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HETEROCLINIC ORBITS IN PLANE DYNAMICAL SYSTEMS

LUISA MALAGUTI AND CRISTINA MARCELLI

Abstract. We consider general second order boundary value problems on
the whole line of the type u ′′ = h(t, u, u′), u(−∞) = 0, u(+∞) = 1, for

which we provide existence, non-existence, multiplicity results. The solutions
we find can be reviewed as heteroclinic orbits in the (u, u ′) plane dynamical

system.

1. Introduction

The main aim of this paper is to state existence and multiplicity results for the
boundary value problem on the whole line

(P)
{

u′′ = h(t, u, u′)
u(−∞) = 0 , u(+∞) = 1

where h is a continuous function on R3 such that h(t, 0, 0) = h(t, 1, 0) = 0 for all
t ∈ R.

Our initial motivation for treating (P) came from the study of travelling wave-
fronts for reaction-diffusion equations which arise from chemical and biological
models (see [7] and references therein contained). In this context problem (P) is
generally autonomous and one is interested in finding monotone solutions for it.
Notice that the investigation of travelling wave solutions for different type of dy-
namics is still under intensive research; see e.g. [1] and [3] for recent results dealing
with lattice differential equations.

On the other hand, the solvability of (P) also comes from the existence of non-
trivial stationary solutions for semi-linear parabolic equations (see e.g. [11]).

Moreover, the study of (P) has interesting applications in the field of plane
dynamical systems. In fact, since the solutions of (P) satisfy lim

t→±∞
u′(t) = 0

(see Lemma 4.1 for the case when h is autonomous), they can be reviewed as
heteroclinic connections between the singular points (0, 0) and (1, 0). See also [2]
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and [4] for the existence of heteroclinic orbits of delay differential equations and
their monotonicity properties.

Finally, we underline that, in the autonomous case, the existence of monotone
solutions of (P) is equivalent (see Lemma 4.2) to the existence of positive solutions
for a singular non-autonomous first order problem of the type

(Q)
{

x′ = f(t, x)
x(0+) = x(1−) = 0

where f is singular for x = 0.
Being (Q) of the first order, it is in a certain sense an over-determined problem

and, according to our knowledge, it was never previously investigated.
On the contrary, a quite wide literature is available for second order singular

boundary value problems both on finite intervals and on a half-line (see [5], [9]
and references therein contained).

As regards problem (P), up to now a general theory was not completely devel-
oped. One can find a result of general type in [9, Thm. 14.3], where the existence
of an ordered couple of upper and lower solutions for (P), together with a growth
condition on h are assumed. Moreover, other results for special types of equations
were established, such as the recent one by Ortega and Tineo [10], concerning the
so-called Landesman-Lazer equations.

In this paper we propose a comparison-type approach for investigating (P),
which proceeds by the following scheme.

First of all in Section 2 we recall a classical result on differential inequalities and
we adapt a recent one due to Marcelli and Rubbioni [8] to the case of non-compact
domains.

Then, in Section 3 we handle the associated first order singular problem (Q),
with f essentially superlinear (possibly linear) in x for x large enough, and f
singular in x when x → 0+, of the same type as 1

xβ
with 0 < β ≤ 1. Combin-

ing the upper and lower-solutions method discussed in Section 2 and phase-plane
techniques, we obtain for (Q) both an existence and a non-existence result.

Then in Section 4, we are able to treat problem (P) in the autonomous case,
and provide existence, non-existence and uniqueness results of heteroclinic orbits
in the plane (u, u′). In particular, we obtain the following existence theorem.

Theorem A. Given a continuous function h : R2 → R satisfying h(0, 0) =
h(1, 0) = 0, consider the boundary value problem{

u′′ = h(u, u′)
u(−∞) = 0 , u(+∞) = 1 .(1)

Assume the existence of a constant L > 0 such that one of the following pairs of
conditions holds

h(u, 0) < 0 for all u ∈ ]0, 1[
h(u, v) ≥ 2

√
Lv − Lu for all (u, v) ∈ [0, 1]× [0,+∞[ ,
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or
h(u, 0) > 0 for all u ∈ ]0, 1[
h(u, v) ≤ −2

√
Lv + L(1− u) for all (u, v) ∈ [0, 1]× [0,+∞[ ,

then (P) has a strictly monotone solution.

We also state non-existence and uniqueness conditions.
Finally, Section 5 is devoted to the study of problem (P) in the non-autonomous

case. We assume the existence of autonomous functions h1 and h2, satisfying the
conditions of Theorem A and such that

h1(u, v) ≤ h(t, u, v) ≤ h2(u, v) for all (u, v) ∈ ]0, 1[× ]0,+∞[ .

By means of a suitable fixed-point technique, also used in [11], we are able to
prove the existence of a one-parameter family of solutions of the non-autonomous
problem (P).

2. About our comparison-type approach

This section deals with some existence results for first order equations, ob-
tained by means of upper and lower solution techniques, which are a key tool for
constructing our approach used to investigate (P).

Given a continuous function g : ]0, 1[×R→ R and the first order equation

x′ = g(t, x)(2)

we recall that a function γ ∈ C1(]0, 1[) is said to be a lower solution (an upper
solution) for (2) in ]0, 1[ if

γ′(t) ≤ g(t, γ(t)) (alternatively γ′(t) ≥ g(t, γ(t)) ) for all t ∈ ]0, 1[ .

