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THE CANONICAL TENSOR FIELDS

OF TYPE (1, 1) ON (Jr(⊙2T ∗))∗

PAWE L MICHALEC

Abstract. We prove that every natural affinor on (Jr(⊙2T ∗))∗(M) is pro-

portional to the identity affinor if dimM ≥ 3.

0. Introduction

For every n-dimensional manifold M we have the vector bundle

Jr(⊙2T ∗)(M) = {jr
xτ |τ is a symmetric tensor field type (0, 2) onM, x ∈ M}.

Every local diffeomorphism ϕ : M → N between n-manifolds gives a vector
bundle homomorphism Jr(⊙2T ∗)(ϕ) : Jr(⊙2T ∗)(M) → Jr(⊙2T ∗)(N), jr

xτ →
jr
ϕ(x)(ϕ∗τ). Functor Jr(⊙2T ∗) : Mfn → VB is a vector natural bundle over n-ma-

nifolds in the sense of [5]. Let (Jr(⊙2T ∗))∗ : Mfn → VB be the dual vector bun-
dle, (Jr(⊙2T ∗))∗(M) = (Jr(⊙2T ∗)(M))∗, (Jr(⊙2T ∗))∗(ϕ) = (Jr(⊙2T ∗)(ϕ−1))∗

for M and ϕ as above.
An affinor on a manifold M is a tensor field of type (1, 1) on M .
A natural affinor Q on (Jr(⊙2T ∗))∗ is a system of affinors

Q : T (Jr(⊙2T ∗))∗(M) → T (Jr(⊙2T ∗))∗(M)

on (Jr(⊙2T ∗))∗(M) for every n-manifold M satisfying the naturality condition
T (Jr(⊙2T ∗))∗(ϕ) ◦ Q = Q ◦ T (Jr(⊙2T ∗))∗(ϕ) for every local diffeomorphism ϕ :
M → N between n-manifolds.

In this paper we prove, that every natural affinor Q on (Jr(⊙2T ∗))∗ over n-
manifolds is proportional to the identity affinor if n ≥ 3.

The proof of the classification theorem is based on the method from paper [7],

where there are determined the natural affinors on (Jr(
∧2

T ∗))∗. However the
proof is different, because the tensor field dx1 ⊙dx1 on Rn is non-zero, in contrast
to dx1 ∧ dx1.
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Natural affinors on some natural bundle F can be used to study torsions [Q, Γ]
of a connection Γ of F . That is why, the natural affinors have been study in many
papers, [1] . . . [11], e.t.c.

The usual coordinates on Rn are denoted by xi. The canonical vector fields on
Rn are denoted by ∂i = ∂

∂xi .
All manifolds are assumed to be finite dimensional and smooth, i.e. of class

C∞. Mappings between manifolds are assumed to be smooth.

1. The linear natural transformations T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗

A natural transformation T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗ over n-manifolds is a
system of fibred maps

A : T (Jr(⊙2T ∗))∗(M) → (Jr(⊙2T ∗))∗(M)

over idM for every n-manifold M such that

(Jr(⊙2T ∗))∗(f) ◦ A = A ◦ T (Jr(⊙2T ∗))∗(f)

for every local diffeomorphism f : M → N between n-manifolds.
A natural transformation A : T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗ is called linear

if A gives a linear map Ty(J
r(⊙2T ∗))∗(M) → ((Jr(⊙2T ∗))∗(M))x for any y ∈

((Jr(⊙2T ∗))∗(M))x, x ∈ M .

Theorem 1. If n ≥ 3 and r are natural numbers, then every linear natural trans-

formation A : T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗ over n-manifolds is equal to 0.

The proof of Theorem 1 will occupy Sections 2 – 6.

2. The reducibility propositions

Every element from the fibre
(

(Jr(⊙2T ∗))∗(Rn)
)

0
is a linear combination of

all elements (jr
0(xα dxi ⊙ dxj))∗, where α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j =

1, . . . , n. The elements (jr
0(xα dxi ⊙ dxj))∗ are dual basis to the basis jr

0(xα dxi ⊙
dxj) of

(

Jr(⊙2T ∗)(Rn)
)

0
.

Consider a linear natural transformation A : T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗.

