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A SINGULAR VERSION OF LEIGHTON’S COMPARISON

THEOREM FOR FORCED QUASILINEAR

SECOND ORDER DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ, JAROSLAV JAROŠAbstrat. We extend the classical Leighton comparison theorem to a class of
quasilinear forced second order differential equations

(*) (r(t)|x′|α−2x′)′ + c(t)|x|β−2x = f(t) , 1 < α ≤ β, t ∈ I = (a, b) ,

where the endpoints a, b of the interval I are allowed to be singular. Some applica-
tions of this statement in the oscillation theory of (*) are suggested.

1. Introduction

In this paper we deal with oscillatory properties of the quasilinear forced second
order differential equation

(1.1) Lαβ [x] := (r(t)|x
′|α−2x′)′ + c(t)|x|β−2x = f(t) ,

where t ∈ I = (a, b), −∞ ≤ a < b ≤ ∞, r, c, f are real-valued continuous functions
with r(t) > 0, c(t) ≥ 0 for t ∈ I and 1 < α ≤ β are real constants.

The classical Leighton comparison theorem [12] (see also [17]) concerns the pair
of second order Sturm-Liouville equations

(r(t)x′)′ + c(t)x = 0 ,(1.2)

(R(t)y′)′ + C(t)y = 0 ,(1.3)

and reads as follows.
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Proposition 1.1. Suppose that the interval I = [a, b] is compact, the functions
r, R, c, C are continuous on I, r(t) > 0, R(t) > 0 in this interval and there exists
a nontrivial solution ỹ of (1.3) such that ỹ(a) = 0 = ỹ(b). If

∫ b

a

[

(r(t) − R(t))ỹ′2(t)− (c(t)− C(t))ỹ2(t)
]

dt ≤ 0 ,

Then every solution of (1.2) has a zero point in (a, b) or it is a multiple of ỹ.

Since 1962, when the original Leighton theorem was published, this statement
has been extended in various directions, see [9-11,15,16] and the references given
therein. Our investigation is mainly motivated by the papers [2,10]. In the first
paper conjugacy criteria for the half-linear second order equation

(1.4) (r(t)|x′|α−2x′)′ + c(t)|x|α−2x = 0

are established and the second one studies oscillation properties of equation (1.1)
on a compact interval. In our treatment we combine ideas of these two papers
and we prove a Leightone-type comparison theorem for (1.1) where the end points
a, b of the interval I are allowed to be singular. The solution ỹ from the classical
Leighton theorem (i. e., the solution for which ỹ(a) = 0 = ỹ(b)) is replaced by the
principal solution at a and b of a certain half-linear equation. An important role
in the proofs of our results is played by the recently established Picone’s identity
for half-linear equations, see [8].

2. Picone’s identity and principal solution of half-linear equations

Denote, for convenience, ϕ(u) := |u|α−2u and rewrite half-linear equation (1.4)
into the form

(2.1) (r(t)ϕ(x′))′ + c(t)ϕ(x) = 0 .

It is well known that the classical Sturmian oscillation theory extends almost
verbatim to half-linear equation (2.1), see e. g. [1,3,6,13]. In particular, the Riccati-
type equation (related to (2.1) by the substitution w = rϕ(x′)/ϕ(x))

(2.2) w′ + c(t) + (α − 1)r
1

1−α (t)|w|
α

α−1 = 0 ,

and the α degree functional

(2.3) I(y) :=

∫ b

a

[r(t)|y′|α − c(t)|y|α] dt

play the same role as the classical Riccati equation and quadratic functionals in
the linear oscillation theory. The proof of the relationship between (2.1), (2.2) and
(2.3) is based on the recently established Picone’s identity, see [8]. Here we present
this identity in a modified form as used in [10].
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Lemma 2.1. Let x, y, ϕ(y′) ∈ C1(I) and y(t) 6= 0 for t ∈ I. Then
[

r(t)|x|α

ϕ(y)
ϕ(y′)

]′

= r(t)|x′|α −

[

c(t)|y|β−α −
f(t)

ϕ(y)

]

|x|α

− r(t)Pα (x
′, xy′/y) +

|x|α

ϕ(y)
{Lαβ[y]− f(t)} ,

where
Pα(u, v) := |u|α − αuϕ(v) + (α − 1)|v|α ≥ 0

for every u, v ∈ R with equality holding if and only if u = v.

