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(σ, τ)-DERIVATIONS ON PRIME NEAR RINGS

MOHAMMAD ASHRAF, ASMA ALI AND SHAKIR ALI

Abstract. There is an increasing body of evidence that prime near-rings
with derivations have ring like behavior, indeed, there are several results
(see for example [1], [2], [3], [4], [5] and [8]) asserting that the existence of
a suitably-constrained derivation on a prime near-ring forces the near-ring
to be a ring. It is our purpose to explore further this ring like behaviour.
In this paper we generalize some of the results due to Bell and Mason [4]
on near-rings admitting a special type of derivation namely (σ, τ)- derivation
where σ, τ are automorphisms of the near-ring. Finally, it is shown that under
appropriate additional hypothesis a near-ring must be a commutative ring.

1. Introduction

Throughtout the paper N will denote a zero symmetric left near-ring with
multiplicative centre Z. An element x of N is said to be distributive if (y + z)x =
yx + zx for all x, y, z ∈ N . A near-ring N is called zero symmetric if 0x = 0
for all x ∈ N (recall that left distributivity yields x0 = 0). An additive mapping
d : N −→ N is said to be a derivation on N if d(xy) = xd(y)+d(x)y for all x, y ∈ N

or equivalently, as noted in [8], that d(xy) = d(x) y + xd(y) for all x, y ∈ N .
Following [5], an additive mapping d : N −→ N is called a σ-derivation if there
exists an automorphism σ : N −→ N such that d(xy) = σ(x) d(y) + d(x) y for all
x, y ∈ N . Further this as a motivation we define an additive mapping d : N −→ N

is called a (σ, τ)-derivation if there exists automorphisms σ, τ : N −→ N such
that d(xy) = σ(x) d(y) + d(x)τ(y) for all x, y ∈ N . In case σ = 1, the identity
mapping, d is called τ -derivation. Similarly if τ = 1, d is called σ-derivation. It
is straightforward that an (1, 1)-derivation is ordinary derivation. For x, y ∈ N ,
the symbol [x, y] will denote the commutator xy − yx while the symbol (x, y) will
denote the additive commutator x+y−x−y. Following [5] for x, y ∈ N , the symbol
[x, y]σ,τ will denote the (σ, τ)-commutator σ(x)y − yτ(x) while (σ, τ)-derivation d

will be called (σ, τ)-commuting if [x, d(x)]σ,τ = 0 for all x ∈ N . A near-ring N is
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said to be prime if aNb = (0) implies that a = 0 or b = 0. Further an element
x ∈ N for which d(x) = 0 is called a constant.

Some recent results on rings deal with commutativity of prime and semi-prime
rings admitting suitably constrained derivations. It is natural to look for compa-
rable results on near-rings and this has been done in [1], [2], [3], [4], [5] and [8].
It is our purpose to extend some of these results on prime near-rings admitting
suitably constrained (σ, τ)-derivation.

2. Preliminary results

We begin with the following lemmas which are useful in sequel.

Lemma 2.1. An additive endomorphism d on a near-ring N is a (σ, τ)-derivation
if and only if d(xy) = d(x) τ(y) + σ(x) d(y), for all x, y ∈ N .

Proof. Let d be a (σ, τ)-derivation on a near-ring N . Since x(y + y) = xy + xy,
we obtain

d(x(y + y)) = σ(x) d(y + y) + d(x) τ(y + y)

= σ(x) d(y) + σ(x) d(y) + d(x) τ(y)

+ d(x) τ(y) , for all x, y ∈ N .

(2.1)

On the other hand, we have

d(xy + xy) = d(xy) + d(xy)

= σ(x) d(y) + d(x) τ(y) + σ(x) d(y) + d(x) τ(y)

for all x, y ∈ N .

(2.2)

Combining (2.1) and (2.2), we find that

σ(x) d(y) + d(x) τ(y) = d(x) τ(y) + σ(x) d(y) , for all x, y ∈ N .

Thus, we have

d(xy) = d(x) τ(y) + σ(x) d(y) , for all x, y ∈ N .(2.3)

Conversely, let d(xy) = d(x) τ(y) + σ(x) d(y), for all x, y ∈ N . Then

d(x(y + y)) = d(x) τ(y + y) + σ(x) d(y + y)

= d(x) τ(y) + d(x) τ(y) + σ(x) d(y)

+ σ(x) d(y) for all x, y ∈ N .

(2.4)

Also,

d(xy + xy) = d(xy) + d(xy)

= d(x) τ(y) + σ(x) d(y) + d(x) τ(y) + σ(x) d(y) ,

for all x, y ∈ N .

(2.5)

Combining (2.4) and (2.5), we obtain

d(x) τ(y) + σ(x) d(y) = σ(x) d(y) + d(x) τ(y) , for all x, y ∈ N .
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Lemma 2.2. Let d be a (σ, τ)-derivation on the near-ring N . Then N satisfies

the following partial distributive laws:

(i) (σ(x) d(y) + d(x) τ(y))z = σ(x) d(y)z + d(x) τ(y)z, for all x, y, z ∈ N .

