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ON CORINGS AND COMODULES

HANS–E. PORST

To my friend and colleague Jiř́ı Rosický on his 60th birthday

Abstract. It is shown that the categories of R-coalgebras for a commutative
unital ring R and the category of A-corings for some R-algebra A as well as
their respective categories of comodules are locally presentable.

Introduction

The categories under consideration are defined as the categories of comonoids
and comonoid-coactions in certain monoidally closed categories as follows:

a) Given a commutative unital ring R
• the category CoalgR of R-coalgebras is the category of comonoids in

(ModR,−⊗R −, R),
• the categories ComodA and AComod of right resp. left A-comodules

for an R-coalgebra A are the corresponding categories of right resp.
left A-coactions on R-modules.

b) Given an R-algebra A,
• the category CoringA of A-corings is the category of comonoids in

(AModA,−⊗A−, A), where AModA denotes the category of A,A-bi-
modules,

• the categories ComodC and CComod of right resp. left C-comodules
for an A-coring C again are the respective categories of C-coactions on
left (right) A-modules.

Only scattered results are known about the structure of these categories: co-
completeness of these categories is a rather trivial fact (see Fact 2 below), cocom-
mutative coalgebras form a cartesian closed category ([3]), ComodA is locally
presentable and comonadic over ModR ([11]). A first systematic approach to
completeness — limited, however, to the case where the rings involved are regular
— was presented in [8] using the dualized construction of colimits in varieties.

In this note we will offer a unified approach to these and many new results
by considering the categories in question as subcategories of certain categories of

2000 Mathematics Subject Classification: Primary 16W30, Secondary 18C35.
Key words and phrases: coalgebras, comodules, locally presentable categories.



420 H.-E. PORST

functor–coalgebras CoalgF ; using methods from the theory of accessible cate-
gories (see [2], [8]) we will show first that these categories are complete and then,
in a second step, that this also holds for their interesting subcategories CoalgR,
CoringA, and ComodA. In fact we will prove even more: all categories mentioned
so far are locally presentable categories.

Local presentability of CoalgR generalizes Sweedler’s so-called Fundamental

Theorem of Coalgebras (see [10], [5]), which states that every coalgebra (over some
field k) is a directed colimit of coalgebras whose underlying vector space is finite
dimensional, hence of finitely presentable coalgebras, since the following is easy to
prove:

Proposition 1. A k-coalgebra is finitely presentable iff its underlying k-vector

space is of finite dimension.

Note, however, that neither this proposition nor Sweedler’s prove generalize to
arbitrary rings.

1. The categories CoalgTI and CoalgMA

Let (C,⊗, I) be any of the monoidally closed categories (ModR,−⊗R −, R) or
(AModA,− ⊗A −, A) mentioned in the introduction. We consider the following
functors:

Tn : C −→ C

C 7−→ ⊗nC

TI : C −→ C

C 7−→ T2C × I = (C ⊗ C) × I

AM : C′ −→ C′ MA : C′ −→ C′

C 7−→ A⊗ C C 7−→ C ⊗A

where A is a monoid in (C,⊗, I) and C′ = C in the commutative case and, for
A non–commutative, C′ = A–Mod and Mod–A, the categories of left and right
A-modules respectively, with −⊗− the obvious bifunctor C × C′ −→ C′.

Then CoalgR and CoringA, respectively, are the full subcategories of CoalgTI

(w.r.t. the appropriately chosen (C,⊗, I) — see above) spanned by those TI -coalge-

bras C = (C,C
〈m,e〉
−→ (C ⊗ C) × I) which make the following diagrams commute

(1)

C
m

//

m

��

C ⊗ C

m⊗idC

��

C ⊗ C
idC⊗m

// C ⊗ C ⊗ C
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(2)

C

m

��

rC

$$I

I

I

I

I

I

I

I

I

I

I

I

C ⊗ C
idC⊗e

// C ⊗ I

and (3)

C
m

//

lC
""E

E

E

E

E

E

E

E

E

E

C ⊗ C

e⊗idC

��

I ⊗ C

Similarly, the various categories of comodules are subcategories of CoalgMA and
CoalgAM , respectively, defined by the obvious diagrammatic axioms.

We will need the following results, which are easy to prove (see [1], [8]).

Fact 2.

1. For each functor F : C −→ C the category CoalgF is cocomplete provided

the category C is so.

2. The categories of comonoids and comonoid–coactions are closed in their

respective functor–categories under colimits.