Lemma 1. Suppose A satisfies

〈A(u), jr
0(xα dxi ⊙ dxj)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
, α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j =

1, . . . , n. Then A = 0.

Proof. If assumptions of Lemma 1 meets, then A(u) = 0 for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Let w ∈ (T (Jr(⊙2T ∗))∗(M))x, x ∈ M . There exists a

chart ϕ : M ⊃ U → Rn such that ϕ(x) = 0 and U is open subset including x.
Since A is invariant with respect to ϕ, we have A(w) = T (Jr(⊙2T ∗))∗ (ϕ−1)(A(u)),
where u = T (Jr(⊙2T ∗))∗(ϕ)(w) ∈

(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Then A(w) = 0, be-

cause A(u) = 0. That is why A = 0. The lemma is proved. �
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Lemma 2. Suppose that

〈A(u), jr
0(xα dx1 ⊙ dx1)〉 = 〈A(u), jr

0(xα dx1 ⊙ dx2)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
, α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j =

1, . . . , n. Then A = 0.

Proof. Let u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
, α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j =

1, . . . , n. It is enough to prove, that 〈A(u), jr
0(xα dxi ⊙ dxj)〉 = 0.

Consider two cases

a) i = j. Let ϕ : Rn → Rn be a diffeomorphism transforming xi into x1 and
xα into xα̃ for some α̃ ∈ (N ∪ {0})n, |α̃| ≤ r. From the invariance of A with
respect to ϕ and the assumption of Lemma 2, we have 〈A(u), jr

0(xα dxi ⊙ dxi)〉 =
〈A(ũ), jr

0(xα̃ dx1 ⊙ dx1)〉 = 0, where ũ = T (Jr(⊙2T ∗))∗(ϕ)(u)

b) i 6= j. Let ϕ : Rn → Rn be a diffeomorphism transforming xi in x1, xj in
x2 and xα in xα̃ for some α̃ ∈ (N ∪ {0})n, |α̃| ≤ r. From invariance of A with
respect to ϕ and the assumption of Lemma 2, we have 〈A(u), jr

0(xα dxi ⊙ dxj)〉 =
〈A(ũ), jr

0(xα̃ dx1 ⊙ dx2)〉 = 0, where ũ = T (Jr(⊙2T ∗))∗(ϕ)(u). �

Lemma 3. Suppose A satisfies

〈A(u), jr
0(dx1 ⊙ dx1)〉 = 〈A(u), jr

0(x3 dx1 ⊙ dx1)〉

= 〈A(u), jr
0(dx1 ⊙ dx2)〉 = 〈A(u), jr

0(x3 dx1 ⊙ dx2)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
, α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j =

1, . . . , n. Then A = 0.

Proof. Let α ∈ (N ∪ {0})n, |α| ≤ r, u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
, α 6= e3 =

(0, 0, 1, 0, . . . , 0) ∈ (N ∪ {0})n.

On the strength of Lemma 2 it is enough to prove that

〈A(u), jr
0(xα dx1 ⊙ dx1)〉 = 〈A(u), jr

0(xα dx1 ⊙ dx2)〉 = 0.

We can set that α 6= 0. Let ϕ : Rn → Rn be a diffeomorphism transforming x1 in
x1, x2 in x2 and x3 + xα in x3. From the invariance of A with respect to ϕ and
the assumption of Lemma 3, we have

〈A(u), jr
0(xα dx1 ⊙ dx1)〉 = 〈A(u), jr

0(x3 dx1 ⊙ dx1)〉 + 〈A(u), jr
0(xα dx1 ⊙ dx1)〉

= 〈A(u), jr
0((x3 + xα) dx1 ⊙ dx1)〉

= 〈A(ũ), jr
0(x3 dx1 ⊙ dx1)〉 = 0

where ũ = T (Jr(⊙2T ∗))∗(ϕ)(u).
Similarly 〈A(u), jr

0(xα dx1 ⊙ dx2)〉 = 0. �

Lemma 4. Suppose that

〈A(u), dx1 ⊙ dx2〉 = 〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Then A = 0.
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Proof. By Lemma 3 it is sufficient to show that

〈A(u), dx1 ⊙ dx1〉 = 〈A(u), jr
0(x3 dx1 ⊙ dx1)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
.

