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STABLE SPACE-LIKE HYPERSURFACES

IN THE DE SITTER SPACE

LIU XIMIN AND DENG JUNLEI

Abstract. In this paper, we study the stability of space-like hypersurfaces
with constant scalar curvature immersed in the de Sitter spaces.

1. Introduction

Hypersurfaces Mn with constant mean curvature in a Riemannian manifold
M̄n+1(c) of constant sectional curvature c are critical points of the area functional
under variations that keep constant a certain volume function. In [3] a definition
of stability for hypersurfaces of constant mean curvature in the Euclidean space
Rn+1 was given, and it was proved that the round spheres are the only compact
hypersurfaces with constant mean curvature in Rn+1 that are stable. Later in [4]
Barbosa, do Carmo and Eschenburg extended this notion of stability to the case
of immersions in Riemannian manifolds, and they proved that if Mn is compact
and stable, and M̄n+1(c) is complete and simply-connected, then Mn is a geodesic
sphere.

Less widely known but equally true is that hypersurface Mn of M̄n+1(c) with
constant scalar curvature are solutions to a similar variational problem, namely, of
extremizing the integral of the mean curvature for volume-preserving variations.
In analogy with the case of constant mean curvature, questions of stability can be
considered for hypersurfaces with constant scalar curvature. In [1], Alencar, do
Carmo and Colaresthe extended to hypersurfaces with constant scalar curvature
the above stability result on constant mean curvature. That is they proved that
when the ambient space is Euclidean space Rn+1, or an open hemisphere of the
sphere Sn+1(1), geodesic spheres are the only stable immersed compact orientable
hypersurfaces with constant scalar curvature.

Let Mn+p
p (c) be an (n + p)-dimensional connected semi-Riemannian manifold

of constant curvature c whose index is p. It is called an indefinite space form of
index p and simply a space form when p = 0. If c > 0, we call it as a de Sitter
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space of index p, denote it by Sn+p
p (c). The study of space-like hypersurfaces in

de Sitter space has been recently of substantial interest from both physics and
mathematical points of view. Akutagawa [2] and Ramanathan [8] investigated
space-like hypersurfaces in a de Sitter space and proved independently that a
complete space-like hypersurface in a de Sitter space with constant mean curvature
is totally umbilical if the mean curvature H satisfies H2 ≤ c when n = 2 and
n2H2 < 4(n − 1)c when n ≥ 3. Later, Cheng [6] generalized this result to general
submanifolds in a de Sitter space.

In the present paper, we would like to extend of stability to the case of immer-
sions into the de Sitter spaces. We will define and discuss the stability of space-like
hypersurfaces with constant scalar curvature in the de Sitter space.

2. The variational problem for constant scalar curvature

Let Sn+1
1 (c) be an (n + 1)-dimensional de Sitter space of canstant curvature c

and let x : Mn → Sn+1
1 (c) be a space-like immersion of a compact, connected,

orientable manifold Mn of constant scalar curvature with boundary ∂M (possibly,
∂M = ∅) into Sn+1

1 (c). By space-like we simply mean that the metric induced by
x in Mn is Riemannian. Choose an orthonormal frame e1, . . . , en+1 around x(p),
p ∈ Sn+1

1 (c), in Sn+1
1 (c) so that e1, . . . , en are tangent to x(M) and en+1 = N is

the time-like unit normal field globally defined on Mn and gives an orientation for
Mn.

A variation of x is a differentiable map X : (−ε, ε)×M → Sn+1
1 (c), ε > 0, such

that for each t ∈ (−ε, ε), Xt(p) = X(t, p), p ∈ Mn, is an immersion, X0 = x, and
Xt|∂M = x|∂M , for all t. We define the volume function: V : (−ε, ε) → R of X by

V (t) =

∫

[0,t]×M

X∗dSn+1
1 .

In this paper, we will need the first three symmetric elementary functions of
the principle curvatures k1, . . . , kn of an immersion x, namely:

S1 =
∑

ki , S2 =
∑

i<j

kikj , S3 =
∑

i<j<l

kikjkl ,

i, j, l = 1, . . . , n. We know that the mean curvature H and the scalar curvature R

of x are given by:

H =
1

n
S1 , c − R =

2

n(n − 1)
S2 .

