A. I. Fedotov
Convergence of cubature-differences method for multidimensional singular integro-differential equations

Persistent URL: http://dml.cz/dmlcz/107899

Terms of use:
© Masaryk University, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
CONVERGENCE OF CUBATURE-DIFFERENCES METHOD
FOR MULTIDIMENSIONAL SINGULAR
INTEGRO-DIFFERENTIAL EQUATIONS

A. I. FEDOTOV

Abstract. Here we propose and justify the cubature-differences method for
the multidimensional singular integro-differential equations with Hilbert ker-
nel. The convergence of the method is proved and the error estimate is
obtained.

INTRODUCTION

In the papers [1]–[4] the quadrature-differences methods for the various classes
of the 1-dimensional periodic singular integro-differential equations with Hilbert
kernels were justified. The convergence of the methods was proved and the errors
estimates were obtained. Here we propose and justify the cubature-differences
method for the 2-dimensional\(^1\) linear periodic singular integro-differential equa-
tions. The convergence of the method is proved and the error estimate is obtained.

It is known (see e.g. [7], [9]) that the theory of the singular integral equations
in multidimensional case is less developed than in 1-dimensional case. Thus, for
instance, if for 1-dimensional singular integral equations simple necessary and
sufficient conditions of solvability is known, then for multidimensional equations
there are some, only sufficient, conditions of solvability and corresponding classes of
solvable equations but the situation in general is still unclear. Here we consider the
class of equations which dominant part maps the set of trigonometrical polynomials
to itself.

The same situation is with the theories of approximate methods in 1- and
multidimensional cases. For 1-dimensional singular integral equations polynomial
collocation method is justified in [6] for all solvable equations. It means that we
don’t need any special conditions in addition to solvability of the equation for
invertibility of the operator approximating the dominant part. In mutidimensional

\(^1\)2-dimensional case is considered only for the sake of simplicity. All results could be easily
generalised to the case of \(d (d \geq 3)\) dimensions.
case the same result doesn’t exist. So we need instead to assume, as it is mentioned above, that dominant part maps the set of trigonometrical polynomials to itself.

To approximate derivatives in 1-dimensional case any converging differences (with some easy-to-check restrictions for approximating the highest order derivative) could be used. It means that for equations with smooth solutions one can achieve the highest possible rate of convergence using the differences of appropriate order. In multidimensional case there aren’t any rules of constructing appropriate differences, so we use fixed second order differences and can’t obtain the rate of convergence higher than 2.

1. Statement of the problem

Let’s denote by $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{R}$ and Δ the Cartesian squares of the sets of \mathbb{N}-natural, \mathbb{N}_0-natural including zero, \mathbb{Z}-integer and \mathbb{R}-real numbers and the interval $\Delta = (-\pi; \pi] \subset \mathbb{R}$ respectively. For the elements of this sets (2-components vectors) beside the usual operations of adding, subtracting and multiplying the number we will define the following operations

$$l \cdot k = l_1 k_1 + l_2 k_2, \quad l * k = (l_1 k_1, l_2 k_2), \quad l^2 = l_1^2 + l_2^2, \quad |l| = l_1 + l_2, \quad [l] = l_1 l_2,$$

and relations of the partial order

$$l < k \equiv (l_1 < k_1) \& (l_2 < k_2), \quad l \leq k \equiv (l_1 \leq k_1) \& (l_2 \leq k_2), \quad l = (l_1, l_2), \quad k = (k_1, k_2).$$

For the fixed $s \in \mathbb{R}$ let’s denote by H^s Sobolev space of 2-dimensional 2π-periodical by each variable complex-valued functions with the norm

$$\|u\|_s = \|u\|_{H^s} = \left(\sum_{k \in \mathbb{Z}} (1 + k^2)^s |\hat{u}(k)|^2 \right)^{1/2}$$

and inner product

$$\langle u, v \rangle_s = \sum_{k \in \mathbb{Z}} (1 + k^2)^s \hat{u}(k) \overline{\hat{v}(k)},$$

where

$$\hat{u}(k) = (2\pi)^{-2} \int_{\Delta} u(\tau) \overline{e_k(\tau)} \, d\tau$$

are the Fourier coefficients of the function $u(\tau)$ by the system of trigonometric monomials

$$e_k(\tau) = \exp(ik \cdot \tau), \quad k \in \mathbb{Z}, \tau \in \Delta.$$

For the following we will assume that $s > 1$ providing (see e.g. [10]) the embedding of H^s in the space of continuous functions.