Let u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Consider a diffeomorphism ϕ : Rn → Rn

transforming x1 in x1, x2 in x1 + x2 and x3 in x3. Then from the invariance of A

with respect to ϕ and the assumption of lemma, we have

0 = 〈A(ũ), jr
0(dx1 ⊙ dx2)〉

= 〈A(u), jr
0(dx1 ⊙ (dx1 + dx2))〉

= 〈A(u), jr
0(dx1 ⊙ dx1)〉 + 〈A(u), jr

0(dx1 ⊙ dx2)〉 ,

where ũ = T (Jr(⊙2T ∗))∗(ϕ−1)(u). So 〈A(u), jr
0(dx1 ⊙ dx1)〉 = 0.

Similarly 〈A(u), jr
0(x3 dx1 ⊙ dx1)〉 = 0. �

Using Lemma 4 we see that Theorem 1 will be proved after proving the following
two propositions.

Proposition 1. We have

〈A(u), jr
0(dx1 ⊙ dx2)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
.

Proposition 2. We have

〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 = 0

for every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
.

3. Some notations

We have the obvious trivialization
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
∼= Rn ×

(

(Jr(⊙2T ∗))∗(Rn)
)

0
×

(

(Jr(⊙2T ∗))∗(Rn)
)

0

given by (u1, u2, u3) → (ũ1)
C(u2) + d

dt |t=0
(u2 + tu3), where ũ1 is the constant

vector field on Rn such that ũ1|0
= u1 ∈ Rn ∼= T0R

n and (ũ1)
C is the complete

lift of ũ1 to (Jr(⊙2T ∗))∗.
Each uτ ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
, τ = 2, 3 can be expressed in the form

uτ =
∑

uτ,α,i,j(j
r
0(xα dxi ⊙ dxj))∗ ,

where the sum is over all α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j = 1, . . . , n.
It defines uτ,α,i,j for each uτ as above.

4. Proof of Proposition 1

We start with the following lemma.

Lemma 5. There exists the number λ ∈ R such that

〈A(u), jr
0( dx1 ⊙ dx2)〉 = λu3,(0),1,2

for every u = (u1, u2, u3) ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
.
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Proof. Let Φ : Rn ×
(

(Jr(⊙2T ∗))∗(Rn)
)

0
×

(

(Jr(⊙2T ∗))∗(Rn)
)

0
→ R be such

that

Φ(u1, u2, u3) = 〈A(u), jr
0( dx1 ⊙ dx2)〉 ,

where u = (u1, u2, u3), u1 = (uι
1) ∈ Rn, ι = 1, . . . , n, u2 ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
,

u3 ∈
(

(Jr(⊙2T ∗))∗(Rn)
)

0
.

The invariance of A with respect to the homotheties at = (t1x1, . . . , tnxn) for
t = (t1, . . . , tn) ∈ Rn

+ gives the homogeneous condition

Φ(T (Jr(⊙2T ∗))∗(at)(u)) = t1t2Φ(u) .

Then from the homogeneous function theorem, [5], it follows that Φ(u) is the linear
combination of monomials in uι

1, uτ,α,i,j of weight t1t2. Moreover Φ(u1, u2, u3) is
linear in u1, u3 for u2, since A is linear. It implies the lemma. �

In particular from Lemma 5 it follows that

(∗) 〈A(∂C
1|w), jr

0( dx1 ⊙ dx2)〉 = 〈A(e1, w, 0), jr
0( dx1 ⊙ dx2)〉 = 0

for every w ∈
(

(Jr(⊙2T ∗))∗(Rn)
)

0
, where ∂1 = ∂

∂x1 and ()C is the complete lift

to (Jr(⊙2T ∗))∗.
We are now in position to prove Proposition 1. Let λ be from Lemma 5. It is

enough to prove that λ is equal to 0.
We see that λ = 〈A(0, 0, (jr

0( dx1 ⊙ dx2))∗), jr
0( dx1 ⊙ dx2)〉.

We have

0 = 〈A((x1)r+1∂1)
C
|w, jr

0( dx1 ⊙ dx2)〉

= (r + 1)〈A(0, w, (jr
0( dx1 ⊙ dx2))∗ + . . . ), jr

0( dx1 ⊙ dx2)〉(∗∗)

= (r + 1)〈A(0, 0, (jr
0( dx1 ⊙ dx2))∗), jr

0( dx1 ⊙ dx2)〉,

where w = (jr
0((x1)r dx1 ⊙ dx2))∗ and the dots is a linear combination of the

(jr
0(xα dxi ⊙ dxj))∗ with (jr

0(xα dxi ⊙ dxj))∗ 6= (jr
0( dx1 ⊙ dx2))∗.