We will need also the following statement proved in [10].

Lemma 2.2. Suppose that the interval I = [a, b] is compact, there exists a non-
trivial piecewise differentiable function y ∈ C[a, b] such that y(a) = 0 = y(b) and

F(y; a, b) :=

∫ b

a

[r(t)|y′|α − Mαβ[c, f ](t)|y|
α] dt ≤ 0 ,

where

(2.4) Mαβ [c, f ](t) := (α − 1)−
α−1

β−1 (β − 1)(β − α)
α−β

β−1 [c(t)]
α−1

β−1 |f(t)|
β−α

β−1

(with tne convention that 00 = 1 in case α = β). Then every solution of (1.1)
defined on [a, b] and satisfying x(t)f(t) ≤ 0 in this interval has a zero in [a, b].

Note that Lemma 2.2. is proved in [10] under the (stronger) assumption y ∈ C1(I),
but the proof directly extends to the case when y ∈ C1(I) only piecewise.
Now recall the concept of the principal solution of half-linear equation (2.1)

as introduced by Mirzov [14]. Suppose that (2.1) is nonoscillatory, then among
all proper solutions of the associated Riccati type equation (2.2) (i. e. solutions
which are extensible up to∞) one can distinguish the so-called eventually minimal
solution w̃, a solution with the property that any other proper solution w satisfies
the inequality w(t) > w̃(t) eventually. The solution x̃ of (2.1) given by the formula

x(t) = exp

{
∫ t

r
1

1−α (s)ϕ−1(w̃(s)) ds

}

, i.e. w̃(t) = r(t)
ϕ(x̃′)

ϕ(x̃)
,

where ϕ−1 is the inverse function of ϕ, is said to be the principal solution (at ∞)
of (2.1). Clearly, the principal solution is determined uniquely up to a multiple
by a nonzero real constant. Observe that if b is a regular point of (2.1) (i. e. the
initial value problem x(b) = x0, r(b)ϕ(x′(b)) = x1 has the unique solution for
any x0, x1 ∈ R) and xb is a solution given by the initial condition xb(b) = 0,
r(b)ϕ(x′

b(b)) 6= 0, then the associated solution wb = rϕ(x′
b)/ϕ(xb) of (2.2) satisfies

wb(b−) = −∞ and wb is minimal solution of (2.2) in a left neighbourhooh of b.
Hence, xb can be regarded as the principal solution at (the regular point) b and
the condition ỹ(a) = 0 = ỹ(b) from Proposition 1.1 can be reformulated “ỹ is the
principal solution at a and b”. From this point of view the main result of our paper
can be regarded as a singular version of Leighton’s comparison theorem. For more
details concerning principal solution of half-linear differential equations see [2, 4,
5, 7].
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3. Singular Leighton’s theorem

The main result of our paper reads as follows.

Theorem 3.1. Suppose that the half-linear equation

(3.1) (R(t)ϕ(y′))′ + C(t)ϕ(y) = 0

is nonoscillatory both at a and b and the principal solutions at a an b of this
equation coincide, denote this solution by ỹ. Further suppose that 0 < r(t) ≤ R(t)
near a and b and

lim sup
t1↓a,t2↑b

{
∫ t2

t1

(r(t) − R(t))|ỹ′|α dt

− inf
s1≤t1,s2≥t2

∫ s2

s1

(Mαβ [c, f ](t)− C(t))|ỹ|α) dt} < 0 .(3.2)

Then every solution of (1.1) satisfying x(t)f(t) ≤ 0 has a zero in I.

Proof. According to Lemma 2.2 it suffices to find a1, b1 ∈ I, a1 < b1, and a
nontrivial piecewise C1 function y such that y(a1) = 0 = y(b1) and

F(y; a1, b1) =

∫ b1

a1

[r(t)|y′|α − Mαβ[c, f ](t)|y|
α] dt ≤ 0.

In our proof we borrow some ideas used in the proof of the conjugacy criterion of
[2].

Let a < a1 < t1 < t2 < b1 < b (these values will be specified later) and let f, g
be the solutions of (3.1) satisfying the boundary conditions

f(a1) = 0 , f(t1) = ỹ(t1) , g(t2) = ỹ(t2) , g(b1) = 0 .

