit
vector in TpM

n. If we choose an orthonormal basis {e1, . . . , en} of TpMn such
that e1 = X, then the Ricci curvature Ric(X) at X is given by

(1.1) Ric(X) = K12 + · · ·+ K1n ,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei
and ej . The maximal Ricci curvature is defined by

(1.2) maxRic(p) = max{Ric(X) : X ∈ TpMn, |X| = 1}, p ∈Mn .

The scalar curvature τ of Mn is defined by τ =
∑

1≤i<j≤nKij.
Let CHm(−4) denote the complex hyperbolic m-space with constant holomor-

phic sectional curvature −4 and J be the almost complex structure on CHm(−4).
Assume that M is a real hypersurface in CHm(−4). We denote by 〈 , 〉 the inner
product for M as well as for CHm(−4). Denote by ∇ and ∇̃ the Levi-Civita
connections of M and CHm(−4), respectively.

For any vector X tangent to M we put

(1.3) JX = PX + FX ,
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where PX and FX are the tangential and the normal components of JX, respec-
tively. P is a well-defined endomorphism of the tangent bundle TM of M .

The Gauss and Weingarten formulas are given respectively by

(1.4) ∇̃XY = ∇XY + h(X,Y ) ,

(1.5) ∇̃Xη = −AηX + DXη

for vector fields X,Y tangent to M and vector field η normal to M , where h is the
second fundamental form, D the normal connection, and A the shape operator of
the real hypersurface. Let ‖h‖2 denote the square norm of the second fundamental
form h.

The mean curvature vector
−→
H of M is given by

(1.6)
−→
H =

1
2m − 1

2m−1∑
i=1

h(ei, ei)

where {e1, . . . , e2m−1} is a local orthonormal frame of the tangent bundle TM .
The length of

−→
H is called the mean curvature of M . The squared mean curvature

function is H2 = 〈−→H ,
−→
H 〉.

A real hypersurface M of CHm(−4) is called a Hopf hypersurface if the shape
operator of M satisfies AξJξ = αJξ for some function α, where ξ is a unit normal
vector field of M in CHm(−4). The tangent vector field Jξ on M is known as the
Hopf vector field .

For real hypersurfaces in a complex hyperbolic space, we have the following
general result.

Theorem 1. Let m ≥ 2 and M be a real hypersurface of the complex hyper-
bolic space CHm(−4) of constant holomorphic sectional curvature −4. Then the
maximal Ricci curvature of M satisfies

(1.7) maxRic ≤ (2m− 1)2

4
H2 − 2(m− 1) .

The equality sign of (1.7) holds identically if and only if M is a Hopf hypersurface
with constant mean curvature given by 2α/(2m − 1), where α is the principal
curvature associated with the Hopf vector field Jξ, i.e., AξJξ = αJξ.

Moreover, if M has constant principal curvatures, then M satisfies the equality
case of inequality (1.7) identically if and only if M is an open portion of one of
the following real hypersurfaces:

(i) The horosphere in CH2(−4).
(ii) m ≥ 3 and M is the tubular hypersurface over a totally geodesic complex

hypersurface CHm−1(−4) in CHm(−4) with radius r = tanh−1(1/
√

2m− 3 ).
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2. An algebraic lemma and its geometric interpretation

Let n be a natural number ≥ 2 and n1, . . . , nk be k natural numbers. Then
(n1, . . . , nk) is called a partition of n if n1 + · · ·+ nk = n.

First we give the following general algebraic lemma for later use.

Lemma 2. Suppose that a1, . . . , an are n real numbers, k is an integer satisfying
2 ≤ k ≤ n − 1. Then, for any partition (n1, . . . , nk) of n, we have

(2.1)

∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i2<j2≤n1+n2

ai2aj2 + · · ·+
∑

n1···+nk−1+1≤ik<jk≤n
aikajk

≥ 1
2k

{
(a1 + · · ·+ an)2 − k(a2

1 + · · ·+ a2
n)
}
,

with the equality holding if and only if

(2.2) a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an .