It remains to explain (∗∗).
At first we show the second equality in (∗∗). Let ϕt be the flow of (x1)r+1∂1.

We have the following sequences of equalities

〈(x1)r+1∂1)
C
|w, jr

0( dx1 ⊙ dx2)〉 = 〈
d

dt |t=0
(Jr(⊙2T ∗))∗0(ϕt)(w), jr

0( dx1 ⊙ dx2)〉

=
d

dt |t=0
〈(Jr(⊙2T ∗))∗0(ϕt)(w), jr

0( dx1 ⊙ dx2)〉

=
d

dt |t=0
〈w, jr

0((ϕ−t)∗ dx1 ⊙ dx2)〉

= 〈w, jr
0(

d

dt t=0
(ϕ−t)∗ dx1 ⊙ dx2)〉

= 〈w, jr
0(L(x1)r+1∂1

( dx1 ⊙ dx2))〉

= (r + 1)〈w, jr
0((x1)r dx1 ⊙ dx2)〉 = r + 1 .
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Then ((x1)r+1∂1)
C
|w = (r + 1)(jr

0( dx1 ⊙ dx2))∗ + . . . under the canonical iso-

morphism Vw

(

(Jr(⊙2T ∗))∗(Rn)
)

∼=
(

(Jr(⊙2T ∗))∗(Rn)
)

0
. So we have the second

equality in (∗∗).
The last equality in (∗∗) is clear because of Lemma 5.
We can prove the first equality in (∗∗) as follows. Vector fields ∂1+(x1)r+1∂1 and

∂1 have the same r-jets at 0 ∈ Rn. Then, by [12], there exists a diffeomorphism
ϕ : Rn → Rn such that jr+1

0 ϕ = id and ϕ∗∂1 = ∂1 + (x1)r+1∂1 in a certain
neighborhood of 0. Obviously, ϕ preserves jr

0( dx1 ⊙ dx2) that is jr
0( dx1 ⊙ dx2) =

Jr
0 (⊙2T ∗)(ϕ)

(

jr
0( dx1⊙dx2)

)

because jr+1
0 ϕ = id. Then, using the invariance of A

with respect to ϕ, from (∗) it follows that 〈A(∂1 + (x1)r+1∂1)
C
|w, jr

0( dx1 ⊙ dx2)〉 =

〈A(∂C
1|w), jr

0( dx1 ⊙ dx2)〉 = 0 for every w ∈
(

(Jr(⊙2T ∗))∗(Rn)
)

0
. Now, using the

linearity of A, we end the proof of the first equality of (∗∗).
The proof of Proposition 1 is complete. �

5. Proof of Proposition 2

The proof of Proposition 2 is similar to the proof of Proposition 1. We start
with the following lemma.

Lemma 6. For every u = (u1, u2, u3) ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
we have

〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 = au1

1u2,(0),2,3 + bu2
1u2,(0),1,3 + cu3

1u2,(0),1,2

+ eu3,e2,2,3 + fu3,e2,1,3 + gu3,e3,1,2

where ei = (0, 0, . . . , 1, 0, . . . , 0) ∈ (N ∪ {0})n, 1 in i-position.

Proof. We will use the similar arguments as in the proof of Lemma 5.
Let Φ : Rn ×

(

(Jr(⊙2T ∗))∗(Rn)
)

0
×

(

(Jr(⊙2T ∗))∗(Rn)
)

0
→ R such that

Φ(u1, u2, u3) = 〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 ,

u = (u1, u2, u3), u1 = (uι
1) ∈ Rn, ι = 1, . . . , n, u2 ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
, u3 ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
. The invariance of A with respect to the homotheties at =

(t1x1, . . . , tnxn) for t = (t1, . . . , tn) ∈ Rn
+ gives the homogeneous condition

Φ(T (Jr(⊙2T ∗))∗(at)(u)) = t1t2t3Φ(u) .