(ii) (d(x) τ(y) + σ(x) d(y))z = d(x) τ(y)z + σ(x) d(y)z, for all x, y, z ∈ N .

Proof. Note that for all x, y, z ∈ N ,

d((xy)z) = σ(x)σ(y) d(z) + (σ(x) d(y) + d(x) τ(y))τ(z) .(2.6)

On the other hand, we have

d(x(yz)) = σ(x)σ(y) d(z) + σ(x) d(y)τ(z)

+ d(x) τ(y)τ(z) , for all x, y, z ∈ N .
(2.7)

Equating (2.6) and (2.7), we find that

(σ(x) d(y) + d(x) τ(y))z = σ(x) d(y)z + d(x) τ(y)z , for all x, y, z ∈ N .

In the similar manner, (ii) can be proved.

Lemma 2.3. Let d be a (σ, τ)-derivation on N and suppose u ∈ N is not a left

zero divisor. If [u, d(u)]σ,τ = 0, then (x, u) is a constant for every x ∈ N .

Proof. Since u(u + x) = u2 + ux, so we obtain

σ(u) d(x) + d(u) τ(u) = d(u) τ(u) + σ(u) d(x) , for all u ∈ N and x ∈ N .

Due to [u, d(u)](σ,τ) = 0, the above expression can be written as

σ(u)(d(x) + d(u)) = σ(u)(d(u) + d(x)) , for all u, x ∈ N

i.e.,

σ(u)(d(x, u)) = 0 , for all x ∈ N .

Since σ is an automorphism of N , σ(u) is not a left-zero divisor. Thus d(x, u) = 0.
Hence (x, u) is constant, for all x ∈ N .

Theorem 2.1. Let N have no non-zero divisors of zero. If N admits a non-trivial

(σ, τ)-commuting (σ, τ)-derivation d, then (N, +) is abelian.

Proof. Let c be any additive commutator. Then application of Lemma 2.3 yields
that c is a constant. Moreover, for any x ∈ N , xc is also an additive commutator,
hence a constant. Thus, 0 = d(xc) = σ(x) d(c)+d(x) τ(c) i.e. d(x) τ(c) = 0, for all
x ∈ N and additive commutators c. Since d(x) 6= 0 for some x ∈ N , so τ(c) = 0,
and thus c = 0 for all additive commutators c. Hence, (N, +) is abelian.

3. Prime near-rings

Lemma 3.1. Let N be a prime near-ring.

(i) If z is a non-zero element in Z, then z is not a zero divisor.

(ii) If there exists a non-zero element z of Z such that z + z ∈ Z, then (N, +) is

abelian.
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(iii) Let d be a non-trivial (σ, τ)-derivation on N . Then xd(N) = (0) or d(N)x =
(0), implies x = 0.

(iv) If N is 2-torsion free and d is a (σ, τ)-derivation on N such that d2 = 0 and

σ, τ commute with d, then d = 0.
(v) If N admits a non-trivial (σ, τ)-derivation d for which d(N) ⊆ Z, then c ∈ Z

for each constant element c of N .

Proof. (i) and (ii) are already proved in [4].

(iii) Let xd(r) = 0, for all r ∈ N . Replace r by yz, to get xσ(y) d(z)+xd(y) τ(z) =
0, for all y, z ∈ N . Hence we have xσ(y) d(z) = 0, for all y, z ∈ N . Since σ is an
automorphism of N , xNd(N) = (0). Again N is prime and d(N) 6= 0, we have
x = 0.

Arguing as above, we can show that d(r)x = 0, for all r ∈ N , implies that
x = 0.

(iv) For arbitrary x, y ∈ N , we have d2(xy) = 0. After a simple calculation, we
obtain 2d(σ(x)) d(τ(y)) = 0. Since N is 2-torsion free, so d(σ(x)) d(N) = (0), for
each x ∈ N . Hence d = 0, by using (iii) and the fact that σ is an automorphisms.

(v) Let c be an arbitrary constant and let x be a non-constant element of N .
Then d(x) τ(c) = d(xc) ∈ Z for each non-constant element x of N . This implies
that d(x) τ(c)y = y d(x) τ(c), for all y ∈ N . Since d(x) ∈ Z \ {0}, it follows that
d(x) τ(c)y = d(x) yτ(c), for all y ∈ N and we conclude that d(x)(yc − cy) = 0;
for all y ∈ N and additive commutator c. Hence, using (i), we get the required
result.

Theorem 3.1. Let N be a prime near-ring admitting a non-trivial (σ, τ)-derivation
d for which d(N) ⊆ Z. Then (N, +) is abelian. Moreover, if N is 2-torsion free

and σ, τ commute with d, then N is a commutative ring.

Proof. Since d(N) ⊆ Z and d is non-trivial, there exists a non-zero element x

in N such that z = d(x) ∈ Z \ {0} and z + z = d(x + x) ∈ Z. Hence (N, +) is
abelian by Lemma 3.1(ii).

Assume now that, N is 2-torsion free and σ, τ commute with d. Application of
Lemma 2.2 (i) yields that,

(σ(x) d(y) + d(x)τ(y))r = σ(x) d(y) r + d(x) τ(y)r ,(3.1)

for all x, y, r ∈ N .