Proof. Let a1, . . . , an be n real numbers, k be an integer satisfying 2 ≤ k ≤ n−1,
and (n1, . . . , nk) be a partition of n. Then we have

2k

{ ∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i1<j1≤n1+n2

ai2aj2 + · · ·+
∑

n1+···+nk−1+1≤ik<jk≤n
aikajk

}

−
( n∑
α=1

aα
)2

+ k
n∑
α=1

a2
α

= 2k

{ ∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i1<j1≤n1+n2

ai2aj2 + · · ·+
∑

n1+···+nk−1+1≤ik<jk≤n
aikajk

}

+ (k − 1)
n∑
α=1

a2
α − 2

∑
1≤α<β≤n

aαaβ

=

{ ∑
1≤ai1≤n1

ai1 −
∑

n1+1≤ai2≤n1+n2

ai2

}2

+

{ ∑
1≤ai1≤n1

ai1 −
∑

n1+n2+1≤ai3≤n1+n2+n3

ai3

}2

+ · · ·+
{ ∑
n1+···+nk−2+1≤ik−1≤n1+···+nk−1

aik−1 −
∑

n1+···+nk−1+1≤ik≤n1+···+nk

aik

}2

≥ 0 ,

with equality holding if and only if (2.2) holds. �

Remark 2.1. Lemma 3.1 of [3] is a special case of Lemma 2. In fact, if we put
(n1, . . . , nn−1) = (2, 1, . . . , 1), then Lemma 1 reduces to Lemma 3.1 of [3].
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Remark 2.2. Geometric Interpretation of Inequality (2.1).
Let M be a Riemannian n-manifold and L be a subspace of TpM of dimension

r ≥ 2. Suppose that {e1, . . . , er} is an orthonormal basis of L. Then the scalar
curvature τ (L) of the r-plane section L is defined by

(2.3) τ (L) =
∑

1≤α<β≤r
K(eα ∧ eβ) .

The scalar curvature τ (p) of M at p is nothing but the scalar curvature of
the tangent space of M at p. And if L is a 2-plane section, τ (L) is nothing but
the sectional curvature K(L) of L. In general, τ (L) is nothing but the scalar
curvature of the image expp(L) of L at p under the exponential map at p. If L is
1-dimensional subspace of TpM,p ∈M , we simply put τ (L) = 0.

The inequality (2.1) is equivalent to the following geometric result according to
the equation of Gauss.

Proposition 3. Let M be a hypersurface of Euclidean (n + 1)-space En+1 and
k be an integer in {2, . . . , n − 1}. Then, for any partition (n1, . . . , nk) of n, we
have

(2.4) τ (L1) + · · ·+ τ (Lk) ≥ 1
2k

(n2H2 − k‖h‖2) ,

where L1, . . . , Lk are the mutually orthogonal subspaces spanned by the principal
vectors {e1, . . . , en1}, . . . , {en1+···+nk−1+1, . . . , en}, respectively.

Proof. We only need to assume that a1, . . . , an are the principal curvatures of
M in En+1 associated with principal vectors e1, . . . , en, respectively. �
Remark 2.3. Similar to the results given in [3-7], inequality (2.4) provides us a
simple relationship between intrinsic and extrinsic invariants of submanifolds.

3. Proof of Theorem 1

Let M be a real hypersurface of the complex hyperbolic space CHm(−4). Let
e1, . . . , e2m−1 be a local orthonormal frame of the tangent bundle TM . We put

(3.1) aj = hjj , hij = h(ei, ej) , i, j = 1, . . . , 2m− 1 .

Since (n1, n2) = (2m − 2, 1) is a partition of 2m − 1, we may apply Lemma 2
to obtain the following inequality:

(3.2)
∑

1≤i<j≤2m−2

aiaj ≥
1
4

{
(a1 + · · ·+ a2m−1)2 − 2(a2

1 + · · ·+ a2
2m−1)

}
,

with the equality holding if and only if

(3.3) a1 + · · ·+ a2m−2 = a2m−1 .
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On the other hand, the equation of Gauss together with the curvature expression
of complex hyperbolic space imply that the Riemannian curvature tensor of M
satisfies (cf. [2,4])

(3.4)

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(X,Z)〉
−
{
〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉+ 〈JY, Z〉 〈JX,W 〉
− 〈JX,Z〉 〈JY,W 〉+ 2 〈X,JY 〉 〈JZ,W 〉

}
.

Hence, the sectional curvature Kij of the 2-plane section section spanned by ei
and ej is given by

(3.5) Kij = aiaj − h2
ij − 1− 3 〈Pei, ej〉2 .

Substituting (3.5) into (3.2) gives

(3.6)

∑
1≤i<j≤2m−2

Kij ≥
1
4

{
(2m− 1)2H2 − 2‖h‖2 + 2

∑
1≤i6=j≤2m−1

h2
ij

}

− (m − 1)(2m − 3)−
∑

1≤i<j≤2m−2

h2
ij −

3
2

2m−2∑
i,j=1

〈Pei, ej〉2 .