Note that such solutions exist if t1 and t2 are sufficiently close to a and b respec-
tively (due to nonoscillation of (3.1) near a and b and the fact that the solution
space of this equation is homogeneous). Define the function y as follows

y(t) =



























0 t ∈ (a, a1] ,

f(t) t ∈ [a1, t1] ,

ỹ(t) t ∈ [t1, t2] ,

g(t), t ∈ [t2, b1] ,

0 t ∈ [b1, b) .
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Then we have

F(y; a1, b1) =

∫ b1

a1

[r(t)|y′|α − Mαβ [c, f ](t)|y|
α] dt

=

∫ b1

a1

[R(t)|y′|α−C(t)|y|α] dt+

∫ b1

a1

[(r(t)−R(t))|y′|α−(Mαβ[c, f ](t)−C(t))|y|α] dt

=

∫ t1

a1

[R(t)|f ′|α−C(t)|f |α] dt+

∫ t1

a1

[(r(t)−R(t))|f ′|α−(Mαβ[c, f ](t)−C(t))|f |α] dt

+

∫ t2

t1

[R(t)|ỹ′|α−C(t)|ỹ|α] dt+

∫ t2

t1

[(r(t)−R(t))|ỹ′|α−(Mαβ[c, f ](t)−C(t))|ỹ|α] dt

+

∫ b1

t2

[R(t)|g′|α−C(t)|g|α] dt+

∫ b1

t2

[(r(t)−R(t))|g′|α−(Mαβ[c, f ](t)−C(t))|g|α] dt.

Denote by vf , vg and ṽ the solutions of Riccati equation associated with (3.1)

(3.3) v′ + C(t) + (α − 1)R
1

1−α (t)|v|
α

α−1 = 0

generated by f , g and ỹ, respectively, i.e.,

vf =
Rϕ(f ′)

ϕ(f)
, vg =

Rϕ(g′)

ϕ(g)
, ṽ =

Rϕ(ỹ′)

ϕ(ỹ)
.

Then using integration by parts

∫ t1

a1

[R(t)|f ′|α − C(t)|f |α] dt = Rfϕ(f ′)|
t1
a1

−

∫ t1

a1

f [(R(t)ϕ(f ′))′ + C(t)ϕ(f)] dt

= vf |f |
α

∣

∣

t1
a1 ,

similarly,

∫ t2

t1

[R(t)|ỹ′|α − C(t)|ỹ|α] dt = ṽ|ỹ|α
∣

∣

t2
t1 ,

∫ b1

t2

[R(t)|g′|α − C(t)|g|α] dt = vg|g|
α

∣

∣

∣

b1
t2 .

Consequently,

∫ b1

a1

[R(t)|y′|α − C(t)|y|α] dt = vf |f |
α

∣

∣

t1
a1 + ṽ|ỹ|α

∣

∣

t2
t1 + vg|g|

α
∣

∣

∣

b1
t2

= |ỹ(t1)|
α(vf (t1)− ṽ(t1)) + |ỹ(t2)|

α(ṽ(t2)− vg(t2)) .

Next we deal with the integral
∫ t1

a1
(Mαβ [c, f ](t)− C(t)) |f |α dt. The function

f
ỹ is monotonically increasing in (a1, t1) since

f
ỹ (a1) = 0,

f
ỹ (t1) = 1 and

(

f
ỹ

)′

=
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f ′ỹ−fỹ′

ỹ2 6= 0 in (a1, t1). Indeed, if f ′ỹ − f ỹ′ = 0 at some point t̃ ∈ (a1, t1), i.e.
f ′

f (t̃) =
ỹ′

ỹ (t̃) then vf (t̃) = ṽ(t̃) which contradicts the unique solvability of (3.3).

By the second mean value theorem of integral calculus now there exists ξ1 ∈ (a1, t1)
such that

∫ t1

a1

(Mαβ [c, f ](t)− C(t)) |f |α dt =

∫ t1

a1

(Mαβ [c, f ](t)− C(t)) |ỹ|α
|f |α

|ỹ|α
dt

=

∫ t1

ξ1

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt .

By the same argument g
ỹ is monotonically decreasing in (t2, b1) and

∫ b1

t2

(Mαβ[c, f ](t)− C(t)) |g|α dt =

∫ ξ2

t2

(Mαβ[c, f ](t)− C(t)) |ỹ|α dt

for some ξ2 ∈ (t2, b1).
Therefore

∫ b1

a1

(Mαβ[c, f ](t)− C(t)) |y|α dt =

∫ ξ2

ξ1

(Mαβ[c, f ](t)− C(t)) |ỹ|α dt .

Summarizing our computations and using the fact that r(t)−R(t) ≤ 0 on [a1, t1]
and [t2, b1] if t1, t2 are sufficiently close to a and b, respectively, i.e.,

∫ t1

a1

(r(t) − R(t))|f ′|α dt ≤ 0 ,

∫ b1

t2

(r(t) − R(t))|g′|α dt ≤ 0 ,

we have

F(y; a1, b1) ≤ |ỹ(t1)|
α (vf (t1)− ṽ(t1)) + |ỹ(t2)|

α (ṽ(t2)− vg(t2))

+

∫ t2

t1

(r(t) − R(t))|ỹ′|α dt −

∫ ξ2

ξ1

(Mαβ[c, f ](t)− C(t)) |ỹ|α dt .

According to (3.2) there exists ε > 0 such that

∫ t2

t1

(r(t) − R(t))|ỹ′|α dt −

∫ s2

s1

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt < −ε

whenever s1 ∈ (a, t1), s2 ∈ (t2, b), if t1, t2 are sufficiently close to a and b, respec-
tively. Further, since ṽ is generated by the solution ỹ of (3.1) which is principal
both at t = a and t = b, according to the “Riccati equation” construction of the
principal solution mentioned in the previous section, we have (for t1, t2 fixed for a
moment)

lim
a1→a+

[vf (t1)− ṽ(t1)] = 0 , lim
b1→b−

[vg(t2)− ṽ(t2)] = 0 ,
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(see [2] for details) observe that solutions vf , vg actually depend also on a1 and
b1, respectively. Hence

|ỹ(t1)|
α [vf (t1)− ṽ(t1)] <

ε

2
, |ỹ(t2)|

α [ṽ(t2)− vg(t2)] <
ε

2

if a1 < t1, b1 > t2 are sufficiently close to a and b, respectively.
Consequently, for the above specified choice of a1 < t1 < t2 < b1 we have

F(y; a1, b1) <
ε

2
+

ε

2
− ε = 0

what we needed to prove. The statement now follows from Lemma 2.2. �

If r(r) ≤ R(t) in the whole interval I (not only near a and b as supposed in
Theorem 3.1), assumptions of Theorem 3.1 can be modified as follows.

Theorem 3.2. Suppose that r(t) ≤ R(t) on I, ỹ is the same as in Theorem 3.1,

(3.4) lim inf
s1↓a,s2↑b

∫ s2

s1

{Mαβ [c, f ](t)− C(t)} |ỹ|α dt ≥ 0

and

(3.5) Mαβ [c, f ](t) 6≡ C(t) in I.

Then every solution of (1.1) satisfying x(t)f(t) ≤ 0 in I has a zero in this interval.

Proof. We will proceed similarly as in the proof of the previous theorem. Con-
tinuity of the functions C, Mαβ [c, f ] and (3.5) imply the existence of t̄ ∈ I and
d, ̺ > 0 such that (Mαβ [c, f ](t) − C(t))|ỹ(t)|α > d for (t̄ − ̺, t̄ + ̺), and let ∆
be any positive differentiable function with the compact support in (t̄ − ̺, t̄+ ̺).
Further let a < t1 < t̄ − ̺ < t̄ + ̺ < t2 < b1 < b and define the function y as
follows