Clearly MA is accessible since it is a left adjoint. Also, if F is an accessible
endofunctor on a category A with biproducts, then F × A = F + A is accessible
for each object A in A. Thus, TI is accessible by the following fact:

Lemma 3. Let (C,−⊗−, I) be a monoidally closed category and F : C −→ C a

finitary functor. Then F̂ : C −→ C with F̂ (C) = C⊗FC is finitary. In particular,

the functor Tn : C −→ C with TnC = ⊗nC preserves directed limits.

Proof. If D : I = (I,≤) −→ C is a directed diagram in C with colimit Di
di−→ C

the colimit of the diagram D̃ : I × I −→ C with D̃(i, j) = Di ⊗ FDj can be

computed as Di ⊗ FDj

di⊗Fdj

−−−−−−→ C ⊗ C since F and each X ⊗ − and − ⊗ Y

preserve (directed) colimits. Finally, the diagram F̂ ◦D is a cofinal subdiagram of

D̃. �

Remark 4. Since the monoidal categories under consideration are varieties also TI

preserves directed colimits (see also [8]). As a consequence of these observations
we obtain that the underlying functors | − | of CoalgTI and CoalgMA into C

and C′, respectively, have right adjoints and thus are comonadic (see [1]); their
domains are also accessible by the following observation.

Recall that for functors F,G : K −→ L the inserter of F and G is the full subcat-
egory Ins(F,G) of the comma category F ↓ G spanned by all arrows FK −→ GK

([2, 2.71]). Since CoalgF = Ins(idC, F ) it follows from [2, 2.72] and the remark
above that the categories CoalgTI and CoalgMA are accessible. Since any co-
complete accessible category is locally presentable, we obtain

Proposition 5. The categories CoalgTI and CoalgMA are locally presentable.

Remark 6. There is no reason to assume that limits in these categories are
respected by their obvious underlying functors | − | into ModR. Consult [8] or
[11] for how to possibly describe these limits.
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2. The categories CoalgR and ComodA

The defining axioms for R-coalgebras, i.e., the commutativity of the diagrams
(1), (2), and (3) above can be interpreted as follows:

Denote by ϕ and ψ the natural transformations

ϕ : | − | −→ T3 ◦ | − |

ϕC = C
m
−→ C ⊗ C

m⊗idC−−−−−−→ C ⊗ C ⊗ C

and
ψ : | − | −→ T3 ◦ | − |

ψC = C
m
−→ C ⊗ C

idC⊗m
−−−−−−→ C ⊗ C ⊗ C

(Naturality of ϕ and ψ is a consequence of functoriality of −⊗− and the definition
of coalgebra homomorphism.)

Lemma 7. C = (C, 〈m, e〉) satisfies (1) iff ϕC = ψC.

Similarly,
̺ : | − | −→ | − | ⊗R

̺C = C
m
−→ C ⊗ C

idC⊗e
−−−−−→ C ⊗R

and
λ : | − | −→ R⊗ | − |

λC = C
m
−→ C ⊗ C

e⊗idC−−−−−→ R⊗ C

are natural transformations and the following obviously hold

Lemma 8.

1. C = (C, 〈m, e〉) satisfies (2) iff ̺C = r|C|.

2. C = (C, 〈m, e〉) satisfies (3) iff λC = l|C|.

Recall now that (see [2, 2.76]), for accessible functors F t, Gt : K −→ Lt and
families of natural transformations µt, νt : F t −→ Gt (t ∈ T ) the equifier of (µt)
and (νt) is the full subcategory Eq(µt, νt) of K spanned by all K in K with
µt

K = νt
K for all t ∈ T , and that this subcategory is accessible.

Theorem 9. The categories CoalgR and CoringA are locally presentable cate-

gories.

Proof. By Lemmas 7 and 8 the category of comonoids in C is the equifier of the
three pairs (ϕ, ψ), (λ, l|−|), (̺, r|−|) of natural transformations. Since all categories
and functors under consideration are accessible, it is accessible as well. Moreover
the categories under consideration are closed under colimits in their respective
CoalgTI by Fact 2 and hence cocomplete. Now the same argument used in the
proof of Proposition 5 gives the result. �

In a completely analogous way one obtains

Theorem 10. The categories ComodA, AComod, ComodC and CComod are

locally presentable categories and therefore have all limits.
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We now get, as simple corollaries,

Proposition 11.

1. CoalgI is coreflective in CoalgTI .

2. ComodA is coreflective in CoalgMA.

Proof. The proof is the same in both cases: the embedding of the respective
subcategory preserves colimits and both subcategories, being locally presentable,
are co-wellpowered and have a generator. Now apply the (dual of the) Special
Adjoint Functor Theorem. �

Theorem 12.