From (3.4) we also know that the scalar curvature and the mean curvature of M
satisfy

(3.7) ‖h‖2 = (2m− 1)2H2 − 2τ − 2(m− 1)(2m− 1)− 3‖P‖2,

where

(3.8) ‖P‖2 =
2m−1∑
β,γ=1

〈eβ , P eγ〉2

is the squared norm of the endomorphism P on TM .
By combining (3.6) and (3.7) we find

(3.9)

∑
1≤i<j≤2m−2

Kij ≥ τ − (2m− 1)2

4
H2 + 2(m− 1)

+
∑

1≤j≤2m−2

h2
j2m−1 −

3
2

2m−2∑
i,j=1

〈Pei, ej〉2 +
3
2
‖P‖2,

which implies

(3.10)

Ric(e2m−1)

≤ (2m − 1)2

4
H2 − 2(m − 1)−

∑
1≤j≤2m−2

h2
j2m−1 − 3

2m−2∑
i=1

〈Pe2m−1, ei〉2

≤ (2m − 1)2

4
H2 − 2(m − 1) .
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Since e2m−1 can be chosen to be any unit vector X tangent to M , (3.10) implies

(3.11) maxRic ≤ (2m − 1)2

4
H2 − 2(m − 1).

Suppose that maxRic = Ric(e2m−1) and the equality sign of (3.11) holds. Then
all of the inequalities in (3.2) and (3.10) become equalities. Thus, we have

h12m−1 = · · · = h2m−22m−1 = 0 ,(3.12)

〈Pe2m−1, ej〉 = 0, j = 1, . . . , 2m− 2 ,(3.13)

a1 + · · ·+ a2m−2 = a2m−1 .(3.14)

Condition (3.12) implies that e2m−1 is an eigenvector of Aξ. And Condition
(3.13) means that Je2m−1 is a normal vector ofM . Thus, without loss of generality,
we may assume e2m−1 = Jξ. Therefore, the Hopf vector field Jξ is an eigenvector
of Aξ, i.e., M is a Hopf’s hypersurface. Hence, by applying a result of [1], we
conclude that the principal curvature function α = a2m−1 corresponding to the
Hopf vector field Jξ is constant. Consequently, Condition (3.14) becomes that the
trace of Aξ is equal to 2α which is constant. Therefore, M is a Hopf hypersurface
with constant mean curvature given by 2α/(2m− 1).

Conversely, it is easy to verify that every Hopf hypersurface with constant mean
curvature 2α/(2m− 1) satisfies the equality case of (3.11).

Next, let us assume that the Hopf hypersurface M has constant principal cur-
vatures. Then, by the classification theorem of Hopf hypersurfaces in CHm(−4)
with constant principal curvatures given in [1], we know that M is orientable and
it is an open portion of one of the following hypersurfaces:

(i) A tubular hypersurface with radius r ∈ R+ over a totally geodesic
CH`(−4) for an integer ` ∈ {0, . . . ,m− 1};

(ii) A tubular hypersurface with radius r ∈ R+ over a totally geodesic
RHm(−1);

(iii) A horosphere in CHm(−4).

For Case (i), M has principal curvatures {2 coth(2r), tanh(r), coth(r)} of multi-
plicities {1, 2`, 2(m−`−1)}, respectively. For Case (ii), M has principal curvatures
{2 tanh(2r), tanh(r), coth(r)} of multiplicities {1,m−1,m−1}. And for Case (iii),
M has principal curvatures {2, 1} of multiplicities {1, 2m − 2}. It is also known
that the multiplicity of the principal curvature with respect to the Hopf vector
field is one.

If Case (i) occurs, then α = 2 coth(2r). Thus, Condition (3.14) implies

(3.15) 2 coth(2r) = 2` tanh(r) + 2(m − ` − 1) coth(r) ,

for some ` ∈ {0 . . . ,m− 1}. If we put x = tanh(r), then Equation (3.15) becomes
1 + x2 = 2`x2 + 2(m − ` − 1). Thus, we obtain

(3.16) x2 =
2`− 2m+ 3

2`− 1
.
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Since 0 < tanh2(r) < 1, Equation (3.16) implies

(3.17) 0 <
2` − 2m+ 3

2`− 1
< 1 .