Consider the linear singular integro-differential equation

$$(1) \quad ABu + Tu = f,$$
where A is 2-dimensional singular integral operator

$$Au \equiv a_{00}(t)u(t) + a_{01}(t)(J_{01}u)(t) + a_{10}(t)(J_{10}u)(t) + a_{11}(t)(J_{11}u)(t),$$

$A : H^s \to H^s,$

with singular integrals

$$(J_{01}u)(t) = (2\pi)^{-1} \int_{-\pi}^{\pi} u(t_1, \tau_2) \cot \frac{\tau_2 - t_2}{2} d\tau_2,$$

$$(J_{10}u)(t) = (2\pi)^{-1} \int_{-\pi}^{\pi} u(\tau_1, t_2) \cot \frac{\tau_1 - t_1}{2} d\tau_1,$$

$$(J_{11}u)(t) = (2\pi)^{-2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} u(\tau_1, \tau_2) \cot \frac{\tau_1 - t_1}{2} \cot \frac{\tau_2 - t_2}{2} d\tau_2 d\tau_1$$

which are to be interpreted as the Cauchy-Lebesgue principal value, B is elliptical differential operator

$$Bu \equiv (Bu)(t) = \sum_{|\alpha|=|\beta|=m} b_{\alpha\beta}(t)(D^{\alpha+\beta}u)(t),$$

$B : H^{s+2m} \to H^s, m \in N,$

with derivatives

$$D^{\alpha}u = \frac{\partial^{|\alpha|} u}{\partial t_1^{\alpha_1} \partial t_2^{\alpha_2}} \text{ of order } \alpha = (\alpha_1, \alpha_2) \in N_0,$$

and $T : H^{s+2m} \to H^s$ is known linear operator. Coefficients $a_{kl}(t), k, l = 0, 1, b_{\alpha\beta}(t), |\alpha| = |\beta| = m,$ and the right-hand side $f(t)$ of the equation (1) we will consider, for the sake of simplicity, belonging to H^∞.

2. Calculation scheme

Let’s fix $n = (n_1, n_2) \in N,$ denote by

$$I_n = I_{n_1} \times I_{n_2}, \quad I_{n_j} = \{k_j \mid k_j \in Z, |k_j| \leq n_j\}, \quad j = 1, 2,$$

index set and define the grid

$$\Delta_n = \{t_k = (t_{k_1}, t_{k_2}) \mid k = (k_1, k_2) \in I_n, t_{k_j} = k_j h_j, h_j = 2\pi/(2n_j + 1), j = 1, 2\}.$$

on $\Delta.$ Approximate solution of the equation (1) we will seek as a periodic grid function (vector of values) $u_n = u_n(t)$ defined on $\Delta_n.$

Differential operators $D^{\alpha+\beta}$ of the equation (1) we will approximate by the operators

$$D^{\alpha+\beta}u_n = \frac{1}{2} (\partial^\alpha \bar{\partial}^\beta + \bar{\partial}^\alpha \partial^\beta)u_n,$$
where

\[\partial^\alpha u_n = \partial_1^{\alpha_1} \partial_2^{\alpha_2} u_n, \]

\[\partial_j u_n = h_j^{-1}(u_n(t + h_j \delta_j) - u_n(t)), \]

\[\partial_j u_n = h_j^{-1}(u_n(t) - u_n(t - h_j \delta_j)), \]

\[\delta_j = (\delta_{j_1}, \delta_{j_2}), j = 1, 2, \]

and \(\delta_{jk} \) is Kronecker symbol.