The following theorem is a direct consequence of recent comparison-type results
obtained by Marcelli and Rubbioni [8].

Theorem 2.1. Given a continuous function g : ]0, 1[ × ]0,+∞[ → R, let us
consider the first order equation (2). Assume there exist two positive functions
γ1(t) and γ2(t) which are respectively a lower and an upper solution for (2) on
]0, 1[. Then (2) admits a solution γ(t) satisfying

min{γ1(t), γ2(t)} ≤ γ(t) ≤ max{γ1(t), γ2(t)}, for all t ∈ ]0, 1[ .

Proof. For all t ∈ ]0, 1[, let us define

m(t) = min{γ1(t), γ2(t)} , M (t) = max{γ1(t), γ2(t)} .
Let (In)n be an increasing sequence of compact intervals whose union is ]0, 1[.

For every n ∈ N we can apply [8], Corollary 6 (see also [8], Remark 1) in the
interval In and we obtain a solution ψn of (2) in In satisfying m(t) ≤ ψn(t) ≤M (t)
for all t ∈ In. We denote by φn the maximal solution of (2) in In which lies between
the two functions m and M and extend it to the whole interval ]0, 1[ in a constant
way.
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For each n ∈ N put

Jn =
[
min
t∈In

m(t), max
t∈In

M (t)
]
.

Given n̄ ∈ N , observe that for all t ∈ In̄ and every n ≥ n̄ we have

|φ′n(t)| = |g(t, φn(t)| ≤ max
(t,x)∈In̄×Jn̄

|g(t, x)| < +∞ and φn(t) ≥ φn+1(t) .

Thus the sequence (φn)n is equi-lipschitzian and definitively monotone non-decreasing
in any compact subset of ]0, 1[. Hence it uniformly converges on compact sets of
]0, 1[ to a continuous function γ on ]0, 1[. Therefore, γ satisfies equation (2) and

m(t) ≤ γ(t) ≤M (t) for all t ∈ ]0, 1[ .

We recall now a classical comparison-type result (see e.g. [12])

Lemma 2.2. Let g : [0, 1]×R→ R be a continuous function and let γ ∈ C1([0, 1])
be such that

γ′(t) ≤ g(t, γ(t)) , t ∈ [0, 1] .

Then, if γ(a) ≤ x0, we have γ(t) ≤ ϕ(t), t ∈ [0, 1], where ϕ is the maximal
solution of the initial value problem

x′(t) = g(t, x), x(a) = x0 .

Moreover, if γ(b) ≥ x1, we have γ(t) ≥ θ(t), t ∈ [0, 1], where θ is the minimal
solution of the terminal value problem

x′ = g(t, x) x(b) = x1 .

3. On a singular first order problem

Given the continuous function f : ]0, 1[× ]0,+∞[ → R we are now interested
to discuss the solvability of the following boundary value problem{

x′ = f(t, x)
x(0+) = x(1−) = 0 .(3)

We deal with the case when f is infinite when x = 0, that is (3) is a singular
problem. More precisely, throughout this section we shall assume the existence of
a constant β > 0 such that

lim sup
(t,x)→(t0,0)

xβf(t, x) < 0 for all t0 ∈ ]0, 1[(4)

or

lim inf
(t,x)→(t0,0)

xβf(t, x) > 0 for all t0 ∈ ]0, 1[ .(5)

Hence, in both cases,

lim
x→0
|f(t, x)| = +∞ for all t ∈ ]0, 1[ .
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As a typical example of our dynamics f near the points (t, 0) with t ∈ ]0, 1[, we
can take

f(t, x) =
F (t, x)
xβ

where F : ]0, 1[ × [0,+∞[ → R is an arbitrary continuous function, such that
F (t, 0) 6= 0 for every 0 < t < 1. Indeed, when F (t, 0) < 0 in ]0, 1[ then condition
(4) holds, whereas F (t, 0) > 0 in ]0, 1[ implies condition (5).

Our approach in dealing with the existence of solutions of problem (3), is
based on a suitable combination between methods of upper and lower-solutions
and phase-plane techniques.

First we consider the case when f is negative near the t-axis, i.e. condition (4)
holds, and by means of a comparison-type technique, we get in Thm. 3.2 both an
existence and a non-existence result for problem (3). Subsequently, the case when
f is positive, i.e. condition (5) holds, will be treated by means of a suitable change
of variables, reducing the problem to the previous one and obtaining analogous
existence, non-existence results (see Thm. 3.4).

The following lemma shows that, for any given t0 ∈ ]0, 1[, the maximal right
existence interval of every solution of the Cauchy problem{

x′ = f(t, x)
x(t0) = α

(6)

can be as small as one desires, provided α is sufficiently small.

Lemma 3.1. Assume condition (4). Then, for all t0 ∈ ]0, 1[ and ε > 0 it is possible
to find ᾱ = ᾱ(t0, ε) such that for every solution x(t) of the Cauchy problem (6),
with α ∈ ]0, ᾱ[, there exists a value τx ∈ ]t0, t0 + ε[ satisfying

lim
t→τ−x

x(t) = 0

i.e. [t0, τx[⊂ [t0, t0 + ε[ is the maximal right existence interval of the solution x.