Let X be a variation of x : Mn → Sn+1
1 (c) and W (p) = ∂X

∂t
|t=0 be the varia-

tional vector of X . Let f = 〈W, N〉, where N is the unit normal vector along x.
A variation is normal if W is parallel to N and volume-preserving if V (t) = V (0)
for all t.

Lemma 2.1. (i) d
dt

∫

M
nH(t)dMt|t=0 =

∫

M
(n(n − 1)(R − c) + cn)fdM ,

(ii) dV
dt

|t=0 =
∫

M
fdM .
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Proof. (i) can be obtained from the formula for the first variation in p. 470 of [9]
in our notation.

To prove (ii), fix a point p ∈ Mn and choose a positive adapted orthonormal
frame e1, . . . , en, en+1 = N around x(p), then we have

X∗(dSn+1
1 ) = X∗(dSn+1

1 )(
∂

∂t
, e1, . . . , en) = (dSn+1

1 )
(∂X

∂t
, dXt(e1), . . . , dXt(en)

)

= vol
(∂X

∂t
, dXt(e1), . . . , dXt(en)

)

=
〈∂X

∂t
, Nt

〉

,

where Nt is a unit normal vector of the immersion Xt. It follows that

dV

dt
(0) =

d

dt

(

∫

[0,t]×M

〈∂X

∂t
, Nt

〉

∧ dM)t=0 =

∫

M

〈∂X

∂t
(0), N

〉

dM =

∫

M

fdM .

This completes the proof of Lemma 2.1.

Now set

R0 = A−1

∫

M

RdM , A =

∫

M

dM ,

and define J : (−ε, ε) → R by

J(t) = n

∫

M

H(t) dMt +
(

n(n − 1)(c − R0) − cn
)

V (t) .

Lemma 2.2. Let Mn → Sn+1
1 (c) be an immersion. Then the following statements

are equivalent:

(i) x has constant scalar curvature R0.

(ii) For all volume-preserving variations,

d

dt

∫

M

nH(t)dMt|t=0 = 0 .

(iii) For all variations, J ′(0) = 0.

Proof. The proof is essentially the same as in Proposition (2.7) of [4] using
Lemma 2.1. We omit it here.

To compute the second variation of J we need to introduce the following oper-
ator. For each p ∈ Mn, consider the linear map T : Tp → Tp

T = nHI − B ,

where I is the identity map and B is the linear map associated to the second
fundamental form of x along N . In the orthonormal frame {e1, . . . , en} around p,
the matrix of T is

Tij = nHδij − hij ,

where hij is the matrix of B. Let f be a differentiable function on Mn and let fij

be the matrix of the hessian of f . We define the operator 2 acting on f by

2f =
∑

i,j

Tijfij =
∑

i,j

(nHδij − hij)fij .
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This operator was first condidered by Cheng and Yau in [7]. From [7] we know
that 2 is self-adjoint relative to the L2 inner product of Mn, i.e.,

∫

M

f2g =

∫

M

g2f.

Lemma 2.3. Let x : Mn → Sn+1
1 (c) be a hypersurface with constant scalar cur-

vature R and let X be a variation of x. Then J ′′(0) depends only on f and it is

given by

J ′′(0)(f) = 2

∫

M

(

f2f − f2
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H + 3S3

])

dM .

Proof. Note that

dJ

dt
=

∫

M

[

(−n(n − 1)(c − Rt)H + cn) + (n(n − 1)(c − R0) − cn)
]

ft dMt .

Here Rt is the scalar curvature of Xt, dMt is its volume element, and ft =
〈

∂X
∂t

, Nt

〉

, where Nt is the unit normal vector of Xt. Set n(n− 1)(c−Rt) = −At,

we can write
DJ

dt
=

∫

M

(At − A0)ft dMt .

Then we have

d2J

dt2
=

∫

M

A′

tft dMt +

∫

M

Atf
′

t dMt −

∫

M

A0f
′

t dMt +

∫

M

(At − A0)ft

∂

∂t
dMt ,

which, for t = 0, gives

d2J

dt2

∣

∣

∣

t=0
=

∫

M

A′

0f dM = −

∫

M

(n(n − 1)
(∂Rt

∂t
(0)

)

f dM .

Using the formula (9c) in [9] we can obtain

1

2
n(n − 1)

∂Rt

∂t
(0) = f

{1

2
n2(n − 1)(c − R)H − 3S3) + cn(n − 1)H

}

+ 2f

and this completes the proof of Lemma 2.3.