Singular integrals are to be approximated by the cubatures and quadratures. To do this we will integrate interpolative Lagrange polynomial

\[(P_n u_n)(\tau) = \sum_{k \in I_n} u_n(t_k) \xi_n(\tau, t_k), \]

\[\xi_n(\tau, t_k) = \prod_{j=1,2} \frac{\sin((2n_j + 1)(\tau_j - t_{k_j})/2)}{(2n_j + 1) \sin((\tau_j - t_{k_j})/2)}, \]

\[\tau = (\tau_1, \tau_2) \in \Delta, \ t_k = (t_{k_1}, t_{k_2}) \in \Delta_n. \]

Then the integrals will take the form

\[(J_0 P_n u_n)(t_k) = (2n_2 + 1)^{-1} \sum_{l_2 \in I_{n_2}} \gamma_{k_2-l_2}^{(n_2)} u_n(t_{k_1}, t_{l_2}), \]

(3)

\[(J_1 P_n u_n)(t_k) = (2n_1 + 1)^{-1} \sum_{l_1 \in I_{n_1}} \gamma_{k_1-l_1}^{(n_1)} u_n(t_{l_1}, t_{k_2}), \]

\[(J_1 P_n u_n)(t_k) = [2n + 1]^{-1} \sum_{l_1 \in I_{n_1}} \gamma_{k_1-l_1}^{(n_1)} \gamma_{k_2-l_2}^{(n_2)} u_n(t_{l_1}), \]

\[t_k \in \Delta_n, 1 = (1, 1), \] and the coefficients \(\gamma_r^{(q)} \) are

\[\gamma_r^{(q)} = \begin{cases} \tan \frac{r\pi}{2(2q + 1)}, & r \text{ even}, \\ -\cot \frac{r\pi}{2(2q + 1)}, & r \text{ odd}. \end{cases} \]

Operator \(T \) we will approximate by any convergent operator \(T_n \).

Substituting the numerical differential formulas (2), cubature and quadrature sums (3), the values of the coefficients \(a_{kl}(t), k, l = 0, 1, b_{\alpha\beta}(t), |\alpha| = |\beta| = m, \) of the operator \((T_n u_n)(t) \) and the right-hand side \(f(t) \) in the nodes of the grid \(\Delta_n \) in the equation (1) we will obtain the system of linear algebraic equations

(4) \[a_{00}(t_k) \sum_{|\alpha|=|\beta|=m} b_{\alpha\beta}(t_k)(D_n^{\alpha+\beta} u_n)(t_k) \]

\[+ a_{01}(t_k)(2n_2 + 1)^{-1} \sum_{l_2 \in I_{n_2}} \gamma_{k_2-l_2}^{(n_2)} \sum_{|\alpha|=|\beta|=m} b_{\alpha\beta}(t_{k_1}, t_{l_2})(D_n^{\alpha+\beta} u_n)(t_{k_1}, t_{l_2}) \]

\[+ a_{10}(t_k)(2n_1 + 1)^{-1} \sum_{l_1 \in I_{n_1}} \gamma_{k_1-l_1}^{(n_1)} \sum_{|\alpha|=|\beta|=m} b_{\alpha\beta}(t_{l_1}, t_{k_2})(D_n^{\alpha+\beta} u_n)(t_{l_1}, t_{k_2}) \]
+ a_{11}(t_k)[2n + 1]^{-1} \sum_{l \in I_n} \gamma_{k_1 - l_1}^{(n_1)} \gamma_{k_2 - l_2}^{(n_2)} \sum_{|\alpha|=|\beta|=m} b_{\alpha\beta}(t_{l_1}, t_{l_2})(D_n^{\alpha + \beta} u_n)(t_{l_1}, t_{l_2}) \\
+ (T_n u_n)(t_k) = f(t_k), \quad t_k \in \Delta_n,

of the cubature-differences method.

3. Preliminaries

Let’s denote by H^s_n the set of grid functions (vectors of values) on Δ_n with the norm

$$
\|u_n\|_{s,n} = \|u_n\|_{H^s_n} = \left(\sum_{k \in I_n} (1 + k^2)^s |\tilde{u}_n(k)(n)|^2 \right)^{1/2}
$$

and inner product

$$
\langle u_n, v_n \rangle_{s,n} = \sum_{k \in I_n} (1 + k^2)^s \tilde{u}_n(k)(n) \tilde{v}_n(k)(n),
$$

where

$$
\tilde{u}_n(k)(n) = [2n + 1]^{-1} \sum_{l \in I_n} u_n(t_l) \tilde{e}_k(t_l), \quad k \in I_n,
$$

are Fourier-Lagrange coefficients of the function $u_n(t)$ by the grid Δ_n.