Since d(N) ⊆ Z, it follows that d(xy) ∈ Z, for all x, y ∈ N . Thus, d(xy) r =
r d(xy), for all x, y, r ∈ N and hence

(σ(x) d(y) + d(x) τ(y))r = r(σ(x) d(y) + d(x) τ(y))(3.2)

= rσ(x) d(y) + r d(x) τ(y) ,

for all x, y, r ∈ N .

Combine (3.1) and (3.2) and use the fact that (N, +) is abelian, to get

σ(x) d(y)r − rσ(x) d(y) = r d(x) τ(y) − d(x) τ(y)r ,(3.3)

for all x, y, r ∈ N .
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Since σ is an automorphism and d(N) ⊆ Z, the equation (3.3) can be rearranged
to yield

d(y)σ(x)r − r d(y)σ(x) = d(x)rτ(y) − d(x)τ(y)r , for all x, y, r ∈ N

or

d(y)(σ(x)r − rσ(x)) = d(x)(rτ(y) − τ(y)r) , for all x, y, r ∈ N .(3.4)

Suppose on contrary that N is not commutative and choose r, y ∈ N with rτ(y)−
τ(y)r 6= 0. Let x = d(a), a ∈ N . This yields that σ(x) = σ(d(a)) = d(σ(a)) ∈
Z. Now (3.1) becomes d(y)(d(σ(a))r − rd(σ(a)) = d2(a)(rτ(y) − τ(y)r), i.e.,
d2(a)(rτ(y)− τ(y)r) = 0, for all a ∈ N . By Lemma 3.1 (i), we see that the central
element d2(a) can not be a divisor of zero, we conclude that d2(a) = 0, for all
a ∈ N . But by Lemma 3.1 (iv), this can not happen for non-trivial derivation
d. Thus, rτ(y) − τ(y)r = 0, for all r, y ∈ N . Since τ is an automorphism of N ,
the above expression implies that rz − zr = 0, for all r, z ∈ N . Hence N is a
commutative ring.

Theorem 3.2. Let N be a prime near-ring admitting a non-trivial (σ, τ)-derivation
d such that d(x)d(y) = d(y)d(x), for all x, y ∈ N . Then (N, +) is abelian. More-

over, if N is 2-torsion free and σ, τ commute with d, then N is a commutative

ring.

Proof. In view of our hypothesis, we have d(x + x) d(x + y) = d(x + y) d(x + x),
for all x, y ∈ N . This implies that d(x) d(x) + d(x) d(y) = d(x) d(x) + d(y) d(x),
for all x, y ∈ N and hence d(x) d(x, y) = 0, for all x, y ∈ N i.e., d(x) d(c) = 0, for
all x ∈ N and additive commutator c. Now, application of Lemma 3.1 (iii) yields
that d(c) = 0, for all additive commutators c. Since N is a left near-ring and c is
an additive commutator, xc is also an additive commutator for any x ∈ N . Hence
d(xc) = 0, for all x ∈ N and additive commutator c. Thus by Lemma 3.1 (iii),
c = 0 and hence (N, +) is abelian.

Assume now that N is 2-torsion free and σ, τ commute with d. Then applications
of Lemmas 2.1 and 2.2 (i) yield that,

d(d(x)y) d(z) = (d2(x)τ(y) + σ(d(x))d(y)) d(z)

= d2(x)τ(y) d(z) + σ(d(x)) d(y) d(z)

for all x, y, z ∈ N .

This implies that

d2(x)τ(y) d(z) = d(d(x)y) d(z) − σ(d(x)) d(y) d(z) ,(3.5)

for all x, y, z ∈ N .

Also, since d(x) d(y) = d(y) d(x), for all x, y ∈ N , we find that



286 M. ASHRAF, A. ALI, S. ALI

d(d(x)y) d(z) = d(z) d(d(x)y)

= d(z) (d2(x)τ(y) + σ(d(x))d(y))

= d(z) d2(x)τ(y) + d(z)d(σ(x)) d(y)

= d2(x) d(z)τ(y) + σ(d(x)) d(y) d(z)

for all x, y, z ∈ N .

(3.6)

Combine (3.5) and (3.6), to get

d2(x)((τ(y)d(z) − d(z)τ(y)) = 0 , for all x, y, z ∈ N .(3.7)

Now replacing y by yr in (3.7), we get

d2(x)τ(y)(τ(r)d(z) − d(z)τ(r)) = 0 , for all r, x, y, z ∈ N .

Thus, d2(x)N(τ(r)d(z)− d(z)τ(r)) = (0), for all r, x, z ∈ N . Since N is prime and
τ is an automorphism, rd(z)− d(z)r = 0 or d2(x) = 0, for all x ∈ N . But the last
conclusion is impossible by Lemma 3.1 (iv). Hence, we have rd(z) − d(z)r = 0,
for all r, z ∈ N . This implies that d(N) ⊆ Z. Hence N is a commutative ring by
Theorem 3.1.
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