Proof. Given t0 ∈ ]0, 1[ and ε > 0, by (4) it is possible to find σ̄ ∈ ]0, ε[ and
M > 0 such that

f(t, x) ≤ −M
xβ

for all (t, x) ∈ [t0, t0 + σ̄]× ]0, σ̄] .(7)

Denoting by ᾱ = min{(σ̄M (β + 1))
1

β+1 , σ̄} and given 0 < α < ᾱ, let us consider
the Cauchy problem {

x′ = −M
xβ

x(t0) = α .
(8)

It is easy to check that the solution γ(t) = (αβ+1 − (β + 1)M (t− t0))
1
β+1 of (8)

is defined for all t0 ≤ t ≤ t0 + αβ+1

M(β+1) and since α < ᾱ, we have αβ+1

M(β+1) < σ̄.

For α as before, consider now a solution ξ(t) of (6), defined on its maximal right
interval [t0, τx[. Since α ≤ σ̄, we have

ξ′(t0) = f(t0, α) ≤ −M
αβ

< 0



188 L. MALAGUTI AND C. MARCELLI

and taking account of (7), we deduce that ξ(t) is decreasing on [t0, τx[∩[t0, σ̄].
Therefore, we have 0 < ξ(t) ≤ α on the same interval.

Consequently, for all t ∈ [t0, t0 + αβ+1

M(β+1)
[, it holds

ξ′(t) = f(t, ξ(t)) ≤ − M

ξ(t)β

hence ξ is a lower solution for the equation in (8) and by Lemma 2.2 we have
ξ(t) ≤ γ(t) for all t, implying τx < t0 + σ̄ ≤ t0 + ε.

Now we can state and prove the main result of this section.

Theorem 3.2. Consider the boundary value problem (3) with f satisfying (4).
i) If there exists L > 0 such that

f(t, x) ≥ 2
√
L − Lt

x
for all (t, x) ∈ ]0, 1[× ]0,+∞[ ,(9)

then (3) has a strictly positive solution.
ii) If there exist 0 < M < L and ε > 0 such that

f(t, x) ≤ 2
√
M − Lt

x
for all (t, x) ∈ ]0, ε]× ]0, ε] ,(10)

then (3) does not admit solutions.

Proof. i) Assume condition (9) and consider the function ξ =
√
Lt, defined for

t ∈ [0, 1]. According to (9), for any t ∈]0, 1[ it holds

ξ′(t) = 2
√
L − Lt

ξ(t)
≤ f(t, ξ(t)) ;(11)

hence ξ(t) is a strictly positive lower-solution on ]0, 1[ for the equation in (3).
Denoting by

Ω = {(t, x) : 0 < t ≤ 1, 0 ≤ x ≤ ξ(t)} ,
the set of points (t, x) between the graph of ξ and t-axis, we shall prove the
existence of a solution of (3) which lies in Ω.

For any n ∈ N , consider the Cauchy problem{
x′ = f(t, x)
x
(
1− 1

2n

)
= α .

(12)

According to Lemma 3.1 it is possible to find ᾱn > 0 such that the maximal
existence interval of each solution of (12) with 0 < α < ᾱn is strictly contained in
]0, 1− 1

2n+2 [. Given

αn = min
{
ᾱn,

√
L

2n

}
denote by ξn the minimal solution of{

x′ = f(t, x)
x
(
1− 1

2n

)
= αn .

(13)
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First notice that ξn(t) > 0 is defined and positive in ]0, 1 − 1
2n ]. Assume, in

fact, the existence of t0 ∈ ]0, 1− 1
2n [ such that lim

t→t+0
ξ(t) = 0 and ξ(t) > 0 for all

t ∈ ]t0, 1− 1/2n]. According to condition (4), it is possible to find two positive
constants λ and σ such that

f(t, x) < − λ

xβ
for all (t, x) ∈ [t0, t0 + σ]× ]0, σ] ,

therefore, for t in a right neighborhood of t0, it holds

ξ′n(t) = f
(
t, ξn(t)

)
< − λ

(ξn(t))β
< 0

in contradiction with ξ(t+0 ) = 0. Consequently each ξn turns out to be defined on
all ]0, 1− 1/2n]; moreover, since ξn(1− 1

2n
) = αn ≤

√
L

2n
≤
√
L(1− 1

2n
) = ξ(1− 1

2n
)

for all n, by (11) we can apply Lemma 2.2 to show that

ξn(t) ≤ ξ(t) for all t ∈ ]0, 1− 1
2n

] , n ∈ N .

Since, in addition, 0 < αn < ᾱn, the maximal existence interval of ξn is ]0, τn[ with
τn ∈]1− 1

2n
, 1− 1

2n+2
[ and it holds lim

t→τ−n
ξn(t) = 0. Put ξn(t) = 0 for all t ∈ [τn, 1],

each ξn is continuous on ]0, 1] and satisfies(
t, ξn(t)

)
∈ Ω for all t ∈ ]0, 1] .

By means of a recursive process we obtain now a solution p of problem (3).
Define the following monotone non-decreasing sequence of continuous functions
pn : ]0, 1[→ R

p1(t) = ξ1(t), pn+1(t) = max{pn(t), ξn+1(t)} , n ∈ N

and denote by p(t) its limit. Notice that
(
t, p(t)

)
∈ Ω for all t ∈ ]0, 1[.