The sets H^s and H^s_n we will bind by the operators

$$
p_n u = (u(t_k))_{k \in I_n}, \quad p_n : H^s \to H^s_n,
$$

$$(P_n u_n)(\tau) = \sum_{k \in I_n} u_n(t_k) \xi_n(\tau, t_k), \quad P_n : H^s_n \to H^s,
$$

and denote by $E_n(u)_s$ the best approximation of the function $u \in H^s$ by the trigonometrical polynomials of order not higher than n. It is known that in Hilbert space the polynomial of the best approximation of the function is its partial sum of the Fourier series

$$(S_n u)(t) = \sum_{k \in I_n} \tilde{u}(k) \tilde{e}_k(t), \quad E_n(u)_s = \|u - S_n u\|_s.
$$

Lemma 1. For any $u \in H^s$, $s \in \mathbb{R}$, $s > 1$ and $n \in \mathbb{N}$ the following estimations are valid

$$
\|P_n\|_{H^s_n \to H^s} = 1, \quad \|p_n\|_{H^s \to H^s_n} \leq 2M(n, s) \sqrt{\zeta(2s - 1)},
$$

$$
\|P_n p_n u - u\|_s \leq (1 + 2M(n, s) \sqrt{\zeta(2s - 1)}) E_n(u)_s,
$$

where $M(n, s) = (\frac{n_1^2 + n_2^2}{\min(n_1, n_2)})^s$, $n = (n_1, n_2)$, and $\zeta(t)$ is the Riemann’s ζ-function bounded and decreasing for $t > 1$.
Then, following [5], we will write the values of its Fourier series we will obtain
\[u \]
Substituting the values of the function \(u \) are Fourier-Lagrange coefficients of the function \(u \).

Proof. The equation \(\| P_n u \|_s = \| u \|_{s, n} \) for any \(u_n \in H^s_n \) follows directly from the definitions of the norms in the spaces \(H^s \) and \(H^s_n \). So \(\| P_n \|_{H^s_n \to H^s} = 1 \) is valid trivially.

To obtain the norm of the operator \(p_n \) let’s take the arbitrary function \(u \in H^s \) and write according to the definition of the norm in \(H^s_n \)

\[\| p_n u \|_{s, n}^2 = \sum_{k \in I_n} (1 + k^2)^s |\hat{u}(k)^{(n)}|^2, \]

where

\[\hat{u}(k)^{(n)} = [2n + 1]^{-1} \sum_{l \in I_n} u(t_l) \delta_k(t_l), \quad k \in I_n \]

are Fourier-Lagrange coefficients of the function \(u(t) \) with respect to the grid \(\Delta_n \). Substituting the values of the function \(u(t) \) in the nodes of the grid \(\Delta_n \) by the values of its Fourier series we will obtain

\[\hat{u}(k)^{(n)} = [2n + 1]^{-1} \sum_{l \in I_n} \left(\sum_{m \in Z} \hat{u}(m) e_m(t_l) \right) \delta_k(t_l) = [2n + 1]^{-1} \sum_{m \in Z} \sum_{l \in I_n} \hat{u}(m) e_m(t_l) \delta_k(t_l) = \sum_{m \in Z} \hat{u}(k + m * (2n + 1)). \]

Then, following [5], we will write
\[
\| p_n u \|_{s, n}^2 = \sum_{k \in I_n} (1 + k^2)^s \left| \sum_{m \in Z} \hat{u}(k + m * (2n + 1)) \right|^2
\]
\[
= \sum_{k \in I_n} \left| \sum_{m \in Z} (1 + k^2)^{\frac{s}{2}} (1 + (k + m * (2n + 1))^2)^{\frac{s}{2}} \right|^2
\]
\[
\times \hat{u}(k + m * (2n + 1)) (1 + (k + m * (2n + 1))^2)^{\frac{s}{2}} \left| (1 + (k + m * (2n + 1))^2)^{\frac{s}{2}} \right|^2
\]
\[
\leq \sum_{k \in I_n} \left(\sum_{m \in Z} |\hat{u}(k + m * (2n + 1))|^2 (1 + (k + m * (2n + 1))^2)^{s} \right.
\]
\[
\times \left. \sum_{m \in Z} ((1 + k^2)/(1 + (k + m * (2n + 1))^2))^{s} \right)^2
\]
\[
\leq \max_{k \in I_n} \left(\sum_{m \in Z} ((1 + k^2)/(1 + (k + m * (2n + 1))^2))^{s} \right)^2 \| u \|_s^2.
\]