y(t) =







































0 t ∈ (a, a1] ,

f(t) t ∈ [a1, t1] ,

ỹ(t) t ∈ [t1, t2]\[t̄ − ̺, t̄+ ̺] ,

ỹ(t)(1 + δ∆(t)), t ∈ [t̄ − ̺, t̄+ ̺] ,

g(t), t ∈ [t2, b1] ,

0 t ∈ [b1, b) ,

where δ is a real parameter. We have

F(y; a1, b1) =

∫ b1

a1

[r(t)|y′|α − Mαβ[c, f ](t)|y|
α] dt

=

∫ b1

a1

[R(t)|y′|α−C(t)|y|α] dt

+

∫ b1

a1

[(r(t)−R(t))|y′|α−(Mαβ[c, f ](t)−C(t))|y|α] dt

≤

∫ b1

a1

[R(t)|y′|α−C(t)|y|α] dt−

∫ b1

a1

(Mαβ [c, f ](t)−C(t))|y|α dt .
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Computation of the integrals over [a1, t1] and [t2, b1] is the same as in the proof of
Theorem 3.1. Concerning the interval [t1, t2], we have by Lemma 2.2 with β = α
and f ≡ 0

∫ t2

t1

[R(t)|y′|α − C(t)|y|α] dt

= ṽ|ỹ|α
∣

∣

t2
t1 +

∫ t2

t1

[

R(t)|y′|α − αṽ(t)y′ϕ(y) + (α − 1)R
1

1−α (t)|ṽ(t)|
α

α−1 |y|α
]

dt

= ṽ|ỹ|α
∣

∣

t2
t1 +

∫ t̄+̺

t̄−̺

{

R(t)|ỹ′+δ(∆ỹ)′|α−αR(t)
ϕ(ỹ′)

ϕ(ỹ)
(ỹ′+δ(ỹ∆)′)ỹα−1

× (1+δ∆)α−1 + (α − 1)R
1

1−α (t)

∣

∣

∣

∣

R(t)ϕ(ỹ′)

ϕ(ỹ)

∣

∣

∣

∣

α
α−1

ỹα(1 + δ∆)α } dt

= ṽ|ỹ|α
∣

∣

t2
t1 +

∫ t̄+̺

t̄−̺

R(t) {|ỹ′|α + αδ(∆ỹ)′ϕ(ỹ′) + o(δ) − α(ỹ′ + δ(∆ỹ)′)ϕ(ỹ′)

× (1 + (α − 1)δ∆+ o(δ)) + (α − 1)|ỹ′|α(1 + αδ∆+ o(δ))} dt

= ṽ|ỹ|α
∣

∣

t2
t1 +

∫ t̄+̺

t̄−̺

R(t) {|ỹ′|α + αδ(∆ỹ)′ϕ(ỹ′)− α|ỹ′|α − αδϕ(ỹ′)(∆ỹ)′

− α(α − 1)δ∆|ỹ′|α + (α − 1)|ỹ′|α + (α − 1)αδ∆|ỹ′|α + o(δ) } dt

= ṽ|ỹ|α
∣

∣

t2
t1 + o(δ) .

Consequently,

∫ b1

a1

[R(t)|y′|α − C(t)|y|α] dt = wf |f |
α

∣

∣

t1
a1 + ṽ|ỹ|α

∣

∣

t2
t1 + wg|g|

α
∣

∣

∣

b1
t2 + o(δ)

= |ỹ(t1)|
α(wf (t1)− ṽ(t1)) + |ỹ(t2)|

α(ṽ(t2)− wg(t2)) + o(δ)

as δ → 0+. Further,

∫ t2

t1

(Mαβ [c, f ](t) −C(t)) |y|α dt =

∫ t̄−̺

t1

(Mαβ [c, f ](t)− C(t)) |ỹ|α

+

∫ t̄+̺

t̄−̺

(Mαβ [c, f ](t)− C(t)) |ỹ|α(1 + δ∆)α dt

+

∫ t2

t̄+̺

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt

=

∫ t2

t1

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt

+ δα

∫ t̄+̺

t̄−̺

(Mαβ [c, f ](t)− C(t)) |ỹ|α∆(t) dt+ o(δ)

≥

∫ t2

t1

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt+ δK + o(δ) ,
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where K = α
∫ t̄+̺

t̄−̺
(Mαβ − C)|ỹ|α dt > 0.

Summarizing the previous computations, we have

F(y; a1, b1) ≤ |ỹ(t1)|
α(vf (t1)− ṽ(t1)) + |ỹ(t2)|

α(ṽ(t2)− vg(t2))

−

∫ ξ2

ξ1

(Mαβ [c, f ](t)− C(t)) |ỹ|α dt − (Kδ + o(δ)) .