1. CoalgR is comonadic over ModR,

2. CoringA is comonadic over AModA,

3. ComodA is comonadic over ModR, and

4. ComodC is comonadic over Mod–A.

Proof. The respective underlying functors have right adjoints by Remark 4 and
Proposition 11. They also create split equalizers by Remark 6 and because all
of these categories are closed in their respective categories of functor–coalgebras
w.r.t. subobjects carried by split monos (see [8] or Fact 17 below). �

Remark 13. The existence of cofree comodules certainly can be obtained directly.
The argument given in [6] generalizes to our somewhat more general situation. See
also [11]. Note also that the existence of a cofree coalgebra is known (see [3] for the
cocommutative case with an argument similar or ours, and [10] with an explicit
construction via the tensor algebra for the case of a field, which however generalizes
to rings).

Generalizing a result in [1] we might reformulate the statement of the last
theorem as follows

Theorem 14. All categories CoalgR, CoringA, ComodA, and ComodC re-

spectively, are covarieties.

Remark 15. Obviously, the the above results can be extended to the categories
of cocommuative coalgebras.

Problem 16. It is not clear that the kernel of a morphism in the categories
CoalgR or ComodA is a subobject in the sense of say [4], i.e., whether its car-
rier map is injective. It has been shown in [8] that each injective homomorphism
is a strong monomorphism, but it is clear that the converse doesn’t hold: the
categories under consideration, being locally presentable, carry an (epi, strong
mono)-factorization structure (see [2]) but don’t allow for image-factorizations
of morphisms (see [8]). It thus would be interesting to characterize the injec-
tive homomorphism in these categories categorically and to describe the strong
monomorphisms explicitely. If Kerf could be shown to be a subcoalgebra of f ’s
domain, it would be an easy consequence to prove that it is the largest subcoalge-
bra contained in the ModR-kernel of f . This is the case, if the ring R is regular
(see [8]).
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3. Purity

It is easy to see that CoalgR, CoringA, and ComodA are closed in their
respective categories CoalgTI and CoalgMA w.r.t. subobjects whose underlying
embedding in ModR splits (see [8]). In fact, the proof of this statement given in
[8] shows more:

Given a homomorphism m : C −→ D in CoalgTI and CoalgMA, respectively,
then C is a comonoid and an A-coaction, respectively, provided that D is and
m ⊗m ⊗m and m ⊗ id are monomorphisms in C. In the commutative case this
clearly holds, provided that m is a pure homomorphism. We thus have

Fact 17. CoalgR and ComodA are closed in CoalgTR and CoalgMA, respec-

tively, under subobjects carried by pure R-linear maps.

The categorical concept of λ-purity (λ a regular cardinal) as presented, e.g., in
[2] generalizes the notion of a pure module homomorphism in the sense that an ℵ0-
pure morphism in ModR is simply a pure homomorphism, provided R is a PID.
We do not know whether this fact has appeared in print elsewhere but believe it
must be well known: an argument would be a straightforward generalization of
the proof given for [9, 61.11], considering finitely generated submodules instead of
single generated ones.

Also in the non-commutative case the notion of ℵ0-purity can be exploited:
Since the functor C ⊗− is left adjoint it preserves (directed) colimits and finitely
presentable objects, hence ℵ0-pure morphisms by [2, 2.38] which are (regular)
monomorphisms. Thus the closure–statement of Fact 17 holds also in the non-
commutative case.

Since the underlying functors CoalgF −→ C (F = TI or F = MA) are left
adjoints and CoalgF is a λ-presentable category for some λ they preserve λ-pure
morphisms by the same argument as above, so that we can deduce

Proposition 18. Each of the categories CoalgR, CoringA, ComodA, and

ComodC is closed in its respective category of functor coalgebras under λ-pure

subobjects for a suitable λ.

Proof. Let CoalgF be λ-presentable and C a λ-pure subobject of D, D in the
subcategory under consideration. Then, in C, the embedding C →֒ D is λ-pure,
thus ℵ0-pure. Now the claim follows from the above observations. �

Remark 19. The proposition above allows for an alternative proof of Theorem 9
and Theorem 10. Accessibility of our subcategories is in view of [2, 2.36] an im-
mediate consequence of Proposition 18 since they are clearly closed under colimits
(see [8]).

Let us finally relate ℵ0-purity in AModA with purity in AMod and ModA.

Proposition 20. If f is an ℵ0-pure morphism in AModA, then f is pure in

AMod and in ModA.
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Proof. By [2, 2.30] f is a directed colimit of split monomorphisms in AModA,
hence it is a directed colimit of split monomorphisms in each of the categories
ModA and AMod as well and therefore pure in both categories again by [2, 2.30].

�
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