The chains of the inequalities
\[
\max_{k \in I_n} \left(\sum_{m \in Z} ((1 + k^2)/(1 + (k + m * (2n + 1))^2))^{s} \right)
\]
\[
\leq \sum_{m \in Z} ((1 + n^2)/(1 + (n + m * (2n + 1))^2))^{s}
\]
\[
\leq 2^{s+2} (n_1^2 + n_2^2)^s \sum_{m \in N} (n_1^2(2m_1 - 1)^2 + n_2^2(2m_2 - 1)^2)^{-s}
\]
\[
\leq 4M^2(n, s) \sum_{m \in \mathbb{N}} (m_1 + m_2 - 1)^{-2s} = 4M^2(n, s) \sum_{m \in \mathbb{N}} m^{1-2s} \\
= 4M^2(n, s)\zeta(2s - 1),
\]

\[
\|P_n p_n u - u\|_s \leq \|P_n p_n u - P_n p_n S_n u\|_s + \|S_n u - u\|_s \\
\leq (1 + 2M(n, s)\sqrt{\zeta(2s - 1)}) E_n(u)_s
\]

finish the proof of the Lemma 1. \qed

To prove the convergence of the method we need the function \(M(n, s)\) to be bounded. So we’ll restrict the set of indices to one where \(M(n, s)\) is bounded. Let’s for some \(c, s \in \mathbb{R}\) define the set

\[
N(c, s) = \{n \mid n \in \mathbb{N}, M(n, s) \leq c\}.
\]

Obviously, \(N(c, s) = \emptyset\) for \(c < 2^s/2\) and \(N(c, s) = \{n \mid n = (j, j, \ldots, j), j \in \mathbb{N}\}\) for \(c = 2^s/2\). For the following we’ll mean that all indices \(n, n_0, n_1\) mentioned below belong to \(N(c, s)\), and \(n \to \infty\) means that \(n\) gets the values of some sequence \((n_j)_{j \in \mathbb{N}}, n_j \in N(c, s), n_j < n_{j+1}, j = 1, 2, \ldots\)

Lemma 2. For any \(s \leq p\) and \(u \in H^p\)

\[
E_n(u)_s \leq (1 + n^2)^{(s-p)/2} E_n(u)_p.
\]

Proof.

\[
E_n(u)_s = \|u - S_n u\|_s = \left(\sum_{k \not\in I_n} (1 + k^2)^s |\hat{u}(k)|^2 \right)^{1/2} \\
= \left(\sum_{k \not\in I_n} (1 + k^2)^p (1 + k^2)^{s-p} |\hat{u}(k)|^2 \right)^{1/2} \leq (1 + n^2)^{(s-p)/2} E_n(u)_p. \tag*{\qed}
\]

4. **Justification**

Theorem. Let for some \(c, s \in \mathbb{R}, s > 1, c \geq 2^s/2\) the equation (1) and calculation scheme (2) – (4) of the method satisfy the following conditions:

1) for any \(n\) operator \(A\) maps the set of all trigonometric polynomials of order not higher than \(n\) to itself,

2) \(B\) is elliptic operator i.e. for any point \(t \in \Delta\) and real numbers \(\tau_\alpha, \tau_\beta\) the following inequality is valid \(^2\)

\[
\sum_{|\alpha|=|\beta|=m} b_{\alpha \beta}(t) \tau_\alpha \tau_\beta \geq C \sum_{|\alpha|=m} \tau_\alpha^2,
\]

3) operator \(T : H^{s+2m} \to H^{s+\varepsilon}\) is bounded for some \(\varepsilon \in \mathbb{R}, \varepsilon > 0,\)

\(^2\)Here and further \(C\) denotes generic real positive constants, independent from \(n\).
4) operator T_n approximates operator T with respect to p_n, i.e. for any function $u \in H^s$
$$
\|T_n p_n u - p_n T u\|_{s,n} = \eta_n \to 0 \quad \text{for} \quad n \to \infty,
$$
5) the equation (1) has a unique solution $u^* \in H^{s+2m}$ for any right-hand side $f \in H^s$.