We prove now that the convergence is uniform on any compact interval [a, b] ⊂
]0, 1[. Indeed, let n̄ be such that b < 1− 1

2n̄ and put

r = min
a≤t≤b

pn(t) and K = max
(t,x)∈[a,b]×[r,

√
L]
|f(t, x)| .

For every t ∈ [a, b] and n > n̄, it holds 0 < r ≤ pn(t) ≤
√
L and then |p′n(t)| =

|f
(
t, pn(t)

)
| ≤ K. Therefore

(
pn
)
n

is equi-lipschitzian and then it uniformly con-
verges to p in [a, b]; hence p(t) is continuous and is a solution of the equation in
(3) for t ∈ [a, b]. By the arbitrariness of [a, b], p solves the equation in (3) on all
]0, 1[.

Now it remains to prove that p satisfies the limit conditions. Since 0 < p(t) ≤√
Lt for all t ∈ ]0, 1[, we immediately obtain lim

t→0+
p(t) = 0.

Let us assume, by contradiction, that

lim sup
t→1−

p(t) = l > 0
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and take c, d ∈ R with 0 < c < d < l. According to (9), it is then possible to find
k > 0 such that

f(t, x) ≥ −k for every t ∈ ]0, 1[ , x ∈ [c,
√
L] .(14)

Put δ = (d− c)/k, let t0 ∈ ]1− δ, 1[ be such that p(t0) > d. Let m ∈ N satisfying
pm(t0) > d, 1 − 1/2m > t0 and

√
L/2m < c. By virtue of the continuity of pm,

since pm(1− 1/2m) ≤
√
L/2m, there exists a value t̄ ∈ ]t0, 1[ such that pm(t̄) = c

and pm(t) ≥ c for every t ∈ [t0, t̄]. Therefore, by (14), we deduce that

c = pm(t̄) ≥ pm(t0)− k(t̄− t0) > d+ c− d = c ,

a contradiction. Hence lim sup
t→1−

p(t) = 0 and since p is strictly positive on ]0, 1[,

this implies lim
t→1−

p(t) = 0, so that p solves problem (3).

ii) Assume now condition (10) and consider the second order linear equation

t′′ − 2
√
Mt′ + Lt = 0 .(15)

Denoting by γ =
√
L −M , it is easy to show that

t(s) = ηe
√
Ms(cos(γs) −

√
M

γ
sin(γs))

is a solution of (15) for every η > 0. In addition it holds t(s) > 0 for all s ∈ ]s̄, 0]
where s̄ = 1

γ
[arctan γ√

M
− π], and t(s̄) = 0; moreover we have t′(0) = 0 and

t′(s) > 0 for all s ∈ [s̄, 0[.
In particular, the function t = t(s) is invertible for s̄ ≤ s ≤ 0; let s = s(t) be

its inverse which is defined for t ∈ [0, η] and put ξ(t) = t′(s(t)). Since t′(s) =
−ηe

√
Ms(M

γ
+ γ) sin(γs), s ∈ [s̄, 0], we can choose the positive constant η < ε in

such a way that t′(s) ≤ ε in [s̄, 0].
Consequently, according to (15) and (10), we have

ξ′(t) =
t′′(s(t))
t′(s(t))

= 2
√
M − Lt

ξ(t)
≥ f(t, ξ(t)) .

Therefore, the function ξ is an upper solution for the equation in (3) on the interval
]0, η[.
Let us now assume, by contradiction, that (3) admits the solution ψ(t). Since
ξ(0)− ψ(0+) > 0 and ξ(η) − ψ(η) < 0, according to the continuity of ξ and ψ on
]0, η], it is possible to find a value t∗ ∈ ]0, η[ satisfying

ξ(t) − ψ(t) > 0 for all 0 ≤ t < t∗ and ξ(t∗) = ψ(t∗) .

Consequently, by (10) we have

ξ′(t)−ψ′(t) = 2
√
M− Lt

ξ(t)
−f(t, ψ(t)) ≥ Lt{ 1

ψ(t)
− 1
ξ(t)
} > 0, for all t ∈ ]0, t∗[

in contradiction with ξ(t∗) = ψ(t∗).
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Remark 3.3. Notice that condition (9) essentially states that ξ(t) =
√
Lt is a

linear lower solution on all ]0, 1[ for the equation in (3) which passes through the
origin.

Condition (9) could be replaced by the following more general one

f(t, x) ≥ g(t, x) for all (t, x) ∈ ]0, 1[× ]0,+∞[

with g : [0, 1]× [0,+∞[→ R continuous and such that the Cauchy problem{
x′ = g(t, x)
x(0) = 0

has a positive solution γ on all ]0, 1[.
In particular, a linear lower solution passing through the origin exists, for the

equation in (3), whenever

f(t, x) ≥M − Lt

x
for all (t, x) ∈ ]0, 1[× ]0,+∞[

and
M ≥ 2

√
L ;

in this sense, 2
√
L is the best constant in condition (9).

On the other hand, condition (10) essentially ensures the existence of an upper
solution for the equation in (3) having its maximal existence interval which is
contained in ]0, ε[.

We examine now the case when f is positive near the t-axis, i.e. condition (5)
holds.