Then from the homogeneous function theorem, [5], it follows that Φ(u) is the linear
combination of monomials in uι

1, uτ,α,i,j of weight t1t2t3. Moreover Φ(u1, u2, u3)
is linear in u1 and u3 for u2, since A is linear. It implies the lemma. �

To prove Proposition 2 we have to show that a = b = c = e = f = g = 0. We
need the following lemmas.

Lemma 7. For every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
we have

〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 = −〈A(u′), jr

0(x3 dx1 ⊙ dx2)〉 ,

where u′ is the image of u by (x2, x3, x1) × idRn−3.
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Proof. Consider u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Let ũ be the image of u by ϕ =

(x1 + x1x3, x2, . . . , xn). From Proposition 1 we have

〈A(ũ), jr
0( dx1 ⊙ dx2)〉 = 〈A(u), jr

0( dx1 ⊙ dx2)〉 = 0 .

Using the invariance of A with respect to ϕ−1 we have

0 = 〈A(u), jr
0( dx1 ⊙ dx2)〉

= 〈A(u), jr
0(x3 dx1 ⊙ dx2)〉 + 〈A(u), jr

0(x1 dx2 ⊙ dx3)〉

because ϕ−1 preserves A, it transforms ũ in u and jr
0( dx1 ⊙ dx2) in jr

0( dx1 ⊙
dx2)+ jr

0(x3 dx1⊙dx2)+ jr
0(x1 dx2⊙dx3). So, 〈A(u), jr

0(x3 dx1⊙dx2)〉 = −〈A(u),
jr
0(x1dx2 ⊙ dx3)〉. Hence we have the lemma because (x2, x3, x1) × Rn−3 sends u

in u′ and jr
0(x1 dx2 ⊙ dx3) in jr

0(x3 dx1 ⊙ dx2). �

Lemma 8. We have g = f = e = 0.

Proof. Obviously

g = 〈A(0, 0, (jr
0(x3 dx1 ⊙ dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉

by Lemma 6. Similarly

f = 〈A(0, 0, (jr
0(x2 dx1 ⊙ dx3))∗), jr

0(x3 dx1 ⊙ dx2)〉 ,

e = 〈A(0, 0, (jr
0(x1 dx2 ⊙ dx3))∗), jr

0(x3 dx1 ⊙ dx2)〉 .

So, to prove Lemma 8 we have to show

〈A(0, 0,(jr
0(x3 dx1 ⊙ dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉

= 〈A(0, 0, (jr
0(x2 dx1 ⊙ dx3))∗), jr

0(x3 dx1 ⊙ dx2)〉

= 〈A(0, 0, (jr
0(x1 dx2 ⊙ dx3))∗), jr

0(x3 dx1 ⊙ dx2)〉 = 0 .

We can see that (x2, x3, x1)× idRn−3 sends (jr
0(x3 dx1 ⊙ dx2))∗ in (jr

0(x2 dx1 ⊙
dx3))∗ and (jr

0(x2 dx1 ⊙ dx3))∗ in (jr
0(x1 dx2 ⊙ dx3))∗. Then using Lemma 7 it is

enough to verify that 〈A(0, 0, (jr
0(x3 dx1 ⊙ dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉 = 0. So, it is
enough to prove the sequence of equalities:

0 = 〈A((x1)r∂1)
C
|w, jr

0(x3 dx1 ⊙ dx2)〉

= r〈A(0, w, (jr
0 (x3 dx1 ⊙ dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉(∗ ∗ ∗)

= r〈A(0, 0, (jr
0(x3 dx1 ⊙ dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉 ,

where w = (jr
0(x3(x1)r−1 dx1 ⊙ dx2))∗ ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
.