Then for all n, beginning from some n_0, the system of equations (4) is uniquely solvable and approximate solutions u^*_n converge to the exact solution u^* of the equation (1)
$$
\|u^*_n - p_n u^*\|_{s+2m} \to 0, \quad n \to \infty.
$$
If, in addition, $u^* \in H^{s+2m+2}$, then the error estimate
$$
\|u^*_n - p_n u^*\|_{s+2m} \leq C(h^2 + \eta_n), \quad h = (h_1, h_2), \quad h_j = 2\pi/(2n_j + 1), \quad j = 1, 2,
$$
is valid.

Proof. Let us take an arbitrary constant $r \in \mathbb{R}$ which is not an eigenvalue of the problem $Bu + ru = 0, \quad u \in H^{s+2m}$ and make in the equation (1) a substitution
$$
(5) \quad v = Bu + ru, \quad v \in H^s.
$$
The existence of such constant follows from the properties of the spectrum of the elliptical operators (see e.g. [8]). Then
$$
(6) \quad u = Gv, \quad Bu = v - rGv,
$$
where G is the inverse to $Bu + ru$ and the equation (1) will take the form
$$
(7) \quad Kv \equiv Av - rAGv + TGv = f, \quad K : H^s \to H^s,
$$
being still equivalent to the original one. The equivalence here means, that solvability of one of the equation yields solvability of another and their solutions are joined by the relationships (5), (6). Now let us rewrite the system of equations (4) as an operator equation
$$
(8) \quad A_n B_n u_n + T_n u_n = f_n, \quad A_n = p_n A P_n, \quad f_n = p_n f, \quad (B_n u_n)(t_k) = \sum_{|\alpha|=|\beta|=m} b_{\alpha \beta}(t_k)(D_n^{\alpha + \beta} u_n)(t_k), \quad t_k \in \Delta_n,
$$
and make a substitution
$$
(9) \quad v_n = B_n u_n + ru_n, \quad v_n \in H^s_n.
$$
As it is shown in [12] equation (9) is uniquely solvable for all n, beginning from some n_1, and for $v_n = p_n v$ solutions $u_n = G_n v_n = G_n p_n v$ converge to the solution $u = Gv$ of the equation (5). Here G_n is inverse to the operator $B_n u_n + ru_n$ and
$$
(10) \quad u_n = G_n v_n, \quad B_n u_n = v_n - rG_n v_n.
$$
By the substitution (9) we will get an equation
$$
(11) \quad K_n v_n \equiv A_n v_n - r A_n G_n v_n + T_n G_n v_n = f_n, \quad K_n : H^s_n \to H^s_n,
$$
which is equivalent to the equation (8). As above the equivalence here means, that
solvability of one of the equations yields solvability of another and their solutions
are joined by the relationships (9), (10).

The invertibility of the operators $K_n : H^s_n \to H^s_n$ we’ll prove following [11]. To
do this we have to establish the following:
a) $\|P_n f_n - f\|_s \to 0$ for $n \to \infty$;
b) the sequence of operators (K_n) approximates operator K compactly;
c) K is invertible.

The validity of a) follows immediately from the definition of f_n and the Lemma 1.

$$\|P_n f_n - f\|_s = \|P_n p_n f - f\|_s \leq C E_n(f)_s.$$

To check b) we will show first that the sequence (K_n) approximates the operator
K with respect to P_n. For arbitrary $v_n \in H^s_n$ we will write

$$\|P_n K_n v_n - K P_n v_n\|_s \leq \|P_n A_n v_n - AP_n v_n\|_s$$

+ $|r| \|P_n A_n G_n v_n - AGP_n v_n\|_s + \|P_n T_n G_n v_n - TGP_n v_n\|_s$

and estimate each summand of the right-hand side independently. From the def-
inition of the operator A_n and condition 1) of the Theorem it follows that the
first summand is equal to zero. For the second summand, using once more the
definition of the operator A_n, condition 1) of the Theorem and boundness of the
operators A and P_n, we will have

$$|r| \|P_n A_n G_n v_n - AGP_n v_n\|_s \leq C \|P_n p_n AP_n G_n v_n - AGP_n v_n\|_s$$