Now, let δ > 0 (sufficiently small) be such that Kδ + o(δ) =: ε > 0. According
to (3.4) the points t1, t2 can be chosen in such a way that

∫ s2

s1

(Mαβ[c, f ](t)− C(t)) |ỹ|α dt > −
ε

4

whenever s1 ∈ (a, t1), s2 ∈ (t2, b). Consequently, for suitably chosen a1 < t1 <
t2 < b1, using the estimates from the proof of Theorem 3.1 we have then

F(y; a1, b1) <
ε

4
+

ε

4
− ε < 0

and the statement follows from Lemma 2.2. �

Corollary 3.1. Suppose that I = R = (−∞,∞),

(3.6)

∫

−∞

r
1

1−α (t) dt =∞ =

∫ ∞

r
1

1−α (t) dt ,

and

lim inf
s1↓−∞,s2↑∞

∫ s2

s1

Mαβ[c, f ](t) dt ≥ 0 , Mαβ [c, f ](t) 6≡ 0 for t ∈ R .

Then every solution of (1.1) satisfying x(t)f(t) ≤ 0 for t ∈ R has at least one zero
in R.

Proof. Let R(t) ≡ r(t) and C(t) ≡ 0 in (3.1). Divergence of the integrals in (3.6)
implies that ỹ ≡ 1 is the principal solution of (R(t)ϕ(y′))′ = 0 at ±∞, see e. g.
[2]. The statement now follows from Theorem 3.2. �

Corollary 3.2. Suppose that I = (0,∞),

lim inf
s1↓0,s2↑∞

∫ s2

s1

[

Mαβ [c, f ](t)−

(

α − 1

α

)α

t−α

]

tα−1 dt ≥ 0

and

Mαβ[c, f ](t)−

(

α − 1

α

)α

t−α 6≡ 0 in (0,∞) .

Then every solution of (1.1) with r(t) ≡ 1 satisfying x(t)f(t) ≤ 0 for t ∈ (0,∞)
has a zero in this interval.

Proof. Let R(t) ≡ 1 and C(t) =
(

α−1
α

)α
t−α. Then (3.1) is the generalized Euler

equation

(ϕ(y′))
′
+

γα

tα
ϕ(y) = 0, γα =

(

α − 1

α

)α

.

This equation is disconjugate on I = (0,∞) and ỹ = t
α−1

α is its principal solution
at t = 0 and t =∞, see [3]. The statement now again follows from Theorem 3.2.

�
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Corollary 3.3. Suppose that r(t) ≥ (1 + |t|α)α−1 on R,

lim inf
t1↓−∞,t2↑∞

∫ t2

t1

{

Mαβ [c, f ](t)−
α − 1

1 + |t|α

}

1

(1 + |t|α)α−1
dt ≥ 0

and

Mαβ [c, f ](t)−
α − 1

1 + |t|α
6≡ 0 in R .

Then every solution of (1.1) satisfying x(t)f(t) ≤ 0 in R has a zero point in R.

Proof. Consider the equation

(3.7)
(

(1 + |t|α)α−1ϕ(y′)
)′
+

α − 1

1 + |t|α
ϕ(y) = 0 .

The transformation of independent variable x(t) = y(arctanα t), where

arctanα t =

∫ t

0

ds

1 + |s|α
,

transforms (3.7) into the equation

(ϕ(x′))
′
+ (α − 1)ϕ(x) = 0 .

The last equation has been extensively studied by Elbert [6]. Denote by sinα t its
unique solution given by the initial condition y(0) = 0, y′(0) = 1. Further denote
cosα t := (sinα t)′, tanα t := sinα t

cosα t . The first positive zero of the function sinα

is πα := 2
π/α

sin(π/α) , cosα t = 0 for t = ±πα

2 and the function tanα (which is the

inverse function of arctanα) maps the interval
(

−πα

2 , πα

2

)

onto R. This implies that

ỹ(t) = cosα(arctanα t) = (1+ |t|α)−1 is the principal solution of (3.7) at ±∞. The
statement now follows from Theorem 3.2. �

References
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[7] Elbert, Á. and Kusano, T., Principal solutions of nonoscillatory half-linear differential

equations, Advances in Math. Sci. Appl. 18 (1998), 745–759.
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