The third equality in (∗ ∗ ∗) is clear on the basis of Lemma 6.
Let us explain the first equality in (∗ ∗ ∗). Vector fields ∂1 + (x1)r∂1 and

∂1 have the same (r − 1)-jets at 0 ∈ Rn. Then, by [12] there exist a diffeo-
morphism ϕ = ϕ1 × idRn−1 : Rn = R × Rn−1 → Rn = R × Rn−1 such
that ϕ1 : R → R, jr

0ϕ = id and ϕ∗∂1 = ∂1 + (x1)r∂1 in a certain neigh-
borhood of 0 ∈ Rn. Let ϕ−1 sends ω in ω̃. Then ω̃ is a linear combination
of the elements (jr

0(xα dxi ⊙ dxj))∗ ∈
(

(Jr(⊙2T ∗))∗(Rn)
)

0
for r ≥ |α| ≥ 1,

i, j = 1, . . . n, i ≤ j. (For 〈ω̃, jr
0( dxi ⊙dxj)〉 = 〈ω, jr

0(d(xi ◦ϕ−1)⊙d(xi ◦ϕ−1))〉 =
0.) Then, by Lemma 6, 〈A(∂C

1|ω̃), jr
0(x3 dx1 ⊙ dx2)〉 = 〈A(e1, ω̃, 0), jr

0(x3 dx1 ⊙
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dx2)〉 = 0 (as jr
0ϕ = id). Then from naturality of A with respect to ϕ we obtain

〈A((∂1 +(x1)r∂1)
C
|ω), jr

0(x3 dx1 ⊙dx2)〉 = 0. Now, using the linearity of A we have

〈A(((x1)r∂1)
C
|ω), jr

0(x3 dx1 ⊙ dx2)〉 = 0. This ends the proof of the first equality in

(∗ ∗ ∗).
Let us explain the second equality in (∗ ∗ ∗). Analysing the flow of vector field

(x1)r∂1 and taking ω = (jr
0(x3(x1)r−1 dx1⊙dx2))∗ ∈

(

(Jr(⊙2T ∗))∗(Rn)
)

0
we have

(similarly as in the justification of the second equality of (∗∗))

〈((x1)r∂1)
C
|ω, jr

0(α dxi ⊙ dxj)〉 = 〈ω, jr
0(L(x1)r∂1(xαdxi ⊙ dxj))〉

= 〈ω, α1j
r
0((x1)r−1xα dxi ⊙ dxj)〉

+ 〈ω, jr
0(xαδi

1r(x
1)r−1 dx1 ⊙ dxj)〉 ,

where δi
1 is the Kronecker delta.

Since ω = (jr
0(x3(x1)r−1 dx1 ⊙ dx2))∗ the last sum is equal to r if α = e3 and

(i, j) = (1, 2), and 0 in the other cases. Then (x1)r∂1)
C
|ω = r(jr

0 (x3 dx1 ⊙ dx2))∗.

This ends the proof of the second equality of (∗ ∗ ∗).
The proof of Lemma 8 is complete. �

Lemma 9. We have a = b = c = 0.

Proof. Using Lemma 7 (similarly as for g = f = e) it is sufficient to prove that
c = 0, i.e. 〈A(∂C

3|(jr

0
( dx1⊙dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉 = 0 .

But we have

0 = 〈A(∂C
3|(jr

0
((x1)r dx1⊙dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉

= 〈A(∂C
3|(jr

0
( dx1⊙dx2))∗+...), jr

0(x3 dx1 ⊙ dx2)〉(∗ ∗ ∗∗)

= 〈A(∂C
3|(jr

0
( dx1⊙dx2))∗), jr

0(x3 dx1 ⊙ dx2)〉 ,

where the dots is the linear combination of elements (jr
0(xα dxi⊙dxj))∗ 6= (jr

0( dx1⊙
dx2))∗, α ∈ (N ∪ {0})n, |α| ≤ r, i ≤ j, i, j = 1, . . . , n.

Equalities first and third are clear because of Lemma 6.
Let us explain the second equality. Consider the local diffeomorphism ϕ =

(x1 + 1
r+1(x1)r+1, x2, . . . , xn)−1. We see that ϕ−1 preserves jr

0(x3 dx1 ⊙ dx2) and

∂3. Moreover ϕ−1 sends (jr
0((x1)r dx1 ⊙ dx2))∗ in (jr

0( dx1 ⊙ dx2))∗ + . . . , where
the dots is as above. Now, by the invariance of A with respect to ϕ−1 we get the
second equality in(∗ ∗ ∗ ∗).
The proof of Lemma 9 is complete. �

The proof of Proposition 2 is complete. �

The proof of Theorem 1 is complete. �

7. The natural affinors on (Jr(⊙2T ∗))∗ of vertical type

A natural affinor Q : T (Jr(⊙2T ∗))∗ → T (Jr(⊙2T ∗))∗ on (Jr(⊙2T ∗))∗ is of
vertical type if the image of Q is in the vertical space V (Jr(⊙2T ∗))∗(M) for every
n-manifolds M .
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We have the natural isomorphism