Clearly, (3.17) cannot occur unless ` ≥ 1. Thus, we obtain from the second
inequality of (3.17) that m ≥ 3. On the other hand, the first inequality of (3.17)
implies that ` > m − 3/2. Thus, we must have ` = m − 1. Substituting this into
(3.16) yields x2 = 1/(2m− 3). Hence, the radius r of the tubular hypersurface M
is given by r = tanh−1(1/

√
2m− 3).

If Case (ii) occurs, then Condition (3.14) implies

(3.18) 2 tanh(2r) = (m− 1)
(

tanh(r) + coth(r)
)
.

Hence, we get 4x2 = (m − 1)(1 + x2)2, where x = tanh(r) as in Case (i). After
solving this equation for x2, we obtain

(3.19) x2 =
3−m±

√
2−m

m − 1
.

Since x2 = tanh2(r) is a real number, (3.19) implies that m = 2. Substituting this
into (3.19) yields x2 = 1 which is impossible since −1 < tanh(r) < 1. Therefore,
Case (ii) cannot occurs.

If Case (iii) occurs, then Condition (3.14) implies m = 2. Thus, M is an open
portion of the horosphere in CH2(−4).

Conversely, it is easy to verify that the horosphere in CH2(−4) and the tubular
hypersurface with radius r = tanh−1(1/

√
2m − 3) over a totally geodesic com-

plex hypersurface CHm−1(−4) in CHm(−4) with m ≥ 3 have constant principal
curvatures and constant mean curvature given by 2α/(2m− 1). �

4. Real hypersurfaces in CH2 satisfying the equality

When m = 2, the assumption of constant principal curvatures given in Theorem
1 holds automatically. In fact, we have the following.

Corollary 4. Let M be a real hypersurface of the complex hyperbolic space
CH2(−4). Then we have

(4.1) maxRic ≤ 9
4
H2 − 2 .

The equality sign of (4.1) holds identically if and only if M is an open portion of
the horosphere in CH2(−4).

Proof. When m = 2, inequality (1.7) reduces to inequality (4.1).
Suppose that the equality case of (4.1) holds identically, then Theorem 1 implies

that M is a Hopf hypersurface with constant mean curvature 2α/3, where α is
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the principal curvature associated with the Hopf vector field. Let D denote the
distribution of rank 2 on M which is orthogonal to the Hopf vector field. Then
D is a complex distribution. It is well-known that the shape operator of a Hopf
hypersurface in CH2(−4) satisfies

(4.2) 2 〈X,PY 〉 = α 〈AX,PY 〉+ 2 〈PAX,AY 〉 − α 〈PX,AY 〉

for X,Y tangent to M . From (4.2) it follows that the other two principal curva-
tures a1, a2 of M satisfy

(4.3) 2 + 2a1a2 = αa1 + αa2 .

Since α = a1 + a2 is constant, (4.3) implies that both a1, a2 are constant too.
Thus, we may apply Theorem 1 to conclude that M is an open portion of the
horosphere in CH2(−4).

The converse have already been proved in Theorem 1. �
Remark 4.1. In views of Theorem 1 and Corollary 4, it is an interesting problem
to determine whether there exist Hopf hypersurfaces in the complex hyperbolic
space CHm(−4) with m ≥ 3 which satisfy the equality case of (1.7), but the
principal curvatures of the Hopf hypersurfaces are not all constant.

References

[1] Berndt, J., Real hypersurfaces with constant principal curvatures in complex hyperbolic
space, J. Reine Angew. Math. 395 (1989), 132-141.

[2] Chen, B. Y., Geometry of Submanifolds, M. Dekker, New York, 1973.
[3] Chen, B. Y., Some pinching and classification theorems for minimal submanifolds, Arch.

Math. (Basel) 60 (1993), 568–578.
[4] Chen, B. Y., A general inequality for submanifolds in complex-space-forms and its applica-

tions, Arch. Math. (Basel) 67 (1996), 519–528.
[5] Chen, B. Y., Relations between Ricci curvature and shape operator for submanifolds with

arbitrary codimension, Glasgow Math. J. 41 (1999), 33-41.
[6] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L., The normal curvature of totally

real submanifolds of S6(1), Glasgow Math. J. 40 (1998), 199–204.
[7] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L., A pointwise inequality in sub-

manifold theory, Arch. Math. (Brno) 35 (1999), 115–128.

E-mail bychen@math.msu.edu


		webmaster@dml.cz
	2012-05-10T14:24:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