Theorem 3.4. Consider the boundary value problem (3) with f satisfying (5).
i) If there exists L > 0 such that

f(t, x) ≤ −2
√
L+

L(1− t)
x

for all (t, x) ∈]0, 1[×]0,+∞[ ,(16)

then (3) has a strictly positive solution.
ii) If there exist 0 < M < L and ε > 0 such that

f(t, x) ≥ −2
√
M +

L(1− t)
x

for all (t, x) ∈ [1− ε, 1[× ]0, ε] ,(17)

then (3) does not admit solutions.

Proof. For all (t, x) ∈ ]0, 1[ × ]0,+∞[, define f1(t, x) := −f(1 − t, x). It is
immediate to verify that f1 satisfies condition (4). Moreover, if ξ1(t) is a solution
of the problem {

x′ = f1(t, x)
x(0+) = x(1−) = 0 ,

then the function ξ(t) = ξ1(1 − t) is a solution of (3) and viceversa. Hence the
result immediately follows from Thm. 3.2.

Remark 3.5. Condition (16) essentially states that the linear function ψ(t) =√
L(1 − t) is an upper solution on all ]0, 1[ of the equation in (3) which passes



192 L. MALAGUTI AND C. MARCELLI

through the point (1, 0). As in the case when f satisfies condition (4) (see Remark
3.3), it could be replaced by a more general one involving an arbitrary upper
solution of the equation in (3). Moreover, similar arguments of those at the end
of Remark 3.3 could be made in this case.

We conclude this section with a result about the uniqueness of the solution of
the boundary value problem (3).

Theorem 3.6. Let f : ]0, 1[× ]0,+∞[ → R be a continuous function such that
f(t, ·) is monotone non-decreasing for each t ∈ ]0, 1[ (alternatively f(t, ·) is mono-
tone non-increasing for each t ∈ ]0, 1[ ). Then (3) has, at most, one solution.

Proof. Assume f(t, ·) non-decreasing for each t ∈ ]0, 1[ and let ξ1, ξ2 be two
distinct solutions of (3). Suppose without restriction that ξ1(t̄) < ξ2(t̄) for some
t̄ ∈ ]0, 1[ and put t∗ = sup{t ∈ [t̄, 1[ : ξ1(s) < ξ2(s) for all s ∈ [t̄, t[}. Then
ξ1(t) < ξ2(t) for each t ∈ [t̄, t∗[, ξ1(t∗) = ξ2(t∗) and according to the monotonicity
of f one has

ξ′1(t) = f(t, ξ1(t)) ≤ f(t, ξ2(t)) = ξ′2(t) for all t ∈ [t̄, t∗[

in contradiction with ξ1(t∗) = ξ2(t∗).
In a similar way, when f(t, ·) is non-increasing, reasoning in a left neighborhood

of t̄ one gets a contradiction.

4. On the second order boundary problem: the autonomous case

We are now ready to discuss the solvability of problem (1). The key ingredient
to do this is Lemma 4.2 which essentially reduces (1) to a singular first order
problem of the type studied in Section 3.

First of all we prove that any monotone solution u of (1) has indeed both its
first and second derivative bounded.

Lemma 4.1. Every monotone solution u(t) of (1) satisfies

lim
t→−∞

u′(t) = lim
t→+∞

u′(t) = 0 .

Proof. Let u be a monotone solution of problem (1). Since u is also bounded, we
get lim inf

t→−∞
u′(t) = 0; denote by M = lim sup

t→−∞
u′(t). If we assume by contradiction

that M 6= 0, then given a ∈ ]0,M [ it is possible to find two monotone diverging
sequences of negative numbers (tn)n and (τn)n with tn+1 < τn < tn for all n ∈ N
satisfying

u′(tn) = a, u′(τn) =
a

2
and

a

2
≤ u′(t) ≤ a for all t ∈ [τn, tn] .

According to the continuity of h it is possible to find k ∈ R such that

k = max
(u,v)∈[0,1]×[0,a]

h(u, v) .
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Consequently we obtain

tn − τn ≥
a

2k
for all n ∈ N

implying ∫ 0

−∞
u′(t) dt ≥

∞∑
n=1

(tn − τn)
a

2
= +∞

in contradiction with u(−∞) = 0; hence M = 0 and lim
t→−∞

u′(t) = 0.

In a similar way one also gets the result for t→ +∞.

Lemma 4.2. Assume h(u, 0) 6= 0 for all u ∈ ]0, 1[. Then, problem (1) admits a
non-decreasing solution if and only if the singular boundary value problem{

ż = h(u,z)
z

(
ż = dz

du

)
z(0+) = z(1−) = 0 .

(18)

has a strictly positive solution.

Proof. (Necessary condition) Let u be a non-decreasing solution of (1). First
notice that u′(t) > 0 for all t ∈ R satisfying u(t) ∈ ]0, 1[; assuming in fact the exis-
tence of t0 ∈ R with u(t0) ∈ ]0, 1[ and u′(t0) = 0, we obtain u′′(t0) = h(u(t0), 0) 6=
0, hence u′ should change its sign in a neighborhood of t0, in contradiction with
the monotonicity of u. It is then possible to define the inverse function t = t(u)
of u which is of class C1 on all ]0, 1[; moreover, putting ζ(u) = u′

(
t(u)

)
we obtain

ζ̇(u) =
u′′(t)
u′(t)

=
h(u, ζ(u))
ζ(u)

.