$\leq C \|P_n G_n v_n - GP v_n\|_s$

$\leq C(\|G_n v_n - p_n GP v_n\|_{s,n} + E_n(GP v_n)_s).$

For the third summand, using Lemma 1 and boundness of the operators T_n, we
will obtain

$$\|P_n T_n G_n v_n - TGP_n v_n\|_s \leq C(\|G_n v_n - p_n GP v_n\|_{s,n}$$

+ $\|T_n p_n GP v_n - p_n TGP_n v_n\|_{s,n} + E_n(TGP v_n)_s).$

Finally, the estimation (12) will take the form

$$\|P_n K_n v_n - K P_n v_n\|_s \leq C(\|G_n v_n - p_n GP v_n\|_{s,n}$$

+ $\|T_n p_n GP v_n - p_n TGP_n v_n\|_{s,n}$$

+ $E_n(GP v_n)_s + E_n(TGP v_n)_s),$}

which, taking into account the condition 4) of the Theorem, convergence of the
operators (G_n) and convergence to zero of the best approximations of the functions
$GP v_n$ and $TGP v_n$, means the approximation of the operator K by the sequence
of the operators (K_n) with respect to P_n.

Let us assume now, that the sequence $(v_n), v_n \in H^s_n$ is bounded $\|v_n\|_{s,n} \leq 1$,
and prove that the sequence $(P_n K_n v_n - K P_n v_n)$ is compact in H^s_n. We will write

$$P_n K_n v_n - K P_n v_n = r AGP_n v_n - TGP_n v_n - r AP_n G_n v_n + P_n T_n G_n v_n,$$
and prove the compactness of each summand of the right-hand side. The operators $G : H^s \to H^{s+2m}$, $T : H^{s+2m} \to H^{s+\varepsilon}$, $A : H^{s+2m} \to H^{s+2m}$ are bounded, so the sequences $(rAG\nu_n)$ and $(TGP\nu_n)$ are bounded in $H^{s+\gamma}$, $\gamma = \min(2m, \varepsilon)$ and thus compact in H^s. The operators $G_n : H^s_n \to H^{s+2m}_n$ and $T_nG_n : H^s_n \to H^{s+\varepsilon}_n$ are also bounded so the polynomials $P_nG\nu_n$ and $P_nT_nG\nu_n$ are bounded in $H^{s+\gamma}$ and thus sequences $(rAP\nu_n)$ and $(P_nT_nG\nu_n)$ are also compact in H^s, which gives the compactness of the sequence $(P_nK\nu_n - KP\nu_n)$.

The validity of c) follows from the condition 5) of the Theorem and equivalence of the equations (1) and (7).

Therefore, according to the Theorem 6.1 [11], for all n, beginning from some n_0, $n_0 \geq n_1$, the equations (11), (8), and thus the system of the equations (4) are uniquely solvable and the approximate solutions (u^*_n) of the system of equations (4) converge to the exact solution u^* of the equation (1) with a rate

$$
\|u^*_n - p_nu^*\|_{s+2m,n} \leq C\|p_n(ABu^* + Tu^*) - (A_nB_n p_n u^* + T_n p_n u^*)\|_{s,n} \\
\leq C(E_n(Bu^*)_s + \|p_nBu^* - B_n p_n u^*\|_{s,n} + \|p_nTu^* - T_n p_n u^*\|_{s,n}).
$$

If, moreover, $u^* \in H^{s+2m+2}$, then $Bu^* \in H^{s+2}$ and as it is shown in [11],

$$
\|p_nBu^* - B_n p_n u^*\|_{s,n} \leq C\eta^2.
$$

On the other hand, according to the Lemma 2, and using obvious inequality $(1 + n^2)^{-q} \leq C(h^2)^q$, $q \in R$, $q > 0$, we will have

$$
E_n(Bu^*)_s \leq (1 + n^2)^{-1}E_n(Bu^*)_{s+2} \leq C(h^2),
$$

which, together with the condition 4) of the Theorem gives the requested estimation

$$
\|u^*_n - p_nu^*\|_{s+2m,n} \leq C(h^2 + \eta_n).
$$

The Theorem is proved.

\[\square\]

References

FRUNZE 13-82, KAZAN, 420033, RUSSIA
E-mail: fedotov@mi.ru