Definition 2.1. Let x : Mn → Sn+1
1 (c) has constant scalar curvature. The im-

mersion x is stable if
d2

dt2

∫

M

nHt dMt

∣

∣

t=0
≤ 0 ,

for all volume-preserving variations of x. If Mn is non compact, x is stable if
for every compact submanifold M ′ ⊂ Mn with boundary, the restriction x|M ′ is
stable.

Just as [5] we can prove the following criterion of stability. Let G be the set
of differential functions f : M → R with f |∂M = 0 and

∫

M
f dM = 0. Then

x : Mn → Sn+1
1 (c) with constant scalar curvature is stable if and only if

J ′′(0)(f) ≤ 0 ,

for all f ∈ G.
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3. Stability of space-like hypersurfaces

Define a bilinear form I : G → R by

I(f, g) =

∫

M

g
(

2f −
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H − 3S3

])

f .

Definition 3.1. A normal vector field V = fN , f ∈ G, to a space-like immersion
x : Mn → Sn+1

1 with constant scalar curvature is a Jacobi field if f ∈ Ker I, that
is, if I(f, g) = 0 for all g ∈ G.

Proposition 3.1. Let f ∈ G. Then fN is a Jacobi field is and only if

2f −
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H − 3S3

]

f = const .

Proof. Clearly if the above formula holds, f ∈ Ker I, since g ∈ G. To show the
converse, let F0 be the mean value of

F = 2f −
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H − 3S3

]

f

in Mn. Since f ∈ Ker I, we have
∫

M

g(F − F0) dM = 0 ,

for all g ∈ G. Now it is enough to prove that F ≡ F0 which is similar to Proposition
(2.7) in [4]. This completes the proof of Proposition 3.1.

By direct computation, we can prove the following proposition.

Proposition 3.2. Let W be a Killing vector field on Sn+1
1 (c), then f = 〈W, N〉

satisfies

2f −
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H − 3S3

]

f = const .

Now we can prove the following theorem.

Theorem 3.1. Let x : Mn → Sn+1
1 (c) be a space-like immersion with constant

scalar curvature such that 1
2n2(n − 1)(c − R)H + cn(n − 1)H − 3S3 = λ = const .

If W is a Killing vector field on Sn+1
1 , then x is stable if and only if λ = λ1, the

first eigenvalue of 2f on Mn.

Proof. Since λ is an eigenvalue of 2, we have either λ = λ1 or λ > λ1. In the
first case, for any f ∈ G,

I(f, f) =

∫

M

(f2f − λf2) ≤ (λ1 − λ)

∫

M

f2 = 0 ,

hence M is stable. In the latter case, choose f to be the first eigenfunction of the
laplacian. Then f ∈ G and

I(f, f) = (λ1 − λ)

∫

M

f2 > 0

and therefore M is not stable.
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Theorem 3.2. Let Σn ⊂ Sn+1
1 (c) be a geodesic sphere. Then Σn is stable.

Proof. Choose f : Σ → R such that
∫

M
f dM = 0. Since Σ is umbilical, we have

‖B‖2 = nH2 and
2f = (n − 1)H∆f ,

where ∆f is the Laplacian of f in Σ. From the formula for the second variation
of J , we have

J ′′(0)(f) = − 2(n − 1)

∫

Σ

Hf∆f

− 2

∫

Σ

f2
[1

2
n2(n − 1)(c − R)H + cn(n − 1)H − 3S3

]

.

Since

tr B3 = nH‖B‖2 −
1

2
n2(n − 1)H(c − R) + 3S3 ,

by umbilicity, we have

−
1

2
n2(n − 1)H(c − R) + 3S3 = tr B3 − nH‖B‖2 = −n(n − 1)H3 .

So by Stokes’ theorem, we have

J ′′(0)(f) = 2(n − 1)H

∫

Σ

(

‖∇f‖2 − n(c + H2)
)

f2

≤ 2(n − 1)H

∫

Σ

(

λ(Σ) − n(c + H2)
)

f2 ,

where λ(Σ) is the first eigenvalue of the Laplacian ∆ in Σ. Since Σ is a sphere,
λ(Σ) = n(c + H2). So J ′′(0)(f) ≤ 0, for all f such that

∫

Σ
f dM = 0, and Σ is

stable.
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