Consequently, by means of Lemma 4.1 we get lim
u→0+

ζ(u) = 0 and lim
u→1−

ζ(u) = 0

hence ζ is a solution of (18).
(Sufficient condition) Let ζ be a strictly positive solution of (18); let u be a solution
of the Cauchy problem {

u′ = ζ(u)
u(0) = 1/2 ;

it is easy to see that, without loss of generality, we can continue u on all the
real line. Since ζ it is strictly positive, then u is monotone. Hence by virtue of
Lemma 4.1 we deduce that both u′(±∞) exist and they are necessarily equal to
zero. Moreover, whenever u(t) ∈ ]0, 1[, we obtain

u′′(t) = ζ̇(u)u′(t) = h(u(t), u′(t)) .

Finally, if t1 = inf{t : u(t) > 0}, since h(0, 0) = 0, we have

lim
t→t+1

u′′(t) = lim
t→t+1

h(u(t), u′(t)) = 0 ;

similarly, if t2 = sup{t : u(t) < 1}, we obtain lim
t→t−2

u′′(t) = 0; therefore u is a

solution of (1).
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We are now ready to prove an existence and non-existence result for problem
(1). In particular, we are able to treat both the case when all points (u, 0), with
0 < u < 1, are exit points and when they are all entrance points for the plane
vector field (u, v)→ (v, h(u, v)).

Theorem 4.3. Given the continuous function h : R2 → R satisfying h(0, 0) =
h(1, 0) = 0, let us consider the boundary value problem (1).

(Existence) Assume there exists a constant L > 0 such that one of the following
pairs of conditions holds

h(u, 0) < 0 for all u ∈ ]0, 1[(19)

h(u, v) ≥ 2
√
Lv − Lu for all (u, v) ∈ [0, 1]× [0,+∞[ ,(20)

or

h(u, 0) > 0 for all u ∈ ]0, 1[(21)

h(u, v) ≤ −2
√
Lv + L(1 − u) for all (u, v) ∈ [0, 1]× [0,+∞[ ,(22)

then problem (1) has a strictly monotone solution.
(Uniqueness) Assume one of the following conditions

h(u, v)
v

monotone non-decreasing in v for each u ∈ ]0, 1[(23)

or
h(u, v)
v

monotone non-increasing in v for each u ∈ ]0, 1[ ,(24)

then (1) has at most one solution, up to a time-shift.
(Non-existence) Assume the existence of constants L > M > 0 and ε > 0 such

that one of the following pairs of conditions holds

h(u, 0) < 0 for all u ∈ ]0, 1[
h(u, v) ≤ 2

√
Mv − Lu for all (u, v) ∈ [0, ε]× [0, ε] ,

(25)

or
h(u, 0) > 0 for all u ∈ ]0, 1[
h(u, v) ≥ −2

√
Mv + L(1− u) for all (u, v) ∈ [1− ε, 1[× ]0, ε] ,

(26)

then (1) does not admit monotone solutions.

Proof. Put

f(t, x) =
h(t, x)
x

for all (t, x) ∈ ]0, 1[× ]0,+∞[ .(27)

Observe that f respectively satisfies condition (4) or (5), with β = 1, according
to the sign of function h.

Applying Lemma 4.2, the proof follows from the results in Section 3.
(Existence) Assume conditions (19) and (20); then f satisfies (9) and the result
follows from Thm. 3.2 i). Assume now, (21) and (22) and define f as in (27); then
f satisfies (16) and the result follows from Thm. 3.4 i).
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(Uniqueness) First notice that, since h does not depend explicitly on t, whenever
u(t) is a solution of (1) and b ∈ R, then also u(t + b) is a solution of (1). On the
other hand, when condition (23) or condition (24) are satisfied, then the function
f(t, ·) defined as in (27) is monotone, of the same type of h; therefore, according
to Thm. 3.6, the corresponding first order problem is at most uniquely solvable,
hence two solutions of (1) may only differ for a time-shift.
(Non-existence) Under condition (25) the result follows from Thm. 3.2 ii) while
under condition (26) it follows from Thm. 3.4 ii).

Remark 4.4. Notice that the existence result in Thm. 4.3 can be obtained also
under one-side growth conditions of non-linear type. More precisely, it continues
to hold even if one weakens conditions (20) and (22) by assuming the existence of
a constant β > 0 such that

(20)′ h(u, v) ≥ 2
√
Lvβ − Luvβ−1 for all (u, v) ∈ [0, 1]× ]0,+∞[

and, respectively,

(22)′ h(u, v) ≤ −2
√
Lvβ+L(1−u)vβ−1 for all (u, v) ∈ [0, 1]× ]0,+∞[.

In fact, it suffices to apply Thms. 3.2, 3.4 to the function f(t, x) =
h(t, x)
xβ

.
Non-existence conditions (25), (26) can be weakened in a similar way.

5. The non-autonomous case

Given a continuous function h : R3 → R, we are now interested in discussing
the non-autonomous boundary value problem{

u′′ = h(t, u, u′)
u(−∞) = 0 , u(+∞) = 1 .(28)

By using the existence results provided in the previous section for the au-
tonomous case, we are now able to obtain the following existence and multiplicity
result for problem (28).