V (Jr(⊙2T ∗))∗(M) ∼= (Jr(⊙2T ∗))∗(M) × (Jr(⊙2T ∗))∗(M)

given by (u, w) = d
dt |t=0

(u + tv), u, v ∈ (Jr(⊙2T ∗))∗x(M), x ∈ M, and the natural

projection pr2 : V (Jr(⊙2T ∗))∗M → (Jr(⊙2T ∗))∗M on the second factor.
Let Q : T (Jr(⊙2T ∗))∗ → T (Jr(⊙2T ∗))∗ on (Jr(⊙2T ∗))∗ be a natural affinor

of vertical type. Composing Q with pr2 we get a natural linear transformation
pr2 ◦Q : T (Jr(⊙2T ∗))∗ → (Jr(⊙2T ∗))∗ over n-manifolds. It is equal to 0 because
of Theorem 1. So, we have the following corollary.

Corollary 1. Let n ≥ 3, r be natural numbers. Every natural affinor Q of vertical

type on (Jr(⊙2T ∗))∗ over n-manifolds is equal to 0.

8. The linear natural transformations T (Jr(⊙2T ∗))∗ → T

Let π be the projection of natural bundle (Jr(⊙2T ∗))∗. Then the tangent
map TπM : T (Jr(⊙2T ∗))∗(M) → TM defines a linear natural transformation
Tπ : T (Jr(⊙2T ∗))∗ → T. ( The definition of a linear natural transformation
T (Jr(⊙2T ∗))∗ → T over n-manifolds is similar to the one in Section 1.)

Theorem 2. Let n and r be natural numbers. Every linear natural transformation

B : T (Jr(⊙2T ∗))∗ → T over n-manifolds is proportional to Tπ.

9. Proof of Theorem 2

Consider a linear natural transformation B : T (Jr(⊙2T ∗))∗ → T . We have

Lemma 10. If 〈B(u), d0x
1〉 = 0 for every u ∈

(

T (Jr(⊙2T ∗))∗(Rn)
)

0
then

B = 0.

Proof. The proof of Lemma 10 is similar to the proofs of Lemmas 1 – 4. From the
invariance of B with respect to the coordinate permutation we see that
〈B(u), d0x

i〉 = 0 for i = 1, . . . , n and u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. So B(u) = 0 for

every u ∈
(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Then using the invariance of B with respect to

the charts we obtain that B = 0. �

Lemma 11. We have 〈B(u), d0x
1〉 = λu1

1 for some λ ∈ R, where u = (u1, u2, u3),
u1 = (uι

1) ∈ Rn, ι = 1, . . . , n, and u2, u3 ∈
(

(Jr(⊙2T ∗))∗(Rn)
)

0
.

Proof. The proof of Lemma 11 is similar to the proof of Lemma 5. �

Lemma 11 shows that 〈(B − λTπ)(u), d0x
1〉 = 0 for every u ∈

(

T (Jr(⊙2T ∗))∗(Rn)
)

0
. Then B − λTπ = 0 by Lemma 10, i.e. B = λTπ.

The proof of Theorem 2 is complete. �
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10. The main result

The main result of the present paper is the following theorem.

Theorem 3. Let n ≥ 3 and r be natural numbers. Every natural affinor Q :
T (Jr(⊙2T ∗))∗ → T (Jr(⊙2T ∗))∗ on (Jr(⊙2T ∗))∗ over n-manifolds is proportional

to the identity affinor.

Proof. The composition Tπ ◦ Q : T (Jr(⊙2T ∗))∗ → T is a linear natural trans-
formation. Hence, by Theorem 2, Tπ ◦ Q = λTπ for some λ ∈ R. Then
Q − λ id : T (Jr(⊙2T ∗))∗ → T (Jr(⊙2T ∗))∗ is a natural affinor of vertical type,
because Tπ ◦ (Q − λ id) = Tπ ◦ Q − λTπ = 0. From Corollary 1 we obtain that
Q − λ id = 0. Thus Q = λ id. The proof of Theorem 3 is complete. �
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