Theorem 5.1. Assume that there exist a constant L > 0 and two continuous
functions h1, h2 : R2 → R satisfying hi(0, 0) = hi(1, 0) = 0 for i = 1, 2 and such
that

2
√
Lv − Lu ≤ h1(u, v) ≤ h(t, u, v) ≤ h2(u, v)(29)

for all (t, u, v) ∈ R× [0, 1]× [0,+∞[

h2(u, 0) < 0 for all u ∈ ]0, 1[ .(30)

Moreover, suppose that

h(t, u, v)
v

monotone non-decreasing in v for each (t, u) ∈ R× ]0, 1[ .(31)

Then, problem (28) has a one-parameter family of distinct monotone solutions.
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Proof. As a consequence of Thm. 3.2, it is easy to see that both the first order
singular problems{

ż = h1(u,z)
z

z(0+) = z(1−) = 0

{
ż = h2(u,z)

z
z(0+) = z(1−) = 0

(32)

are solvable. Let η1(u), η2(u) be two respective solutions of such problems.
For each u ∈ ]0, 1[, let us put

m(u) = min{η1(u), η2(u)}, M (u) = max{η1(u), η2(u)}
and denote by D the set of functions g ∈ C([0, 1]) satisfying

m(u) ≤ g(u) ≤M (u) for all u ∈ ]0, 1[ .

Of course, each g ∈D satisfies g(0) = g(1) = 0.
Let us fix t0 ∈ R and u0 ∈ ]0, 1[. For every g ∈ D let Fg : ]0, 1[ → R be the

integral function

Fg(u) =
∫ u

u0

1
g(s)

ds+ t0 .

Since Ḟg(u) = 1
g(u)

> 0, Fg is invertible. Denoted by ]t1, t2[ = Fg(]0, 1[), let
wg : ]t1, t2[ → ]0, 1[ be the inverse function of Fg, where t1, t2 ∈ R ∪ {±∞}. Of
course, wg is increasing with lim

t→t+1
wg(t) = 0 and lim

t→t−2
wg(t) = 1. Hence, if t1 > −∞

and/or t2 < +∞, we can continue the function wg by putting wg(t) = 0 for t ≤ t1
and wg(t) = 1 for t ≥ t2. In this way, we have wg ∈ C1(R), in fact,

lim
t→t+1

w′g(t) = lim
u→0+

g(u) = 0, and lim
t→t−2

w′g(t) = lim
u→1−

g(u) = 0 .(33)

Moreover, wg(t0) = u0 and w′g(t) > 0 if and only if wg(t) ∈ ]0, 1[.
Define now

hg(u, v) = h(Fg(u), u, v) for all (u, v) ∈ ]0, 1[× R .(34)

For each g ∈D, the corresponding first order boundary value problem

(Pg)
{

ż = hg(u,z)
z

z(0+) = z(1−) = 0

has a unique solution sg ∈D. In fact, according to (29) and (34) we obtain

hg(u, v)
v

≥ 2
√
L− Lu

v
for all u ∈ ]0, 1[ and v > 0 .

In addition (30) implies hg(u, 0) ≤ h2(u, 0) < 0 for all u ∈ ]0, 1[. Hence all
the assumptions of Thm. 3.2-i) are satisfied and (Pg) has a solution sg . As a
consequence of (31), the function hg(u,v)

v
is monotone non-decreasing, with respect

to v, for all u ∈ ]0, 1[; hence also Thm. 3.6 may be applied and sg is the unique
trajectory satisfying (Pg).

Observe now that according to condition (29) we obtain

η̇1(u) ≤ hg(u, η1(u))
η1(u)

for all u ∈ ]0, 1[
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and

η̇2(u) ≥ hg(u, η2(u))
η2(u)

for u ∈ ]0, 1[ ,

that is η1 is a lower solution on all ]0, 1[ and η2 is an upper solution on ]0, 1[ for
the equation in (Pg). Thus, by applying Thm. 2.1 we deduce that sg ∈ D for
every g ∈D.

Hence, we can define the map T : g 7→ sg from D into itself. Notice that if g∗

is a fixed point for T , then the inverse function w∗ of Fg∗ is a solution of problem
(28). In fact, put t = Fg∗(u), we have u = w∗(t), hence u′(t) = w′∗(t) = g∗(u(t)).
Therefore,

w′′∗ (t) = ġ∗(u)u′(t) =
h(Fg∗(u), u, g∗(u))

g∗(u)
u′(t) = h(t, w∗(t), w′∗(t))(35)

whenever w′∗(t) ∈ ]0, 1[. Moreover, put ]t1, t2[ = Fg∗(]0, 1[), from (35), (33) and
(29) it follows that

lim
t→t+1

w′′∗ (t) = h(t1, 0, 0) = 0, and lim
t→t−2

w′′∗ (t) = h(t2, 0, 0) = 0 ,

hence w∗ ∈ C2(R) and solves problem (28).
In addition, w∗(t0) = u0 and since h is not autonomous, if we change the choice

of u0 ∈ ]0, 1[, keeping t0 fixed, we obtain a different solution. In other words, we
succeed in getting a one-parameter family of distinct solutions of (28).

In view of what we just observed, the theorem is proved if we show that the map
T from D into itself admits a fixed point. Since the set D is convex and closed
in the C([0, 1])-norm, the assertion then follows from the next two propositions
which show that the map T satisfies all the assumptions of Shauder-Tychonoff
fixed point theorem.

Proposition 5.2. The set T (D) endowed with the C([0, 1])-norm, is relatively
compact.

Proof. According to Ascoli’s theorem, T (D) is relatively compact if and only if
it is bounded and equicontinuous in each u ∈ [0, 1]. Of course, since T (D) ⊂ D,
then it is bounded.

Let us prove now that T (D) is also equicontinuous in each point u. If u = 0 or
u = 1, then the equicontinuity directly follows from the continuity of the function
M . Otherwise, for all u ∈ ]0, 1[ and any sg ∈ T (D) it holds

ṡg(u) =
hg(u, sg(u))

sg(u)

with hg defined as in (34). Hence, by (29) we have

2
√
L− L

sg(u)
≤ ṡg(u) ≤ h2(u, sg(u))

sg(u)
, for u ∈ ]0, 1[ .

Fixed a compact interval [a, b] ⊂ ]0, 1[, since min
u∈[a,b]

sg(u) > 0, it is then easy

to show that also the set {ṡg : g ∈ D} is bounded in the space C([a, b]) and this
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implies the equicontinuity of T (D) in each u ∈ [a, b]. The assertion then follows
from the arbitrariness of [a, b] ⊂ ]0, 1[.

Proposition 5.3. The operator T from D into itself is continuous in the C([0, 1])-
norm.

Proof. Let (gn)n be a sequence in D converging to g ∈ D in the C([0, 1])-norm,
i.e. uniformly on [0, 1]. Introduce as previously the functions Fgn and Fg defined
for all u ∈ ]0, 1[.
For any (u, v) ∈ ]0, 1[× ]0,+∞[, denote by

hn(u, v) = h(Fgn(u), u, v) and h0(u, v) = h(Fg(u), u, v) .

First we prove that (Fgn)n uniformly converges to F on any compact [a, b] ⊂
]0, 1[. Indeed, let a1 = min{a, u0}, b1 = max{b, u0} and put µ = min

a1≤u≤b1
m(u); of

course µ > 0. For all u ∈ [a1, b1] it holds gn(u) ≥ µ for each n and then also
g(u) ≥ µ. Moreover, one has

|Fgn(u)− F (u)| =
∣∣∣∣∫ u

u0

{
1

gn(s)
− 1
g(s)

}
ds

∣∣∣∣ ≤ (b1 − a1)
sup

a1≤ξ≤b1
|g(ξ)− gn(ξ)|

µ2

and the conclusion comes from the convergence assumption of the sequence (gn)n.
Taking account of the uniform convergence of (Fgn)n on compact subsets of ]0, 1[
and the continuity of h(t, u, v) on all R3, it is easy to show that hn(u, v) uniformly
converges to h0(u, v) on [a, b]× R for every compact [a, b]⊂ ]0, 1[.

Put sgn = T (gn) and sg = T (g). As it is well-known, the continuity of T is
equivalent to the convergence of (sgn)n to sg in the C([0, 1])-norm.

Assume by contradiction that this is false. Then it is possible to find a sub-
sequence, again simply denoted by (sgn)n, which does not converge to sg in the
C([0, 1])-norm. This is the same as assuming the existence of a constant ε > 0 and
of a sequence (tn)n of points in ]0, 1[ satisfying

|sgn(tn)− sg(tn)| > ε for all n ∈ N .(36)

On the other hand, by Proposition 5.2 the set (sgn)n is relatively compact, then
it is possible to extract a subsequence (sgnk )k uniformly converging to a function
s ∈D on [0, 1]. Since

ṡgn(u) =
hn(u, sgn(u))

sgn(u)
for each u ∈ ]0, 1[ ,

by virtue of the uniform convergence of (hn(u, v))n on [a, b]× R for each [a, b] ⊂
]0, 1[, we get

ṡ(u) =
h0(u, s(u))

s(u)
for every u ∈ ]0, 1[ .

Moreover, since m(u) ≤ sgnk (u) ≤ M (u) for all u ∈ ]0, 1[ and k ∈ N , by passing
to the limit when k→ +∞, we obtain

m(u) ≤ s(u) ≤M (u) for any u ∈ ]0, 1[ .
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Hence s is a solution of (Pg) and since such a problem is uniquely solvable, it holds
s = sg, in contradiction with (36).

Remark 5.4. According to Thm. 4.3, we get the solvability of problem (28) also
when conditions (29) and (30) are respectively replaced by the following ones

h1(u, v) ≤ h(t, u, v) ≤ h2(u, v) ≤ −
√
Lv + L(1− u)

for all (t, u, v) ∈ R× ]0, 1[× ]0,+∞[

h1(u, 0) > 0 for all u ∈ ]0, 1[ .

and instead of monotonicity condition (31) we require the reversed one. Moreover,
analogous considerations to those in Remark 4.4 hold also in this case.

Remark 5.5. Under the additional assumption that

hi(u, v)
v

is monotone non-decreasing in v for all u ∈ ]0, 1[ , i = 1, 2

and by means of Thm. 3.6 it is easy to see that both problems in (32) are uniquely
solvable, that is the functions η1 and η2 defined in the proof of Thm. 5.1 are unique.
Moreover, it is easy to check that the following relation holds between them

η2(u) ≤ η1(u) for all u ∈ [0, 1] .
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